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BINOMIAL THEOREM
1. Statement of Binomial theorem :  If a, b  R and n  N, then
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2. Properties of Binomial Theorem :
(i) General term :  Tr+1 = nCr a
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(ii) Middle term (s) :
(a) If n is even, there is only one middle term,
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3. Multinomial Theorem :
(x1 + x2 + x3 + ........... xk)

n

= 
 nr...rr k21k21

!r!...r!r
!n

 
k21 r

k
r
2

r
1 x...x.x

Here total number of terms in the expansion =  n+k–1Ck–1

4. Application of Binomial Theorem :

If n)BA(   =  + f where  and  n are positive integers, n being odd and

0 < f < 1  then ( + f) f = kn where A – B2 = k > 0 and A – B < 1.

If n is an even integer, then ( + f) (1 – f) = kn

5. Properties of Binomial Coefficients :
(i) nC0 + nC1 + nC2 + ........+ nCn = 2n

(ii) nC0 – nC1 + nC2 – nC3 + ............. + (–1)n nCn  = 0

(iii) nC0 + nC2 + nC4 + .... = nC1 + nC3 + nC5 + .... = 2n–1

(iv) nCr + nCr–1  = n+1Cr (v)
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6. Binomial Theorem For Negative Integer Or Fractional Indices

(1 + x)n = 1 + nx + !2
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