DPP - Daily Practice Problems

	6. abcd	7. abcd	8. abcd	9. abcd	10. abcd
RESPONSE GRID	11.abcd	12. abcd	13.abcd	14.abcd	15. abcd
GRID	16.abcd	17. abcd	18.abcd	19. abcd	20. ⓐⓑⓒⓓ

(d) 1.12 litrcof O₂ at STP

(d) 10^4 gm atom

(c) 1000 gm atom

- Q.21 How many moles of potassium chlorate to be heated to produce 11.2 litre oxygen?
- (a) $\frac{1}{2}$ mol (b) $\frac{1}{3}$ mol (c) $\frac{1}{4}$ mol (d) $\frac{2}{3}$ mol

DIRECTIONS (Q.22-Q.24): In the following questions, more than one of the answers given are correct. Select the correct answers and mark it according to the following codes:

Codes:

- (a) 1, 2 and 3 are correct
- **(b)** 1 and 2 are correct
- 2 and 4 are correct
- (d) 1 and 3 are correct
- Q.22 5.325g sample of methyl benzoate, a compound used in the manufacture of perfumes is found to contain 3,758 g of carbon, 0.316g hydrogen and 1.251g of oxygen. . If mol. weight of methyl benzoate is 136.0

Choose the correct options -

- (1) Empirical formula of compound is C₄H₄O
- (2) Molecular formula of compound is C₈H₈O₂
- (3) Empirical formula of compound is $C_8H_{\bullet}O_2$
- (4) Molecular formula of compound is C₄H₄O

0.23 Choose the correct statements-

- (1) The number of atoms in 52 mole of He is 31.3×10^{24}
- (2) The number of atoms in 52 amu of He is 13
- (3) The number of atoms in 52g of He is 78.26×10^{23}
- (4) The number of atoms in 52g of He is 52.26×10^{23}

Q.24 Choose the correct statements -

- (1) The number of atoms in 1g of helium is 1.506×10^{22}
- (2) The mass of 1 molecule of CO is 4.65×10^{-23} g
- (3) The volume at STP occupied by 240gm of SO₂ is 22.4 litre
- (4) The volume at STP occupied by 240gm of SO₂ is

DIRECTIONS (Q.25-Q.27): Read the passage given below and answer the questions that follows:

Representation of the chemical change in terms of symbol and formulae of the reactants & products is called a chemical equation.

Information conveyed by a chemical equation

- Qualitatively, a chemical equation tells us the names of the (1) various reactants
- Quantitatively, it expresses (2)
 - (a) The relative no. of molecules of reactants and products
 - (b) The relative no. of moles of reactants and products
 - (c) The relative masses of reactants and products
 - (d) The relative volumes of gaseous reactants and products

Limiting Reagent: The reactant which is completely consumed during the reaction is called limiting reagent-

- Q.25 Calculate the mass of oxygen required to burn 14g C₂H₄ completely-
 - (a) 48g
- (b) 54 g
- (c) 36 g
- (d) 78 g
- Q.26 Calculate the volume of H2 at STP that will be displaced by 1 g of Zn when it is completely dissolved in dilute sulphuric acid.
 - (a) $0.1425 \, dm^3$
- (b) $2.3425 \, dm^3$
- (c) $0.3425 \, din^3$
- (d) $1.3425 \, \text{din}^3$
- Q.27 10 ml of liquid carbon disulphide (sp. gravity 2.63) is burnt in oxygen. Find the volume of the resulting gases measured
 - (a) 13.26 lit.
- (b) 23.26lit.
- 33.26 lit.
- (d) 43.26lit.

RESPONSE GRID

- 21.(a)(b)(c)(d) 22.(a)(b)(c)(d)
- 23. (a) (b) (c) (d)
- **24.** (a) (b) (c) (d)
- 25. (a) (b) (c) (d)

- 26.(a)(b)(c)(d)
- 27. (a) (b) (c) (d)

DIRECTIONS (Q.28-Q.30): Each of these questions contains two statements: Statement-1 (Assertion) and Statement-2 (Reason). Each of these questions has four alternative choices, only one of which is the correct answer. You have to select the correct choice.

- (a) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (b) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1.
- (c) Statement -1 is False, Statement-2 is True.
- (d) Statement -1 is True, Statement-2 is False.

- **Q.28 Statement 1 :** One mole of SO₂ contains double the number of molecules present in one mole of O₂.
 - **Statement 2:** Molecular weight of SO_2 is double to that of O_2 .
- Q.29 Statement 1: The ratio by volume of gaseous reactants and products is in agreement with their molar ratio.
 - **Statement 2:** Volume of a gas is inversely proportional to the number of moles of a gas.
- **Q.30 Statement 1:** I amu equals to 1.99×10^{-23} g

Statement 2:
$$1.99 \times 10^{-23}$$
 g equals to $\frac{1}{12}$ th of mass of a C¹² atom.

RESPONSE GRID

28.abcd

29. a b c d

30.abcd

DAILY PRACTICE PROBLEM SHEET 2 - CHEMISTRY						
Total Questions	30	Total Marks	120			
Attempted		Correct				
Incorrect		Net Score				
Cut-off Score	32	Qualifying Score	48			
Success Gap = Net Score — Qualifying Score						
Net Score = (Correct × 4) – (Incorrect × 1)						

DAILY PRACTICE PROBLEMS

- I mol of $C_6H_{12}O_6$ has = 6 N_A atoms of C
 - $0.35 \operatorname{mol} \operatorname{ofC}_6 H_{12} O_6$ has $= 6 \times 0.35 \,\mathrm{N_A}$ atoms of C
 - $= 2.1 N_A atoms$

 $= 2.1 \times 6.023 \times 10^{23} = 1.26 \times 10^{24}$ carbon atoms

- : $180 \, \text{gm glucose has} = N_A \, \text{molecules}$ (2)
 - $\therefore 5.23 \text{ gm glucose has} = \frac{5.23 \times 6.023 \times 10^{23}}{180}$

 $= 1.75 \times 10^{22}$ molecules

(b) $: 6.023 \times 10^{23}$ molecules of NH₃ has weight = 17 gm (3) \therefore 3.01 × 10²³ molecules of NH₃ has weight

 $= \frac{17 \times 3.01 \times 10^{23}}{6.023 \times 10^{23}} = 8.5 \text{ gm}$

- $H_2 + Cl_2 \rightarrow 2 HCl$ (4)(b) 8lit 6lit Volume before reaction Volume after reaction
 - :. Volume afterreaction

= Volume of H₂ left + Volume of HCl formed = 2 + 12 = 14 lit

Average atomic mass (5)(a)

$$= \frac{\% \text{ of } 1 \text{ isotope} \times \text{ its atomic mass} +}{000}$$

$$= \frac{75.53 \times 34.969 + 24.47 \times 36.966}{100} = 35.5 \text{ amu}.$$

- \therefore 1 gm atom of Mg has mass = 24 gm (6) \therefore 2 gm atom of Mg has mass = 24 × 2 = 48 gm.
- ∵ N_A atomsof Agweigh 108gm (7) (a)
 - . I atom of Ag weigh

$$= \frac{108}{N_A} = \frac{108}{6.023 \times 10^{23}} = 17.93 \times 10^{-23} \text{ gm}.$$

- : 8gm sulphur is present in 100gm of substance (8)
 - \therefore 32gm sulphur will present = $\frac{100}{8} \times 32 = 400$
- \therefore N_A molecules of CO₂ has molecular mass = 44 (9)∴ 2N_A molecules of CO₂ has molecular mass

 $=44 \times 2 = 88 \text{ gm}.$

- It is about 22.4L. (10) (b)
- (11) (d) " 22.4 litre water vapour at STP has

 $=6.023 \times 10^{23}$ molecules

 \therefore 1 × 10⁻³ litre water vapours at STP has

$$=\frac{6.023\times10^{23}}{22.4}\times10^{-3}=2.69\times10^{19}$$

- : 1 million or 10⁶ rupees are spent in 1sec. (12) (c)
 - \therefore 6.023 × 10²³ rupces are spent in

$$= \frac{1 \times 6.023 \times 10^{23}}{10^6} \text{ sec}$$

 $= \frac{1 \times 6.023 \times 10^{23}}{10^6 \times 60 \times 60 \times 24 \times 365} \text{ years} = 19.098 \times 10^9 \text{ year}$

- (13) (c) : Weight of 1 atom of element = 6.644×10^{-23} gm
 - :. Weight of N_A atoms of element $=6.644 \times 10^{-23} \times 6.023 \times 10^{23} = 40 \,\mathrm{gm}$

: 40gm of elementh as I gmatom.

- $\therefore 40 \times 10^3 \text{ gmof elementh as } \frac{40 \times 10^3}{40}$ $= 10^3$ gm atom.
- \therefore Mol. wt. of CaCl₂ = 111 g (14) (a)

: III g CaCl₂ has $= N_A$ ions of Ca²⁺

 $\therefore 222g \text{ of CaCl}_2 \text{ has } \frac{N_A \times 222}{111} = 2N_A \text{ ions of Ca}^{2+}$

Also :: 111 gCaCl₂ has=2N_A ions of Cl⁻

 $\therefore 222 \text{ g CaCl}_2 \text{ has} = \frac{2N_A \times 222}{111} \text{ ions of Cl}^-$

 $=4N_A ions of Cl^-$.

- (15) (d) : 100 kg impuresamplehas pure $CaCO_3 = 95 \text{kg}$
 - ∴ 200 kg impure sample has pure CaCO₃

$$=\frac{95\times200}{100}$$
 = 190 kg.

 $CaCO_3 \rightarrow CaO + CO_2$: $100 \text{ kg CaCO}_3 \text{ gives CaO} = 56 \text{ kg}$.

 \therefore 190 kg CaCO₃ gives CaO = $\frac{56 \times 190}{100}$ = 106.4 kg.

- (16) (b)
- MPO₄ since M has +3 valency. Ag + 2H NO₃ \rightarrow Ag NO₃ + NO₂ + H₂O (17) (b)

$$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$$

143.5

:. 143.5 gm of silver chloride would be precipitated by 108 g of silver.

or 14.35 g of silver chloride would be precipitated by 10.8 g of silver.

Hence 11.34 g of silver coin contain 10.8 g of pure silver.

- $\therefore 100 \text{ g of silver coin contain } \frac{10.8}{11.34} \times 100 = 95.2\%.$
- (18) (a) Element Moleratio Simplest moleratio 12.1 $\frac{12.1}{12} = 1.01$ $\frac{1.01}{1.01} = 1$ C
 - $16.2 \qquad \frac{16.2}{16} = 1.01 \qquad \frac{1.01}{1.01} = 1$ 0
 - $\frac{71.7}{35.5} = 2.02$ $\frac{2.02}{1.01} = 2$ Cl

Hence empirical formula = COCl₂

DPP/ C (02)

(19) (c)
$$BCl_3 + 3 [H] \rightarrow B + 3 HCl$$

 $BCl_3 + \frac{3}{2} H_2 \rightarrow B + 3 HCl$
 $\frac{3}{2} \text{ mole}$ l mole

No. of moles of B obtained =
$$\frac{\text{Wt. of B}}{\text{At. mass of B}}$$

= $\frac{21.6}{10.8}$ = 2

Thus I mole B =
$$\frac{3}{2}$$
 mole of H₂
2 mole B = 3 mole of H₂
= 3×22.4 L of H₂ = 67.2L of H₂

- (20) (a)
 - (a) Mass of iron = 40 g
 - (b) Mass of 1.2 g atom of $N = 14 \times 1.2 = 16.8$ gm
 - (c) Mass of 1×10^{23} atoms of $C = \frac{12 \times 1 \times 10^{23}}{6.023 \times 10^{23}} = 1.99 \text{ gm}.$
 - (d) Mass of 1.12 litro of O_2 at STP = $\frac{32 \times 1.12}{22.4} = 1.6 \text{ g}$
- (21) (b) $2 \text{ KClO}_3 \rightarrow 2 \text{KCl} + 3 \text{O}_2$ Mole for reaction $2 \qquad 2 \qquad 3$ $\therefore 3 \times 22.4 \text{ litre O}_2 \text{ is formed by 2 mole KClO}_3$
 - 11.2 litre O₂ is formed by = $\frac{2 \times 11.2}{3 \times 22.4} = \frac{1}{3}$
- (22) (b) Element % Moleratio Simplest whole ratio

C
$$\frac{3.758 \times 100}{5.325} = 70.57$$
 $\frac{70.57}{12} = 5.88$ $\frac{5.88}{1.47} = 4$

H
$$\frac{0.316 \times 100}{5.325} = 5.93$$
 $\frac{5.93}{1} = 5.93$ $\frac{5.93}{1.47} = 4$

$$O = \frac{1.251 \times 100}{5.325} = 23.50 = \frac{23.50}{16} = 1.47 = \frac{1.47}{1.47} = 1$$

 \therefore Empirical formula = C_4H_4O

$$n = \frac{\text{Mol. wt}}{\text{Empirical formula wt.}} = \frac{136}{68} = 2$$

 \Rightarrow Molecular formula = $C_8H_8O_2$

- (23) (a)
 - (1) 1 mole of He contains 6.02×10^{23} atoms $\therefore 52 \text{ moles of He contain} = 52 \times 6.02 \times 10^{23}$ $= 31.3 \times 10^{24} \text{ atoms}$
 - (2) Atomic weight of He = 4amu
 - ∴ 52 amu of He contain = $\frac{52}{4}$ = 13 atoms of He

- (3) Number of moles of He in $52g = \frac{52}{4} = 13$ moles ... no. of atoms in 52g of He i.e. 13 moles $= 13 \times 6.02 \times 10^{23} \text{ atoms}$ $= 78.26 \times 10^{23} \text{ atoms}$
- (24) (c) (l) 4g of Helium contains 6.023×10^{23} atoms

 $lg of Helium contains = \frac{6.023 \times 10^{23}}{4}$

 $=1.506 \times 10^{23}$ atoms

(2) Grammolecular weight of CO=12+16=28g6.023 × 10^{23} molecules of CO weigh 28gm

1 molecule of CO weighs =
$$\frac{28}{6.023 \times 10^{23}}$$

= 4.65×10^{-23} g

(3,4) Molecular weight of $SO_2 = 32 + 2 \times 16 = 64$ 64 gm of SO_2 occupies 22.4 litre at STP

240 grn of SO₂ occupies = $\frac{22.4}{64} \times 240 = 84$ litre at STP

(25) (a) $C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O$ Mole ratio 1 3 2 2

Moles of C_2H_4 to be burnt = $\frac{14}{28} = \frac{1}{2}$ mole

: 1 mole C₂H₄ requires 3 mole O₂ for combustion

 $\therefore \frac{1}{2} \operatorname{mole} C_2 H_4 \operatorname{requires} 3 \times \frac{1}{2} = \frac{3}{2} \operatorname{mole} O_2$

Thus mass of $O_2 = \frac{3}{2} \times 32 = 48 \text{ gm}$

- (27) **(b)** 1 ml of CS_2 weighs 2.63 g 10 ml of CS_2 weighs 26.3 g $CS_2 + 3 + O_2 \rightarrow CO_2 + 2SO_2$ $12 + (2 \times 32)$ 22.4 ℓ 44.8 ℓ 76 gm

 \because 76g of CS₂ yield 67.2 ℓ of a mixture of CO₂ and SO₂ at STP

:. 26.3 g of CS₂ would yield $\frac{67.2}{76} \times 26.3 = 23.26$ lit.

- (28) (c) One mole of SO₂ and O₂ have same number of
- (29) (d) $V \propto n$ at same temperature and pressure.
- (30) (a) 6.023×10^{23} atoms of Care present in 12 g m of C-12

:. 1 atom of C weighs = $\frac{12}{6.023 \times 10^{23}}$ = 1.99 × 10⁻²³ gm