Chemical Kinetics

Q.No.	Question	Marks
11	Shamoita compiled a list of rate expressions for several reactions she studied during her lab classes:	1
	I. Rate = k $[P]^{3/2} [Q]^{-1}$	
	II. Rate = $k [P]^1 [Q]^1$	
	III. Rate = $k [P]^1 [Q]^0$	
	Which of the following arranges the reactions in the increasing order of their overall reaction order?	
	(A) I, II, III (B) I, III, II	
	(C) II, III, I (D) III, II, I	
	[Skill: Application]	
12	During hydrolysis of ethyl acetate, the order of the reaction changes from towhen the amount of water is reduced considerably.	1
	[Skill: Mechanical]	
13	Carbon dating is a technique used by archaeologists to determine the age of organic materials, such as trees, plants, animal remains, and human artifacts made from wood and leather, by measuring the amount of carbon-14 present.	2
	An archaeologist discovered that the carbon-14 content in the remains of an animal was 25% of the original carbon-14 present in the plant's body when it died.	
	What is the age of this sample?	
	(Given the half-life of carbon-14= 5730 years and $\log 4 = 0.6$)	
	[Skill: Mechanical]	

14	Redraw the graphs labelling the axes correctly:		3		
		Order of the reaction	Graph		
		ZERO			
		ZERO			
		FIRST			
	[Skill: Ap	plication]			
15	(a) How is the time required for 90% completion of a first-order reaction related to its half-life?			3+2	
	(b) Draw Maxwell-Boltzmann curve showing the distribution for temperatures $T_1(70^{\circ}C)$ and $T_2(80^{\circ}C)$ for a sample of nitrogen gas.				
	[Skill: Un	derstanding]			

Marking Scheme

the sum of powers of the concentration of the reactants in the rate law expression is called the order of that chemical reaction. C: Students choosing this option may have got confused about the mode of arranging the reactions. D: Students choosing this option may lack the understanding that order of a reaction in the sum of powers of the concentration of the reactants in the rate law expression is called the order of that chemical reaction. 12 During hydrolysis of ethyl acetate, the order of the reaction changes from pseudo firs order to second order when the amount of water is reduced considerably. 13 Decay of ¹⁴ C is a first order reaction. \Rightarrow k = 0.693/ t _{1/2} = 0.693 / 5730 [0.5 marks] \Rightarrow t = (2.303 × 5730/0.693) × log 100/25 \Rightarrow t = (2.303 × 5730/0.693) × log 100/25 \Rightarrow t = 11425.27 years (approx.) [1 mark] 14 I4 I4 I4 I4 I4 I4 I4 I4	Marks		Rubric	Q No.	
the sum of powers of the concentration of the reactants in the rate law expression is called the order of that chemical reaction. C: Students choosing this option may have got confused about the mode of arranging the reactions. D: Students choosing this option may lack the understanding that order of a reaction is called the order of that chemical reaction. 12 During hydrolysis of ethyl acetate, the order of the reaction changes from pseudo firs order to second order when the amount of water is reduced considerably. 13 Decay of ¹⁴ C is a first order reaction. => k = 0.693/t _{1/2} = 0.693 / 5730 [0.5 marks] => t = (2.303 × 5730/0.693) × log 100/25 => t = (2.303 × 5730/0.693) × log 100/25 => t = 11425.27 years (approx.) [1 mark] 14 Image: Second or the reaction of the reactio	1	To determine the overall reaction order for each of the reactions listed, we need to sum the exponents of the concentrations in the rate expression for each reaction.		11	
the reactions. D: Students choosing this option may lack the understanding that order of a reaction is called the order of the concentration of the reactants in the rate law expression is called the order of that chemical reaction. 12 During hydrolysis of ethyl acetate, the order of the reaction changes from pseudo firs order to second order when the amount of water is reduced considerably. 13 Decay of ¹⁴ C is a first order reaction. $\Rightarrow k = 0.693/t_{1/2} = 0.693 / 5730 [0.5 marks]$ $\Rightarrow t = (2.303/k) \log(A_0/A) [0.5 marks]$ $\Rightarrow t = (2.303 \times 5730/0.693) \times \log 100/25$ $\Rightarrow t = 11425.27$ years (approx.) [1 mark] 14 I4 I5 I5 I6 I7 I7 I8 I8					
the sum of powers of the concentration of the reactants in the rate law expression is called the order of that chemical reaction. 12 During hydrolysis of ethyl acetate, the order of the reaction changes from pseudo firs order to second order when the amount of water is reduced considerably. 13 Decay of ¹⁴ C is a first order reaction. $=> k = 0.693 / t_{1/2} = 0.693 / 5730 [0.5 marks]$ $=> t = (2.303/k) \log(A_0/A) [0.5 marks]$ $=> t = (2.303 \times 5730/0.693) \times \log 100/25$ $=> t = 11425.27$ years (approx.) [1 mark] 14 I4 I4 I4 I4 I4 I4 I4 I4 I4		C: Students choosing this option may have got confused about the mode of arranging the reactions.			
order to second order when the amount of water is reduced considerably. 13 Decay of ¹⁴ C is a first order reaction. \Rightarrow k = 0.693/ t ₁₂ = 0.693 / 5730 [0.5 marks] \Rightarrow t = (2.303/k) log(A ₀ /A) [0.5 marks] \Rightarrow t = (2.303 × 5730/0.693) × log 100/25 \Rightarrow t = 11425.27 years (approx.) [1 mark] 14 I4 I5 I5 I6 I7 I7 I7 I7			the sum of powers of the concentration of		
$=> k = 0.693 / t_{1/2} = 0.693 / 5730 [0.5 marks]$ $=> t = (2.303 k) \log(A_0/A) [0.5 marks]$ $=> t = (2.303 \times 5730/0.693) \times \log 100/25$ $=> t = 11425.27 \text{ years (approx.) [1 mark]}$ 14 $\boxed{\begin{array}{c c} Order of the reaction & Graph \\ \hline & & \\ \hline \end{array}$	1	During hydrolysis of ethyl acetate, the order of the reaction changes from <u>pseudo first</u> <u>order</u> to <u>second order</u> when the amount of water is reduced considerably.		12	
$=> t = (2.303/k) \log(A_0/A) [0.5 marks]$ $=> t = (2.303 \times 5730/0.693) \times \log 100/25$ $=> t = 11425.27 \text{ years (approx.) [1 mark]}$ 14 $\boxed{\begin{array}{c} \hline \text{Order of the reaction} & \overline{\text{Graph}} \\ \hline \text{ZERO} & \overline{\text{Id}} \\ \hline \text{ZERO} & \overline{\text{Id}} \\ \hline \text{Id} \\ \hline \text{Id} \\ \hline \text{FIRST} & \overline{\text{Rate}} \\ \hline \text{Id} \\ \hline \ \text{Id} \\ \hline \hline \text{Id} \\ \hline \ \text{Id} \\ \hline \hline \ \ \ \text{Id} \\ \hline \hline \ \ \ \text{Id} \\ \hline \hline \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	2	Decay of ¹⁴ C is a first order reaction.			
$=> t = (2.303 \times 5730/0.693) \times \log 100/25$ => t = 11425.27 years (approx.) [1 mark]		$=> k = 0.693/ t_{1/2} = 0.693 / 5730 [0.5 marks]$			
=> t = 11425.27 years (approx.) [1 mark] 14 14 14 14 14 14 14 14 14 14		$=> t = (2.303/k) \log(A_0/A) [0.5 marks]$			
14 Order of the reaction ZERO Image: Constraint of the reaction Image: Constraint of the reactant.		$=> t = (2.303 \times 5730/0.693) \times \log 100/25$			
Order of the reactionGraphZERO $M^{\uparrow}_{\downarrow}$ ZERO $Rate^{\uparrow}_{\downarrow}$ ZERO $Rate^{\uparrow}_{\downarrow}$ Image: Rest of the reaction of the reactant.		=> t = 11425.27 years (approx.) [1 mark]			
$\begin{bmatrix} ZERO & \begin{bmatrix} IX \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	3				
ZERO ZERO Rate JUNC Rate FIRST Rate JUNC [X] - represents concentration of the reactant.		Graph	Order of the reaction		
$\begin{bmatrix} ZERO \\ \hline \\ FIRST \\ \hline \\ FIRST \\ \hline \\ X] - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration of the reactant. \\ \begin{bmatrix} X \end{bmatrix} - represents concentration o$			ZERO		
FIRST $[X]$ - represents concentration of the reactant.			ZERO		
			FIRST		
		[X] - represents concentration of the reactant.			
[Award 1 mark for each correct answer.]					
[Accept any other valid answer.]					

