MATHEMATICS

INVERSE TRIGONOMETRIC FUNCTIONS

DOMAIN, RANGE AND GRAPH OF INVERSE TRIGONOMETRIC FUNCTIONS

What you already know

- Function and classification of functions
- Basic graph of functions

What you will learn

- Condition for existence of inverse of a function
- Domain, range, and graph of inverse trigonometric functions

Inverse function recap

If $f : A \to B$ is a one-one and an onto function, then $f^{-1} : B \to A$ is its inverse. If f and f^{-1} are the inverse of each other, then we get the following:

(i) Domain of $f = Range of f^{-1}$ (ii) Range of $f = Domain of f^{-1}$

(iii) $(f^{-1} of) (x) = f^{-1} (f(x)) = x$

Condition for Existence of Inverse of a Function

An inverse of a function exists only if the function is one-one and onto, i.e., bijective. If a function is not bijective in the given domain, then its domain is modified to get the inverse. The modified domain is known as a restricted domain.

Let us consider the following function: $f : \mathbb{R} \to \mathbb{R} : f(x) = \sin x$

From the given graph, we can see that the given function is neither one-one nor onto as a horizontal line will cut the graph at more than one point and codomain (\mathbb{R}) is not equal to the range of the function.

To make the function bijective domain and codomain of the given function is modified to

$$f:\left[-\frac{\pi}{2},\,\frac{\pi}{2}\right] \rightarrow \left[-1,\,1\right]$$
 as

shown in the figure.

Now, we can see that in the modified domain and codomain, the given function $f(x) = \sin x$ is both one-one and onto function, i.e., bijective.

B

Note

- Inverse trigonometric function gives angle in radians. For example, sin⁻¹x is the measure of the angle in radian.
- There is a difference between $\sin^{-1} x$ (or) (arcsin x) and (sin x)⁻¹

•
$$(\sin x)^{-1} = \frac{1}{\sin x}$$
 (wherever it exists)

Domain, Range, and Graph of Inverse Trigonometric Functions

Domain, range, and graph of $f(x) = \sin^{-1}x$

For the function $f(x) = \sin x$, Restricted domain = $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

Range = [-1, 1]

Here, we can see that the nature of the graph of f(x) is strictly increasing.

By taking the mirror image of f(x)about the line y = x, we get the graph of inverse of f(x), i.e., $\sin^{-1}x$.

(iii) $\sin^{-1}(\pi) = \text{Not} \text{ defined as } \pi \notin [-1, 1]$

Y $\frac{\pi}{2}$ $y = sin^{-1} x$ ЭX -1 1 π 2

Domain, range, and graph of $f(x) = \cos^{-1}x$

For the cosine function $f(x) = \cos x$, Restricted domain = $[0, \pi]$ Range = [-1, 1]Here, we can see that the nature of the graph of f(x) is strictly decreasing.

1-→Х 0 π π π 2 2 -1 $y \neq \cos x$ y = x $y = \cos^{-1} x$ 1 ЭX 0 π -1 π 1 π 2 2 -1 $y \neq \cos x$ π 2 -π· $\mathbf{v} = \mathbf{x}$ $y = \cos^{-1} x$ 1 ЭX 0 -1 1 π 2 π

By taking the mirror image of f(x) about the line y = x, we get the graph of inverse of f(x), i.e., $\cos^{-1}x$.

For the inverse trigonometric function, $g(x) = \cos^{-1} x$, we get, Domain = [-1, 1] Range = $[0, \pi]$

Note

For the inverse trigonometric function $g(x) = \cos^{-1} x$, if x is positive, then angle g(x) lies in the first quadrant, and if x is negative, then angle g(x) lies in the second quadrant.

Example

$$\cos^{-1}\left(\frac{\sqrt{3}}{2}\right) = \theta \implies \cos\theta = \frac{\sqrt{3}}{2} \implies \theta = \frac{\pi}{6}$$

?

If $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$, then find the value of $x^{50} + y^{50} + z^{50}$.

Solution

We know, $0 \le \cos^{-1}x \le \pi$ Given, $\cos^{-1}x + \cos^{-1}y + \cos^{-1}z = 3\pi$ It is only possible if $\cos^{-1}x = \cos^{-1}y = \cos^{-1}z = \pi$ $\Rightarrow x = y = z = \cos \pi = -1$ $\therefore x^{50} + y^{50} + z^{50} = (-1)^{50} + (-1)^{50} + (-1)^{50}$ = 1 + 1 + 1 = 3

Domain, range, and graph of $f(x) = \tan^{-1}x$

For the tangent function $f(x) = \tan x$,

Restricted domain = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Range = \mathbb{R}

Here we can see that

Here, we can see that the nature of the graph of f(x) is strictly increasing.

By taking the mirror image of f(x) about the line y = x, we get the graph of the inverse of f(x), i.e., $tan^{-1} x$.

For the inverse trigonometric function $g(x) = \tan^{-1} x$, if x is positive, then g(x) lies in the first quadrant, and if x is negative, then g(x) lies in the fourth quadrant.

What is the value of $\tan^{-1}(1) + \cos^{-1}(-\frac{1}{2}) + \sin^{-1}(-\frac{1}{2})?$

Solution

$$\tan^{-1}(1) = \frac{\pi}{4}$$
$$\cos^{-1}\left(-\frac{1}{2}\right) = \frac{2\pi}{3}$$
$$\sin^{-1}\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$
$$\therefore \tan^{-1}(1) + \cos^{-1}\left(-\frac{1}{2}\right) + \sin^{-1}\left(-\frac{1}{2}\right) = \frac{\pi}{4} + \frac{2\pi}{3} + \left(-\frac{\pi}{6}\right) = \frac{3\pi}{4}$$

Domain, range, and graph of $f(x) = \cot^{-1}x$

For the cotangent function $f(x) = \cot x$, Restricted domain = $(0, \pi)$ Range = \mathbb{R}

Here, we can see that the nature of the graph of f(x) is strictly decreasing.

For the inverse trigonometric function $g(x) = \cot^1 x$, we get, Domain = \mathbb{R} Range = $(0, \pi)$

By taking the mirror image of f(x) about the line y = x, we get the graph of the inverse of f(x), i.e., $\cot^{-1} x$. Note

For the inverse trigonometric function $g(x) = \cot^1 x$, if x is positive, then g(x) lies in the first quadrant, and if x is negative, then g(x) lies in the second quadrant.

Domain, range, and graph of $f(x) = \sec^{-1} x$ $y = \sec x$ For the secant function $f(x) = \sec x$, Restricted domain = $[0, \pi] - \left\{\frac{\pi}{2}\right\}$ Range = $(-\infty, -1] \cup [1, \infty)$ ЭX 0 -π π $\frac{\pi}{2}$ π $\frac{3\pi}{2}$ <u>5π</u> 2π 2 -1 Y $y = \sec x$ By taking the mirror image of f(x)For the function () about the line y = x, we get the graph ЭX 0 π $\frac{\pi}{2}$ π of the inverse of f(x), i.e., sec⁻¹ x. 2 -1 $y = \sec x$ π <u>π</u> 2 = sec⁻¹ x For the inverse trigonometric function 1 $g(x) = \sec^{-1} x$, we get, Domain = $(-\infty, -1] \cup [1, \infty)$ ЭX 0 π π π -1 Range = $[0, \pi] - \left\{\frac{\pi}{2}\right\}$ 2 2 -1 π 2

For the inverse trigonometric function $g(x) = \sec^{-1}x$, if x is positive, then g(x) lies in the first quadrant, and if x is negative, then g(x) lies in the second quadrant.

Domain, range, and graph of $f(x) = cosec^{-1}x$

For the cosecant function $f(x) = \csc x$, Restricted domain = $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}$ Range = $(-\infty, -1] \cup [1, \infty)$

By taking the mirror image of f(x)about the line y = x, we get the graph of the inverse of f(x), i.e., $cosec^{-1}x$.

oncept Check

1. Find the domain and range of $y = \sin^{-1}(e^x)$

2. Find the domain of
$$f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{2}}$$

Summary Sheet

- An inverse of a function exists only if the function is one-one and onto, i.e., bijective.
- If a function is not bijective in the given domain, then its domain is modified to get the inverse. Thus, a modified domain is known as a restricted domain.

JEE ADVANCED 2003

For g(x) = sin⁻¹ x,
 Domain = [-1, 1]

Range = $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

- For $g(x) = \cos^{-1} x$, Domain = [-1, 1] Range = [0, π]
- For $g(x) = \tan^{-1} x$, Domain = \mathbb{R}

Range =
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

- For $g(x) = \cot^{-1} x$, Domain = \mathbb{R} Range = $(0, \pi)$
- For g(x) = sec⁻¹ x, Domain = (- ∞ , -1] U [1, ∞) Range = [0, π] - $\left\{\frac{\pi}{2}\right\}$
- For g(x) = cosec⁻¹ x, Domain = (- ∞ , -1] U [1, ∞) Range = $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$

$$\Rightarrow$$
 Range = $(0, \frac{\pi}{2}]$

Given,
$$y = f(x) = \sqrt{\sin^{-1}(2x) + \frac{\pi}{6}}$$

For the real value of y, we get,
 $\sin^{-1}(2x) + \frac{\pi}{6} \ge 0$
 $\Rightarrow \sin^{-1}(2x) \ge -\frac{\pi}{6}$

Step 2:

We know that the maximum value of

$$\sin^{-1}x \text{ is } \frac{\pi}{2}.$$
So,

$$\Rightarrow \frac{\pi}{2} \ge \sin^{-1}(2x) \ge -\frac{\pi}{6}.$$

$$\Rightarrow \sin\frac{\pi}{2} \ge 2x \ge \sin\left(-\frac{\pi}{6}\right).$$

$$\Rightarrow 1 \ge 2x \ge -\frac{1}{2}.$$

$$\Rightarrow \frac{1}{2} \ge x \ge -\frac{1}{4}.$$

$$\Rightarrow x \in \left[-\frac{1}{4}, \frac{1}{2}\right].$$

Self-Assessment

$$\tan^{-1}\sqrt{3} - \sec^{-1}(-2)$$
$$= \frac{\pi}{3} - \frac{2\pi}{3} = -\frac{\pi}{3}$$

MATHEMATICS

INVERSE TRIGONOMETRIC FUNCTIONS

PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

To prove $\cot^{-1}(-x) = \pi - \cot^{-1}x$; $x \in \mathbb{R}$

Proof

Let $\cot^{-1}(-x) = \theta$, $\theta \in (0, \pi)$ $\Rightarrow -x = \cot \theta$ or $x = -\cot \theta$ We know that $\cot(\pi - \theta) = -\cot \theta$ Hence, $x = -\cot \theta$ can be written as $x = \cot (\pi - \theta)$ $\Rightarrow \cot^{-1}x = (\pi - \theta)$ or $\theta = \pi - \cot^{-1}x$ $\Rightarrow \cot^{-1}(-x) = \pi - \cot^{-1}x$ **Hence proved.**

Note

- 1. sin⁻¹(x), tan⁻¹(x), cosec⁻¹(x) are odd functions (f(-x) = -f(x))
- 2. $\cos^{-1}(x)$, $\cot^{-1}(x)$, $\sec^{-1}(x)$ are neither even nor odd functions.

P Evaluate:
$$\sin^{-1}\left(\frac{-1}{2}\right)$$

Solution
 $\sin^{-1}\left(\frac{-1}{2}\right) = -\sin^{-1}\left(\frac{1}{2}\right) = -\frac{\pi}{6}$

Property 2: Properties of Inverse Function $f(f^{-1}(x))$

- 1. $\sin(\sin^{-1}(x)) = x; x \in [-1,1]$
- 2. $\cos(\cos^{-1}(x)) = x; x \in [-1,1]$
- 3. $tan(tan^{-1}(x)) = x; x \in \mathbb{R}$

Proof

To prove $sin(sin^{-1}(x)) = x$; $x \in [-1,1]$ Let $y = sin(sin^{-1}(x))$ and $sin^{-1}(x) = \theta$, $\theta \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ $\Rightarrow x = sin \theta$(1) Substituting $sin^{-1}(x) = \theta$ in y, we get, $y = sin \theta$...(2) From (1) and (2), we get, y = x $\therefore sin(sin^{-1}(x)) = x$ 4. $\cot(\cot^{-1}(x)) = x; x \in \mathbb{R}$ 5. $\csc(\csc^{-1}(x)) = x; |x| \ge 1$ 6. $\sec(\sec^{-1}(x)) = x; |x| \ge 1$

Graphs of Inverse Function $f(f^{1}(x))$

1. $y = sin(sin^{-1}(x))$ and $y = cos(cos^{-1}(x))$ for $x \in [-1, 1]$ We know that $y = sin(sin^{-1}(x)) = x$; $x \in [-1, 1]$ and $y = cos(cos^{-1}(x)) = x$; $x \in [-1, 1]$ So, the graph will be the line y = x; $x \in [-1, 1]$

2. $y = tan(tan^{-1}(x) and y = cot(cot^{-1}(x)) for x \in \mathbb{R}$ We know that $y = tan(tan^{-1}(x)) = x$; $x \in \mathbb{R}$ and $y = cot(cot^{-1}(x)) = x$; $x \in \mathbb{R}$ So, the graph will be the line y = x; $x \in \mathbb{R}$

3. $y = cosec(cosec^{-1}(x) \text{ and } y = sec(sec^{-1}(x)) \text{ for } |x| \ge 1$ We know that $y = cosec(cosec^{-1}(x)) = x$; $|x| \ge 1$ and $y = sec(sec^{-1}(x)) = x$; $|x| \ge 1$ So, the graph will be the line y = x; $|x| \ge 1$

Evaluate:
$$\cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$$

Solution

 $\cos(\cos^{-1}(x)) = x ; x \in [-1, 1]$ $\Rightarrow \cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right) = -\frac{\sqrt{3}}{2}$

We also know that if g(x) is periodic with period T, then f(g(x)) is also periodic with period T. That means the period of $\sin^{-1}(\sin(x))$ is 2π , and we have already plotted the graph for 2π length. So, the graph will simply repeat itself after every 2π interval. The graph of $y = \sin^{-1}(\sin(x))$ is as follows:

Evaluate: sin⁻¹(sin 165°).

Solution

Step 1: 165° lies between 90° and 180°. From the graph, it is clear that $y = \sin^{-1}(\sin(x))$ will follow $y = \pi - x$

We also know that if g(x) is periodic with period T, then f(g(x)) is also periodic with period T. That means the period of $\cos^{-1}(\cos(x) \text{ is } 2\pi, \text{ and we have already plotted the graph for } 2\pi$ length. So, the graph will simply repeat itself after every 2π interval. The graph of $y = \cos^{-1}(\cos(x))$ is as follows:

ن Evaluate: cos⁻¹(cos 225°).

Solution

Step 1: 225° lies between 180° and 360°. From the graph, it is clear that $y = \cos^{-1}(\cos(x))$ will follow $y = 2\pi - x$

 $\cos^{-1}(\cos 225^{\circ}) = 360^{\circ} - 225^{\circ} = 135^{\circ}$

JEE ADVANCED 2014 Let $f: [0, 4\pi] \rightarrow [0, \pi]$ be defined by $f(x) = \cos^{-1}(\cos x)$. Find the $(10 \cdot x)$ number of points for $x\in [0,4\pi]$ satisfying the equation $f\left(x
ight)$ =

Solution

Step 1: Let us plot y = cos⁻¹(cos x) and y = $\frac{(10 - x)}{10}$ for x $\in [0, 4\pi]$. The number of solutions will be equal to the number of intersection points.

Step 2:

Concept Check

1. Evaluate the following:

$$(a) 2 \cot^{-1}(-\sqrt{3})$$

2.

Evaluate the following:
(a) cosec
$$\left(cosec^{-1} \left(\frac{1}{2} \right) \right)$$

$$\operatorname{cosec}\left(\operatorname{cosec}^{-1}\left(\frac{1}{2}\right)\right)$$

 $(b)\sin(\sin^{-1}(2))$

 $(b)\sin\left(\frac{\pi}{2} - \sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)\right)$

- 3. Evaluate $\sin^{-1}(\sin 7)$.
- 4. Evaluate $\cos^{-1}(\cos(7))$.

Key formulae

• Properties of inverse function f¹(-x)

- 1. $\sin^{-1}(-x) = -\sin^{-1}x; |x| \le 1$
- 2. $tan^{-1}(-x) = -tan^{-1}x; x \in \mathbb{R}$
- 3. $cosec^{-1}(-x) = -cosec^{-1}x; |x| \ge 1$
- 4. $\cos^{-1}(-x) = \pi \cos^{-1}x; |x| \le 1$
- 5. $\cot^{-1}(-x) = \pi \cot^{-1}x; x \in \mathbb{R}$
- 6. $\sec^{-1}(-x) = \pi \sec^{-1}x; |x| \ge 1$

• Properties of inverse function f(f⁻¹(x))

- 1. $\sin(\sin^{-1}(x)) = x; x \in [-1,1]$
- 2. $\cos(\cos^{-1}(x)) = x; x \in [-1,1]$
- 3. $tan(tan^{-1}(x)) = x; x \in \mathbb{R}$
- 4. $\cot(\cot^{-1}(x)) = x; x \in \mathbb{R}$
- 5. $\operatorname{cosec}(\operatorname{cosec}^{-1}(x)) = x; |x| \ge 1$
- 6. $sec(sec^{-1}(x)) = x; |x| \ge 1$

Graphs

1. $y = sin(sin^{-1}(x))$ and $y = cos(cos^{-1}(x))$ for $x \in [-1, 1]$

Y

1

Self-Assessment

Step 1: $\frac{7\pi}{6}$ lies between π and 2π .

From the graph, it is clear that $y = \cos^{-1}(\cos(x))$ will follow $y = 2\pi - x$

МАТНЕМАТІСЅ

INVERSE TRIGONOMETRIC FUNCTIONS

MORE ON PROPERTIES OF INVERSE TRIGONOMETRIC FUNCTIONS

What you already know

- Function and classification of functions
- Basic graphs of functions
- Domain, range, and graph of inverse trigonometric functions

What you will learn

- Function of the form $f^{-1}(f(x))$
- Properties of inverse trigonometric function $f^{1}\left(\frac{1}{2}\right)$

 $f^{-1}\left(\frac{1}{x}\right)$

Properties of Inverse Function f⁻¹(f(x)) (cont.)

Let us consider function $y = \tan^{-1}(\tan x)$. Given function is an inverse tangent function

 \therefore Range of the function is $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Also, x is an argument of the tangent function

∴ Domain of the function is $x \in \mathbb{R}$ - $\left\{ (2n+1)\frac{\pi}{2} \right\}$

As the value of the function oscillates in the

range $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, the function is periodic and

depends on the period of tan x.

We know that the period of $\tan x$ is π .

 \therefore Period of y = tan⁻¹(tan x) is also π

So, let's plot the graph of $y = \tan^{-1}(\tan x)$ for the length π .

 $y = tan^{-1}(tan x)$

$$\Rightarrow$$
 tan y = tan x

$$\Rightarrow$$
 y = n π + x . . . (i)

 \Rightarrow Graph of y = tan⁻¹(tan x) will be a straight line with slope 1.

Now, by substituting n = 0, we get the relation between x and y for the first interval, y = x

So, for the first interval, the function $y = \tan^{-1}(\tan x)$ can be plotted as shown in the figure above.

As the function is periodic with the period π , the slope of the graph is always 1.

Hence, for all the intervals graph of the function $y = \tan^{-1}(\tan x)$ can be plotted as shown in the figure below.

Let us consider the function $y = \cot^{-1}(\cot x)$. Given function is an inverse cotangent function \therefore Range of the function is $y \in (0, \pi)$ Also, x is the argument of the tangent function \therefore Domain of the function is $x \in \mathbb{R}$ - {n π }; $n \in \mathbb{Z}$ As the value of the function oscillates in the range $(0, \pi)$, the function is periodic and depends on the period of cot x. We know that the period of cot x is π . \therefore Period of $y = \cot^{-1}(\cot x)$ is also π So, let's plot the graph of $y = \cot^{-1}(\cot x)$ for the length π .

 $y = \cot^{-1}(\cot x)$

 $\Rightarrow \cot y = \cot x$

 \Rightarrow tan x = tan y

 $\Rightarrow y = n\pi + x \dots (i)$

 \Rightarrow Graph of y = cot⁻¹(cot x) will be a straight line with slope 1.

Now, by substituting n = 0, we get the relation between x and y for the first interval, y = x

So, the first interval the function $y = \cot^{-1}(\cot x)$ can be plotted as shown in the figure above.

As the function is periodic with the period $\pi,$ the slope of the graph is always 1.

Hence, all the interval graphs of the function $y = \cot^{-1}(\cot x)$ can be plotted as shown in the adjacent figure.

Step 5:

 $sin^{-1}(sin 5) + cos^{-1}(cos 10) + tan^{-1}(tan (-6)) + cot^{-1}(cot (-10))$ = 5 - 2\pi + 4\pi - 10 + 2\pi - 6 + 4\pi - 10 (from (i), (ii), (iii), (iv)) = 8\pi - 21

Let us consider the function $y = \sec^{-1}(\sec x)$. Given function is an inverse secant function

 \therefore Range of the function is $y \in [0, \pi]$ -

Also, x is the argument of the secant function

 \therefore Domain of the function is $x \in \mathbb{R} - \left\{ (2n+1)\frac{\pi}{2} \right\}$

We know that the period of sec x is 2π . \therefore Period of $y = \sec^{-1}(\sec x)$ is also 2π So, let's plot the graph of $y = \sec^{-1}(\sec x)$ for the length 2π . $\Rightarrow y = \sec^{-1}(\sec x)$ $\Rightarrow \sec y = \sec x$ $\Rightarrow \cos x = \cos y$ $\Rightarrow y = 2n\pi \pm x \dots (i)$

Hence, the graph of the function $y = \sec^{-1}(\sec x)$ will be a replica of the graph of the function $y = \cos^{-1}(\cos x)$, except that $y = \sec^{-1}(\sec x)$ is not defined for $x = \left\{ (2n+1)\frac{\pi}{2} \right\}; n \in \mathbb{Z}$ Now, let us consider the function $y = cosec^{-1}(cosec x)$. Given function is an inverse cosecant

function $\begin{bmatrix} \pi & \pi \end{bmatrix}$

 \div Range of the function is y \in

ction is
$$y \in \begin{bmatrix} --, - \\ 2, 2 \end{bmatrix}$$
 - {

Also, \boldsymbol{x} is the argument of the cosecant function

: Domain of the function is $x \in \mathbb{R} - \{n\pi\}$ We know that the period of $\operatorname{cosec} x$ is 2π : Period of $y = \operatorname{cosec}^{-1}(\operatorname{cosec} x)$ is also 2π So, let's plot the graph of $y = \operatorname{cosec}^{-1}(\operatorname{cosec} x)$ for the length 2π .

 $\Rightarrow y = \operatorname{cosec}^{-1}(\operatorname{cosec} x)$ $\Rightarrow \operatorname{cosec} y = \operatorname{cosec} x$ $\Rightarrow \sin y = \sin x$ $\Rightarrow y = n\pi + (-1)^{n}x \dots (i)$

Hence, the graph of the function $y = \csc^{-1}(\csc x)$ will be a replica of the graph of the function $y = \sin^{-1}(\sin x)$, except $y = \csc^{-1}(\csc x)$ is not defined for $x = n\pi$; $n \in \mathbb{Z}$

 $y = 2\pi + x$ y = x $y = x - 2\pi$ $\frac{\pi}{2}$ $y = -(\pi + x)$ y = x $y = x - 2\pi$ $y = x - 2\pi$ $y = x - 2\pi$ $y = x - 2\pi$

Property 3: Function of the Form $f^{1}(f(x))$ (For the Principal Values of x Only)

- $\sin^{-1}(\sin(x)) = x; \forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
- $\cos^{-1}(\cos(x)) = x; \forall x \in [0, \pi]$
- $\tan^{-1}(\tan(x)) = x; \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

•
$$\cot^{-1}(\cot(x)) = x; \forall x \in (0, \pi)$$

• cosec⁻¹(cosec x) = x;
$$\forall x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
 - {0}

•
$$\sec^{-1}(\sec(x)) = x; \forall x \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$$

If $x^2 + 2x + n > 10 + \sin^{-1}(\sin 9) + \tan^{-1}(\tan 9)$ for all real numbers x, then the possible value of n can be: (c) 13

(d) 14

Solution

Step 1:

From the graph of $y = \sin^{-1}(\sin x)$, we get, For x = 9, $y = 3\pi - x$ \Rightarrow y = 3 π - 9 \Rightarrow sin⁻¹(sin 9) = 3 π - 9 (i)

Step 2:

From the graph of $y = \tan^{-1}(\tan(x))$ For x = 9, $y = x - 3\pi$, we get, \Rightarrow y = 9 - 3 π \Rightarrow tan⁻¹(tan 9) = 9 - 3 π (ii)

Step 3:

 $x^{2} + 2x + n > 10 + \sin^{-1}(\sin 9) + \tan^{-1}(\tan 9)$ $x^{2} + 2x + n > 10 + 3\pi - 9 + 9 - 3\pi$ (from (i) and (ii)) $x^2 + 2x + n > 10$ $x^{2} + 2x + (n - 10) > 0$ Here, a > 0We know that for a > 0, $y = ax^2 + bx + c > 0 \forall x \in \mathbb{R}$ only if D < 0 $2^2 - 4(n - 10) < 0$ 4 - 4n + 40 < 0n > 11 \therefore Options (b), (c), and (d) are the correct answers.

Property 4: Properties of Inverse Function f¹

•
$$\operatorname{cosec}^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right); |x| \ge 2$$

Proof

Let
$$\operatorname{cosec}^{-1}(x) = \theta$$
; $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$
 $\operatorname{cosec} \theta = x$
 $\Rightarrow \frac{1}{\sin \theta} = x$
 $\Rightarrow \sin \theta = \left(\frac{1}{x}\right)$
 $\Rightarrow \theta = \sin^{-1}\left(\frac{1}{x}\right)$
 $\Rightarrow \operatorname{cosec}^{-1}(x) = \sin^{-1}\left(\frac{1}{x}\right)$
As $\frac{1}{x} \neq 0$, so $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] - \{0\}$

Similarly,

•
$$\sec^{-1}(x) = \cos^{-1}\left(\frac{1}{x}\right); |x| \ge 1$$

• $\cot^{-1}(x) = -\frac{\tan^{-1}\left(\frac{1}{x}\right); x > 0}{\pi + \tan^{-1}\left(\frac{1}{x}\right); x < 0}$

Justification:

Range of cot⁻¹x is $(0, \pi)$, but the range of tan⁻¹x is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. So, we can not equate L.H.S. and R.H.S. directly. For x > 0, both L.H.S. and R.H.S. lie in the interval $\left(0, \frac{\pi}{2}\right)$. For x < 0, L.H.S. lies in the interval $\left(\frac{\pi}{2}, \pi\right)$, and R.H.S. lies in the interval $\left(-\frac{\pi}{2}, 0\right)$. So, π is added to the R.H.S. to make the range of L.H.S. and R.H.S. equal

Sin⁻¹x = cosec⁻¹ $\left(\frac{1}{x}\right)$ \rightarrow Not identical, because L.H.S. sin⁻¹x is defined for x = 0, but R.H.S. cosec⁻¹ $\left(\frac{1}{x}\right)$ is not defined for x = 0. Due to the same reason, sec⁻¹(x) = cos⁻¹ $\left(\frac{1}{x}\right)$ \rightarrow Not identical

?

Find the value of $\sec^{-1}\left(\sqrt{2}\right) + \cot^{-1}\left(-\sqrt{2}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right)$.

Solution

Step 1:

Given,

$$\begin{split} &\sec^{-1}\left(\sqrt{2}\right) + \cot^{-1}\left(-\sqrt{2}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) \\ &= \sec^{-1}\left(\sqrt{2}\right) + \pi + \tan^{-1}\left(-\frac{1}{\sqrt{2}}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) \quad (\cot^{-1}(x) = \pi + \tan^{-1}\left(\frac{1}{x}\right); x < 0) \\ &= \sec^{-1}\left(\sqrt{2}\right) + \pi - \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) + \tan^{-1}\left(\frac{1}{\sqrt{2}}\right) \quad (\tan^{-1}(-x) = -\tan^{-1}(x)) \\ &= \sec^{-1}\left(\sqrt{2}\right) + \pi \end{split}$$

Step 2:

Let
$$\sec^{-1}(\sqrt{2}) = \alpha$$

 $\Rightarrow \sec \alpha = \sqrt{2}$
 $\Rightarrow \cos \alpha = \frac{1}{\sqrt{2}}$
 $\Rightarrow \alpha = \frac{\pi}{4}$
 $\therefore \sec^{-1}(\sqrt{2}) + \pi = \frac{\pi}{4} + \pi = \frac{5\pi}{4}$

Property 5: Properties of some particular Inverse Functions

•
$$\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$
; $x \in [-1, 1]$

•
$$\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}; |x| \ge 1$$

• $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$; $x \in \mathbb{R}$

Proof

Let $\sin^{-1}x = \theta$; $\theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\Rightarrow \sin \theta = x$ $\Rightarrow \cos\left(\frac{\pi}{2} - \theta\right) = x$ $\because -\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$ $\Rightarrow \frac{\pi}{2} \ge -\theta \ge -\frac{\pi}{2}$ $\Rightarrow \frac{\pi}{2} + \frac{\pi}{2} \ge -\theta + \frac{\pi}{2} \ge -\frac{\pi}{2} + \frac{\pi}{2}$ $\Rightarrow \pi \ge \frac{\pi}{2} - \theta \ge 0$

Which is the range of the inverse cosine function

$$\Rightarrow \frac{\pi}{2} - \sin^{-1}x = \cos^{-1}x$$
$$\Rightarrow \sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$$

Similarly, the other two results can also be proved.

The greatest and least value of
$$(\sin^{-1}(x))^2 + (\cos^{-1}(x))^2$$
 are _____ and _____, respectively.
(a) $\frac{5\pi^2}{4}, \frac{\pi^2}{8}$ (b) $\frac{\pi}{2}, -\frac{\pi}{2}$ (c) $\frac{\pi^2}{4}, -\frac{\pi^2}{4}$ (d) $\frac{\pi^2}{4}, 0$

Solution

Step 1:

Given,

 $y = (\sin^{-1}x)^{2} + (\cos^{-1}x)^{2}$ $\Rightarrow y = (\sin^{-1}x)^{2} + (\cos^{-1}x)^{2} + 2\sin^{-1}x\cos^{-1}x - 2\sin^{-1}x\cos^{-1}x$ $\Rightarrow y = (\sin^{-1}x + \cos^{-1}x)^{2} - 2\sin^{-1}x\cos^{-1}x$ $\Rightarrow y = \left(\frac{\pi}{2}\right)^{2} - 2\sin^{-1}x\left(\frac{\pi}{2} - \sin^{-1}x\right)$ $\Rightarrow y = \frac{\pi^{2}}{4} - \pi\sin^{-1}x + 2\left(\sin^{-1}x\right)^{2}$ $\Rightarrow y = 2\left\{\left(\sin^{-1}x\right)^{2} - \frac{\pi}{2}\sin^{-1}x + \frac{\pi^{2}}{8}\right\}$ $\Rightarrow y = 2\left[\left(\sin^{-1}x\right)^{2} - 2\left(\sin^{-1}x\right)\frac{\pi}{4} + \left(\frac{\pi}{4}\right)^{2} - \left(\frac{\pi}{4}\right)^{2} + \frac{\pi^{2}}{8}\right]$ $\Rightarrow y = 2\left[\left(\sin^{-1}x - \frac{\pi}{4}\right)^{2} + \frac{\pi^{2}}{16}\right]$

Step 2:

$$\therefore y_{\min} = 2 \left[0 + \frac{\pi^2}{16} \right] = \frac{\pi^2}{8}$$

and $y_{\max} = 2 \left[\left(-\frac{\pi}{2} - \frac{\pi}{4} \right)^2 + \frac{\pi^2}{16} \right]$
$$= 2 \left(\frac{9\pi^2}{16} + \frac{\pi^2}{16} \right) = \frac{5\pi^2}{4}$$

 \therefore Option (a) is the correct option.

2. Solve
$$\sin^{-1}(x^2 - 2x + 1) + \cos^{-1}(x^2 - x) = \frac{\pi}{2}$$

Step 2:

Let
$$\cos^{-1}\left(\frac{4}{5}\right) = \theta, \theta \in \left(0, \frac{\pi}{2}\right)$$

 $\Rightarrow \cos \theta = \frac{4}{5}$

Here, $\boldsymbol{\theta}$ is an acute angle in the right angle triangle, as shown in the figure.

$$\sin^{-1}\left(\frac{x}{5}\right) = \theta$$

$$\Rightarrow \frac{x}{5} = \sin \theta$$

$$\Rightarrow \frac{x}{5} = \frac{3}{5} \quad \text{(From the triangle)}$$

$$\Rightarrow x = 3$$

 \therefore Option (b) is the correct answer.

2.

 $\begin{aligned} -1 &\leq x^2 \cdot 2x + 1 \leq 1 \dots (i) \\ -1 &\leq x^2 \cdot x \leq 1 \dots (ii) \\ \text{Given, } \sin^{-1}(x^2 \cdot 2x + 1) + \cos^{-1}(x^2 \cdot x) &= \frac{\pi}{2} \\ \Rightarrow x^2 \cdot 2x + 1 &= x^2 \cdot x \quad [\sin^{-1}(A) + \cos^{-1}(A) &= \frac{\pi}{2}] \\ \Rightarrow 2x \cdot x &= 1 \\ \Rightarrow x &= 1 \\ x &= 1 \text{ satisfies both (i) and (ii)} \\ \text{Hence, } x &= 1 \text{ is the solution of } \sin^{-1}(x^2 \cdot 2x + 1) + \cos^{-1}(x^2 \cdot x) &= \frac{\pi}{2} \end{aligned}$

Self Assessment

Step 1:

Given equation is $\sin[\cot^{-1}(1 + x)] = \cos[\tan^{-1}x]$ Let $\cot^{-1}(1 + x) = a$ $\Rightarrow \cot a = 1 + x$ We know, $\csc a = \sqrt{1 + \cot^2 a} = \sqrt{1 + (1 + x)^2} = \sqrt{x^2 + 2x + 2}$ Also, $\sin a = \frac{1}{\cos e c a}$ $\Rightarrow \sin a = \frac{1}{\sqrt{x^2 + 2x + 2}}$ $\Rightarrow a = \sin^{-1}\left(\frac{1}{\sqrt{x^2 + 2x + 2}}\right)$ Let $\tan^{-1}x = b$ We know that $\sec b = \sqrt{1 + \tan^2 b} = \sqrt{1 + x^2}$ Also, $\cosh = \frac{1}{\sec b}$ $\Rightarrow \cos b = \frac{1}{\sqrt{1 + x^2}}$ $\Rightarrow b = \cos^{-1}\left(\frac{1}{\sqrt{1 + x^2}}\right)$

Step 2:

Given equation is
$$\sin[\cot^{-1}(1+x)] = \cos[\tan^{-1}x]$$

$$\Rightarrow \sin\left(\sin^{-1}\left(\frac{1}{\sqrt{x^{2}+2x+2}}\right)\right) = \cos\left(\cos^{-1}\left(\frac{1}{\sqrt{1+x^{2}}}\right)\right)$$

$$\Rightarrow \frac{1}{\sqrt{x^{2}+2x+2}} = \frac{1}{\sqrt{1+x^{2}}}$$

$$\Rightarrow \sqrt{1+x^{2}} = \sqrt{x^{2}+2x+2}$$

$$\Rightarrow 1 + x^{2} = x^{2} + 2x + 2 \quad \text{(Squaring on both sides)}$$

$$\Rightarrow 2x = -1$$

$$\Rightarrow x = -\frac{1}{2}$$