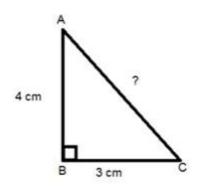
CBSE Board Class 10 Maths Chapter 8- Introduction to Trignometry Objective Questions

Introduction

- 1. In a right triangle ABC, the right angle is at B. Which of the following is true about the other two angles A and C?
 - (A) There is no restriction on the measure of the angles
 - (B) Both the angles should be obtuse
 - (C) Both the angles should be acute
 - (D) One of the angles is acute and the other is obtuse

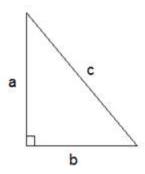

Answer: (C) Both the angles should be acute

Solution: In triangle ABC, $\angle A + \angle B + \angle C = 180^{\circ}$

 $\angle A + \angle C = 180^{\circ} - 90^{\circ} = 90^{\circ} \Rightarrow$ None of the angles can be $\ge 90^{\circ}$

∴ The other 2 angles must be acute angles.

2. In a right triangle ABC, the right angle is at B. What is the length of missing side in the figure?


- (A) 25 cm
- (B) 12cm
- (C) 7cm
- (D) 5cm

Answer: (D) 5cm

Solution: Pythagoras theorem: In a right angled triangle,

Hypotenuse² = Sum of squares of other 2 sides

That is,

$$c^2=a^2+b^2$$

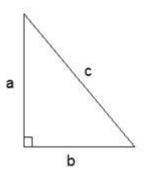
Here a = 4 cm and b = 3 cm,

So the missing side = c = $\sqrt{3^2 + 4^2}$ = 5 cm

- 3. Which of the following numbers can form sides of a right angled triangle?
 - (A) 13 cm, 27 cm, 15 cm
 - (B) 4 cm, 5 cm, 9 cm
 - (C) $2 \, \text{cm}$, $17 \, \text{cm}$, $9 \, \text{cm}$
 - (D) 10 cm , 6 cm , 8 cm

Answer: (D) 10 cm, 6 cm, 8 cm

Solution: The basic condition for any type of triangle is:


- (i) The sum of 2 sides of a triangle should be greater than the third side
- (ii) The difference of any 2 sides should be less than the third side.

For a triangle to be a right angled triangle, there is an additional condition.

Pythagoras theorem: In a right angled triangle, Hypotenuse²= Sum of squares of other 2 sides

That is, $c^2=a^2+b^2$; Also note that the hypotenuse is the largest side in a right triangle.

Considering each of the given options,

$$10^{2}=6^{2}+8^{2}$$

$$17^{2}\neq2^{2}+9^{2}$$

$$9^{2}\neq5^{2}+4^{2}$$

$$27^{2}\neq13^{2}+15^{2}$$

So, A is the correct option.

4. Which of the following are Pythagorean triplets?

- (A) 4 cm, 6 cm, 8 cm
- (B) 24 cm, 10 cm, 26 cm
- (C) 13 cm, 27 cm, 30 cm
- (D) 2 cm, 17 cm, 9 cm

Answer: (B) 24 cm, 10 cm, 26 cm

Solution: Pythagorean triplets are those set of numbers which satisfy the Pythagoras theorem.

Considering the options given to us -

$$8^2 \neq 4^2 + 6^2$$

$$17^2 \neq 2^2 + 9^2$$

$$26^2 = 24^2 + 10^2$$

$$30^2 \neq 27^2 + 13^2$$

Therefore, 24, 10 and 26 are Pythagorean triplets.

Trigonometric Identities

5. If $sec\theta + tan\theta = x$, then $tan\theta$ is:

(A)
$$(x^2-1)/2x$$

(B)
$$(x^2+1)/2x$$

(C)
$$(x^2-1)/x$$

(D)
$$(x^2+1)/x$$

Answer: (A) (x²-1) / 2x

Solution: We know that, $sec^2\theta - tan^2\theta = 1$

Therefore, $(\sec\theta + \tan\theta) (\sec\theta - \tan\theta) = 1$

Since,
$$(\sec\theta + \tan\theta) = x$$

Thus,
$$(\sec\theta - \tan\theta) = 1/x$$

Solving both equations

We get $\tan \theta = (x^2-1)/2x$

6. If p cot $\theta = \sqrt{q^2 - p^2}$ then the value of sin θ is ____. (θ being an acute angle)

Answer: (C) p/q

Given, p
$$\cot \theta = \sqrt{q^2 - p^2}$$

$$\therefore \cot \theta = (\sqrt{q^2 - p^2})/2$$

Using the identity, $cosec^2\theta = 1 + cot^2\theta$

$$=1+\frac{\sqrt{q^2-p^2}}{p^2}$$

$$= q^2/p^2$$

Hence, $cosec\theta = q/p$

$$∴$$
 sin θ = p/q

- 7. If $\sin A = 8/17$, find the value of $\sec A \cos A + \csc A \cos A$.
 - (A) 23/8
 - (B) 15/8
 - (C) 8/15
 - (D) 6/23

Answer: (A) 23/8

Solution: $\sin A = 8/17$

cosec A = 17/8

$$\cos A = \sqrt{1 - \sin^2 A}$$

$$=\sqrt{1-\frac{64}{289}}=\sqrt{\frac{225}{289}}$$

secA cosA + cosecA cosA = (17/15) * (15/17) + (17/15) * (15/17)

$$= 1 + (15/8)$$

- 8. $(\sin A-2 \sin^3 A)/(2 \cos^3 A-\cos A)=$
 - (A) tan A
 - (B) cot A
 - (C) sec A
 - (D) 1

Answer: (A) tan A

Solutions:
$$(\sin A - 2 \sin^3 A) / (2 \cos^3 A - \cos A) = (\sin A (1 - 2 \sin^2 A)) / (\cos A (2 \cos^2 A - 1))$$

= $(\sin A (\sin^2 A + \cos^2 A - 2 \sin^2 A)) / (\cos A (2 \cos^2 A - (\sin^2 A + \cos^2 A)))$
= $(\sin A (\cos^2 A - \sin^2 A)) / (\cos A (\cos^2 A - \sin^2 A))$
= $\tan A$

Trigonometric Ratios

- **9.** (cos A / cot A) + sin A=
 - (A) cot A
 - (B) 2 sin A
 - (C) 2 cos A
 - (D) sec A

Answer: (B) 2 sin A

- **10.** If $5\tan\theta=4$, then value of $(5\sin\theta 4\cos\theta)/(5\sin\theta + 4\cos\theta)$ is:
 - (A) 1/6
 - (B) 5/6
 - (C) 0
 - (D) 5/3

Answer: (C) 0

Solution: Divide both numerator and denominator by $\cos\theta$ and solve

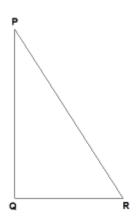
 $(5 \sin \theta - 4 \cos \theta)/(5 \sin \theta + 4 \cos \theta)$

$$= \frac{\frac{(5sin\theta - 4cos\theta)}{cos\theta}}{\frac{(5sin\theta + 4cos\theta)}{cos\theta}}$$

$$=\frac{5tan\theta-4}{5tan\theta+4}$$

$$=\frac{4-4}{4+4}$$

$$= 0$$


(Since, given that 5 tan $\theta = 4$)

11. In \triangle PQR, PQ = 12 cm and PR = 13 cm. \angle Q=90° Find tan P - cot R

- (A) (119/60)
- (B) 119/60
- (C) 0
- (D) 1

Answer: (C) 0

Solution:

Given that in \triangle PQR, PQ = 12 cm and PR = 13 cm.

Now, from Pythagoras theorem, $PQ^2+QR^2=PR^2$ $\Rightarrow QR^2=PR^2-PQ^2$ $\Rightarrow QR^2=13^2-12^2$ $\Rightarrow QR^2=169-144=25$

$$\Rightarrow$$
OR= $\sqrt{25}$ = 5 cm

Now, tan P= opposite side/ adjacent side = QR/PQ= 5/12 cot R= adjacent side/ opposite side = QR/PQ = 5/12

∴tan P-cot R=
$$(5/12)$$
- $(5/12)$ = 0

- 12. If $tan\theta = (x sin\phi) / (1-xcos\phi)$ and, $tan \phi = (y sin \theta) / (1-y cos \theta)$ then x/y = x/y
 - (A) $\sin\theta / (1-\cos\phi)$
 - (B) $\sin\theta / (1-\cos\theta)$
 - (C) $sin\theta/sin\phi$
 - (D) $\sin \phi / \sin \theta$

Answer: (C) $sin\theta/sin\phi$

Solution: We have, $\tan\theta = (x \sin\phi)/(1-x\cos\phi)$ $\Rightarrow (1-x\cos\phi)/(x \sin\phi) = 1/\tan\theta \Rightarrow (1/x\sin\phi) - \cot\phi = \cot\theta$ $\Rightarrow 1/x\sin\phi = -\cot\theta + \cot\phi$ and $\tan\phi = y \sin\theta/(1-y \cos\theta) \Rightarrow (1-y \cos\theta)/y \sin\theta = 1/\tan\phi$ $\Rightarrow (1/y \sin\theta) - \cot\theta = \cot\phi \Rightarrow (1/y \sin\theta) = \cot\phi + \cot\theta$ $\Rightarrow (1/y \sin\theta) = (1/x \sin\phi) \Rightarrow x/y = \sin\theta/\sin\phi$

Trigonometric Ratios of Complementary Angles

- 13. The value of tan1° × tan2° × tan3° ×.....× tan 89° is:
 - $(A) \frac{1}{2}$
 - (B) 2
 - (C) 1
 - (D)0

```
Answer: (C) 1
Solution: tan\theta cot\theta = 1,
            \tan (90-\theta) = \cot \theta
            and tan45°=1
          Given: tan1°.tan2°,tan3° ......tan88°. tan89°
           = (tan1°. tan89°),(tan2°. tan88°)....(tan44°.tan46°) (tan45°)
           = [(\tan 1^{\circ}. \tan (90^{\circ}-1^{\circ})]. [(\tan 2^{\circ}. \tan (90^{\circ}-2^{\circ})]......[(\tan 44^{\circ}. \tan (90^{\circ}-44^{\circ})].1]
          = (tan1°. cot1°). (tan2°. cot2°) ...... (tan44°. cot44°)
           = 1
        14. If tan2A = cot(A-18^\circ), then value of A is:
             (A) 27°
             (B) 24°
             (C) 36^{\circ}
             (D) 18°
       Answer: (C) 36°
        Solution: Given, tan 2A = cot (A - 18°)
        \Rightarrow tan 2A = tan (90 - (A - 18°)
```

 \Rightarrow tan 2A = tan (108° - A)

 \Rightarrow 2A = 108° - A

 \Rightarrow 3A = 108°

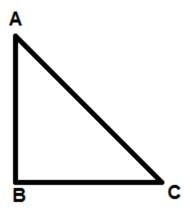
 \Rightarrow A = 36°

- 15. If $\tan 4\theta = \cot(\theta 10^\circ)$, where 4θ and $(\theta 10^\circ)$ are acute angles then the value of θ in degrees is
 - (A) 16°
 - (B) 20°
 - (C) 32°
 - (D) 40°

Answer: (B) 20°

Solution: Given, $\tan 4\theta = \cot(\theta - 10^{\circ})$

This can be written as


$$\cot(90^{\circ}-4\theta)=\cot(\theta-10^{\circ})$$
 -----(i)

(: Tan
$$\theta$$
 = Cot(90° – θ))

Hence, from (i) we have

$$\Rightarrow$$
90°- 4 θ = θ -10°

16. In the given triangle right angled at B, which pair of angles are complementary?

- (A) None of these
- (B) C and A
- (C) A and B
- (D) B and C

Solution: Two angles are said to be complementary, if their sum is 90°. The triangle is right angled at B. With angle sum property of the triangle, $\angle A + \angle B + \angle C = 180^{\circ}$

∠A+∠C=90°, Hence angle A and C are complementary.

Trigonometric Ratios of Specific Angles

- **17.** Which of the following is correct for some θ , such that $0^{\circ} \le \theta < 90^{\circ}$
 - (A) $1/\cos\theta < 1$
 - (B) $\sec \theta = 0$
 - (C) $1/ \sec \theta < 1$
 - (D) $1/ \sec \theta > 1$

Answer: (C) $1/ \sec \theta < 1$

Solution: $1/\sec\theta = \cos\theta$. And value of $\cos\theta$ ranges from 0 to 1

- **18.** The value $\cot^2 30^\circ 2\cos^2 60^\circ 3/4\sec^2 45^\circ 4\sin^2 30^\circ$ is
 - (A) 2
 - (B) -1
 - (C) 1
 - (D)0

Answer: (D) 0

Solution: cot² 30°-2cos² 60°-3/4 (sec² 45°) -4sin² 30°

$$= \frac{(\sqrt{3})^2 - 2(\frac{1}{2})^2 - \frac{3}{4}(\sqrt{2})^2 - 4(\frac{1}{2})^2)}{}$$

19. If Cosec (A+ B) =
$$\frac{2}{\sqrt{3}}$$
 $\sec(A-B) = \frac{2}{\sqrt{3}}$

0°<A+B≤90°,

Find A and B.

- (A) 25°,35°
- (B) 30°, 30°
- (C) 45°, 15°
- (D) 10°,50°

Answer: (C) 45°, 15°

Solution: If A+B lies in this range 0°<A+B≤90°

cosec (A+B) =
$$\frac{2}{\sqrt{3}}$$
 only when A+B=60° (1)

$$\sec (A-B) = \frac{2}{\sqrt{3}}$$
 only when A–B=30°(2)

By Solving equation 1 and equation 2 $A=45^{\circ}$ and $B=15^{\circ}$

20. $\cos 1^{\circ} \times \cos 2^{\circ} \times \cos 3^{\circ} \times \dots \times \cos 180^{\circ}$ is equal to:

- (A) 0
- (B) 1
- (C) ½
- (D)-1

Answer: (A) 0

Solution: Since $\cos 90^{\circ} = 0$

The given expression

reduces to zero as it contains cos 90° which is equal to 0