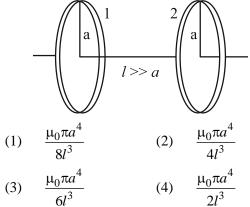

JEE 2023

Electromagnetic Induction

- A coil of wire of a certain radius has 600 turns and a self-inductance of 108 mH. The self-inductance of a 2nd similar coil of 500 turns will be
 - (1) 74 mH (2) 75 mH
 - (3) 76 mH (4) 77 mH
- 2. A circular coil of radius 5 cm has 500 turns of a wire. The approximate value of the coefficient of selfinduction of the coil will be
 - (1) 25 millihenry
 - (2) 25×10^{-3} millihenry
 - (3) 50×10^{-3} millihenry
 - (4) 50×10^{-3} henry
- 3. A branch of circuit is shown in the figure which is part of a complete circuit. What is the potential difference $V_B - V_A$ when the current *I* is 5A and is decreasing at a rate of 10³ A/s?

_		1Ω	1.	5mH	_
0	\rightarrow				0
А	l		15V		В
(1)	5V		(2)	10V	
(3)	15V		(4)	20V	

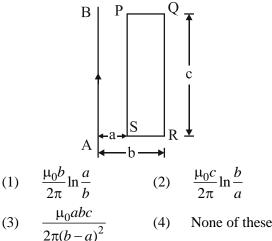
- 4. The current flowing in a coil of self inductance 0.4 *mH* is increased by 250 *mA* in 0.1 *sec*. The e.m.f. induced will be
- 5. Pure inductance of 3.0 H is connected as shown below. The equivalent inductance of the circuit is



6. Two different coils have self inductances $L_1 = 8$ mH and $L_2 = 2$ mH. The current in both the coil is increased at same constant rate. At a certain instant power given to two coils is same. At that time the energy stored in both the coils are $V_1 \& V_2$ respectively, then $\frac{V_1}{V_2}$ is (1) $\frac{1}{V_2} = \frac{1}{V_1}$

(1)
$$\frac{-}{4}$$
 (2) $\frac{-}{2}$

(3) 2 (4) 4


7. What is the mutual inductance of a two-loop system as shown with centre separation l

8.

9.

AB is an infinitely long wire placed in the plane of rectangular coil of dimensions as shown in the figure. Calculate the mutual inductance of wire AB and coil PQRS

- Two coils of self inductance L_1 and L_2 are placed closer to each other so that total flux in one coil is completely linked with other. If M is mutual inductance between them, then
 - (1) $M = L_1 L_2$ (2) $M = L_1 / L_2$ (3) $M = \sqrt{L_1 L_2}$ (4) $M = (L_1 L_2)^2$
- 10. The mutual inductance of an induction coil is 5H. In the primary coil, the current reduces from 5A to zero in 10^{-3} s. What is the induced emf in the secondary coil

(1)	2500V	(2)	25000V
(3)	2510V	(4)	Zero

Answer Key

- (2)
 (1)
- 2. (1) 3. (3)
- 4. (4)
- 5. (1)
- **6.** (1)
- 7. (4)
- 8. (2)
- 9. (3)
- 10. (2)