

DPP No. 59

Total Marks : 52

Max. Time : 59 min.

Topic : Binomial Theorem

Type of Questions

Subjective Questions (no negative marking) Q.1,2,3,4,5,6,7 Single choice Objective (no negative marking) Q.8,9,10,11,12,13,14,15

1. Expand the following :

(i)
$$\left(\frac{2}{x}-\frac{x}{2}\right)^5$$
, $(x \neq 0)$ (ii) $\left(y^2+\frac{2}{y}\right)^4$, $(y \neq 0)$

2. Find the 7th term from the end in the expansion of $\left(9_{X} - \frac{1}{3\sqrt{x}}\right)^{18}$, $x \neq 0$.

- 3. In the binomial expansion of $\left(\sqrt[3]{2} + \frac{1}{\sqrt[3]{3}}\right)^n$, the ratio of the 7th term from the begining to the 7th term from the end is 1 : 6 ; find n.
- 4. Find the coefficient of (i) x^6y^3 in $(x + y)^9$ (ii) $a^5 b^7$ in $(a - 2b)^{12}$
- 5. Find the terms independent of 'x' in the expansion of the expression, $(1 + x + 2x^3) \left(\frac{3}{2}x^2 \frac{1}{3x}\right)^9$.
- 6. Find the co-efficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ and of x^{-7} in $\left(ax \frac{1}{bx^2}\right)^{11}$ and find the relation between

'a' & 'b' so that these co-efficients are equal. (where a, $b \neq 0$).

7. Find the positive value of 'a' so that the co–efficient of x^5 is equal to that of x^{15} in the expansion

$$of\left(x^2+\frac{a}{x^3}\right)^{10}.$$

8. The (m + 1)th term of
$$\left(\frac{x}{y} + \frac{y}{x}\right)^{2m+1}$$
 is

- (A) independent of x(B) a constant(C) depends on the ratio x/y and m(D) none of these
- 9. The total number of distinct terms in the expansion of, $(x + a)^{100} + (x a)^{100}$ after simplification is : (A) 50 (B) 202 (C) 51 (D) none of these

M.M., Min.

(4 marks, 5 min.) [28, 35] (3 marks, 3 min.) [24, 24]

10.
The value of,
$$\frac{18^3 + 7^3 + 3.18.7.25}{3^6 + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64}$$
 is :

 (A) 1
 (B) 2
 (C) 3
 (D) none

 11.
 If the 6th term in the expansion of $\left[\frac{1}{x^{8/3}} + x^2 \log_{10} x\right]^8$ is 5600, then x =

 (A) 10
 (B) 8
 (C) 11
 (D) 9

 12.
 In the expansion of $\left(3 - \sqrt{\frac{17}{4} + 3\sqrt{2}}\right)^{15}$, the 11th term is a:
 (A) positive integer
 (C) negative integer
 (D) negative irrational number
 (C) negative integer
 (D) negative irrational number.

 13.
 If the second term of the expansion $\left[a^{1/13} + \frac{a}{\sqrt{a^{-1}}}\right]^n$ is $14a^{5/2}$, then the value of $\frac{nC_3}{nC_2}$ is:

 (A) 4
 (B) 3
 (C) 12
 (D) 6

 14.
 The co-efficient of x in the expansion of $(1 - 2x^3 + 3x^5) \left(1 + \frac{1}{x}\right)^8$ is :

 (A) 56
 (B) 65
 (C) 154
 (D) 62

15. In the expansion of $(7^{1/3} + 11^{1/9})^{6561}$, the number of terms free from radicals is: (A) 730 (B) 729 (C) 725 (D) 750

Answers Key

1. (i)
$$\left(\frac{2}{x}\right)^5 - 5\left(\frac{2}{x}\right)^3 + 10\left(\frac{2}{x}\right) - 10\left(\frac{x}{2}\right)$$

 $+ 5\left(\frac{x}{2}\right)^3 - \left(\frac{x}{2}\right)^5$
(ii) $y^8 + 8y^5 + 24y^2 + \frac{32}{y} + \frac{16}{y^4}$
2. ${}^{18}C_63. n = 9$ 4. (i) ${}^{9}C_3$ (ii) $-2^7 \cdot {}^{12}C_7$
5. $\frac{17}{54}$ 6. ${}^{11}C_5\frac{a^6}{b^5}, {}^{11}C_6\frac{a^5}{b^6}, ab = 1$ 7. $\frac{1}{2\sqrt{3}}$
8. (C) 9. (C) 10. (A) 11. (A)
12. (B) 13. (A) 14. (C) 15. (A)