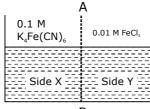

102.	In the equation : $Cr O^{2-Eo^2+H+} \cdot Cr^{3+Eo^3+H} O$				
	$\text{Cr}_2\text{O}_7^{2-}\text{Fe}^{2+}\text{H}^+ \rightarrow \text{Cr}^{3+}\text{Fe}^{3+} + \text{H}_2\text{O}$ the coefficients of Fe^{2+} and H^+ are respectively				
				(D) E 14	
	(A) 6, 7	(B) 6, 14	(C) 5, 7	(D) 5, 14	
103.	Oxidation number of sulphur in H_2SO_5 is -				
	(A) +2	(B) +4	(C) +8	(D) +6	
104.	Which of the following process represents disproportionation ?				
	(A) $Cu+4HNO_3\rightarrow Cu(NO_3)_2+2NO_2+2H_2O$		(B) 3I ₂ +60H ⁻ →IO ₃	(B) $3I_2 + 6OH^- \rightarrow IO_3^- + 5I^- + 3H_2O$	
	(C) $Cl_2 + I_2 \rightarrow 2ICl$		(D) $Zn+2HCI \rightarrow ZnCl_2+H_2$		
105.	In alkaline medium, KMnO ₄ , reacts as follows				
	$2KMnO4 + 2KOH \rightarrow 2K2MnO4 + H2O + O$				
	Therefore, the equivalent mass of KMnO ₄ will be				
	(A) 31.6	(B) 52.7	(C) 7.0	(D) 158.0	
106.	A meallic oxide contains 60% of the metal is				
	(A) 12	(B) 24	(C) 48	(D) 72	
107.	30 mL of diabasic acid is neutralized by 15 mL of 0.2 N NaOH. The molarity of the acid is				
	(A) 0.05 M	(B) 0.2 M	(C) 0.3 M	(D) 0.4 M	
108.	100 mL of a mixture of NaOH and Na_2SO_4 is neutralized by 10 mL of 0.5 M H_2SO_4 . The amound of NaOH in 100 mL solution is				
	(A) 0.2 g	(B) 0.4 g	(C) 0.6 g	(D) 0.8 g	
109.	A 1.0 g sample of H_2O_2 solution contains x% by mass and requires x mL of KMnO ₄ in acidic solution for complete oxidation. The normality of KMnO ₄ is -				
	(A) 0.58	(B) 0.116	(C) 0.25	(D) 0.3	
110.	Equivalent mass of FeC ₂ O ₄ in the reaction				
	$FeC_2O_4 \rightarrow Fe^{+3}CO_2$ is -				
	(A) M	(B) M/2	(C) M/3	(D) 2M/3	
111.	Electrolysis of bot	aguagus colution of N	laCl gives NaClO i e	codium parchlarata	
111.	Electrolysis of hot aqueous solution of NaCl gives NaClO ₄ , i.e., sodium perchlorate, NaCl + $4H_2O \rightarrow NaClO_4 + 4H_2 \uparrow$				
	Now many faraday are required to obtain 1000 g of sodium perchlorate?				
	(A) 65.3	(B) 40.3	(C) 18.3	(D) 31.6	
440		1E\ B / : : :		min mana 40)	
112.	Salt of A (atomic mass 15), B (atomic mass 27) and C (atomic mass 48) were electrolysed using same amount of charge. It was found that when 4.5 g of A was deposited, the mass of B and C deposited were 2.7 g and 9.6 g. The valencies of A, B and C were respectively:				
		(B) 3 1 and 3			

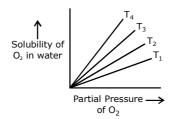
113. $2Ag^{+}(aq) + Cu(s) \rightleftharpoons Cu^{2+}(aq) + 2Ag(s)$

The standard potential Eo for this reaction is 0.46 V. Which change will increase the potential the most?

- (A) Doubling the [Ag+]
- (B) Halving the [Cu²⁺]
- (C) Doubling the size of the Cu(s) electrode
- (D) Decreasing the size of the Ag electrode by one-half
- **114.** The plot of cell potential (E_{cell}) against log_{10} Q may be given as :

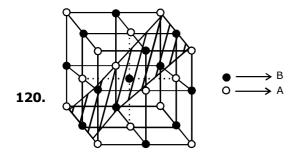

Which of the following is /are correct about the plot?

- (A) Slope of line = $-\frac{0.059}{n}$
- (B) Intercept = Eo_{cell}


(C) Slope of line = E_{cell}^0

- (D) (A) & (B) Both
- **115.** The relationship between osmotic pressure at 273 K when 10 g of glucose (P_1) ; 10 g of urea (P_2) and 10 g of sucrose (P_3) are dissolved in 250 mL of water is :

- (A) $P_1 > P_2 > P_3$ (B) $P_3 > P_1 > P_2$ (C) $P_2 > P_1 > P_3$ (D) $P_2 > P_3 > P_1$
- **116.** FeCl₃ on reaction with $K_4[Fe(CN)_6]$ in aqueous solution gives blue colour. These are separated by a semipermeable membrane AB as shown. Due to osmosis there is:


- (A) blue colour formation in side X
- (B) blue colour formation in side Y
- (C) blue colour formation in both of the sides X and Y
- (D) no blue colour formation
- 117. Solubility of oxygen gas in water follows Henry's law. When the solubility is plotted against partial pressure at a definite temperature we get following plots.

Which of the following sequence of temperatures is correct?

(A)
$$T_1 = T_2 = T_3 = T_4$$
 (B) $T_1 > T_2 > T_3 > T_4$ (C) $T_1 < T_2 < T_3 < T_4$ (D) $T_1 > T_2 < T_3 > T_4$

- **118.** The number of maganess ions in tetrahedral and octahedral sites, respectively in Mn_3O_4 are :
 - (A) one Mn²⁺ and two Mn³⁺ ions
- (B) one Mn3+ and two Mn2+ ions
- (C) two Mn³⁺ and one Mn²⁺ ions
- (D) two Mn²⁺ and one Mn³⁺ ions
- **119.** Xenon crystallizes in face centered cubic unit cell with edge length of 620 pm then radius of xenon atom is :
 - (A) 268 pm
- (B) 219.20 pm
- (C) 436.6 pm
- (D) 526.8 pm

If all the atoms, on the shaded plane are removed then the molecular formula of the solid will be :

- (A) $A_5 B_7$
- (B) $A_7 B_5$
- (C) AB
- (D) $A_3 B_4$

- **121.** The rate constant of a reaction depends on
 - (A) Temperature

(B) Initial concentrations of the reactants

(C) Extent of reaction

- (D) None of these
- **122.** In the following reaction, how is the rate of appearance of the underlined product related to the rate of disappearance of the underlined reactant

$$BrO_{3}^{-}(aq) + 5Br^{-}(aq) + 6H + (aq) \rightarrow 3Br_{2}(\ell) + 3H_{2}O(aq)$$

(A)
$$-\frac{d[BrO_3^-]}{dt} = \frac{d[Br_2]}{dt}$$

(B)
$$-\frac{1}{3}\frac{d[BrO_3^-]}{dt} = \frac{d[Br_2]}{dt}$$

(C)
$$\frac{-d[BrO_3^-]}{dt} = \frac{1}{3} \frac{d[Br_2]}{dt}$$

- (D) None of these
- **123.** Which of the following expressions is correct for zero order and first order respectively [where a is initial concentration]?

(A)
$$t_{1/2} \propto a; t_{1/2} \propto \frac{1}{a}$$

(B)
$$t_{1/2} \propto a; t_{1/2} \propto a^0$$

(C)
$$t_{1/2} \propto a^0; t_{1/2} \propto a$$

(D)
$$t_{1/2} \propto a; t_{1/2} \propto \frac{1}{a^2}$$

- 124. Which one has highest co-agulation power to co-agulate the ferric hydroxide sol -
 - (A) NaCl
- (B) MgSO₄
- (C) $Ca_3 (PO_4)_2$
- (D) all equal

- 125. Milk is -
 - (A) liquid in liquid
- (B) solid in solid
- (C) liquid in solid
- (D) solid in liquid

- **126.** When graph is plotted between $\log_{10} \frac{X}{M} \& \log_{10} P$ then value of intercept & slope will be
 - (A) n, log K
- (B) $\log K \frac{1}{n}$ (C) $\frac{1}{n}$, $\log K$ (D) $\log K$, n
- $18.0~{\rm sec}$ are required for the diffusion of x mol of ${\rm O_2}$ through some porous partition. Another gas G requires 45.0 sec ofr the diffusion of x mol through the saem partition under similar conditions, the molar mass of G is

 - (A) $\left(\frac{45}{18}\right)^2 \times (32)$ (B) $\left(\frac{45 \times (32)}{18}\right)^2$ (C) $\left(\frac{18}{45}\right)^2 \times 32$ (D) $\left(\frac{18}{45}\right)^2 \times \frac{1}{32}$