TOPICGeneral Wave Properties12

Objectives

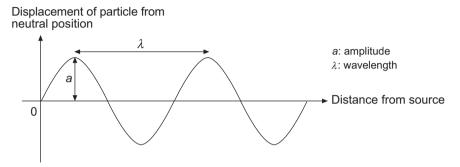
Candidates should be able to:

- (a) describe what is meant by wave motion as illustrated by vibrations in ropes and springs and by waves in a ripple tank
- (b) show understanding that waves transfer energy without transferring matter
- (c) define speed, frequency, wavelength, period and amplitude
- (d) state what is meant by the term wavefront
- (e) recall and apply the relationship *velocity* = *frequency* × *wavelength* to new situations or to solve related problems
- (f) compare transverse and longitudinal waves and give suitable examples of each

NOTES.....

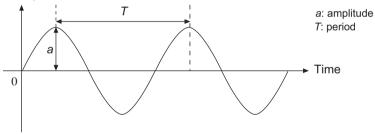
12.1 Introduction

- 1. Wave motion is the propagation of oscillatory movement or disturbance from one region to another.
- 2. A wave transfers energy from one place to another without transferring matter.
- 3. All waves follow the laws of reflection and refraction.
- 4. Mechanical waves require a medium (i.e. water or air molecules) for propagation.
- 5. Electromagnetic waves (See Topic 14) are propagations of oscillations in electromagnetic fields. The propagation does not require a medium, thus electromagnetic waves can travel in vacuum.


- 6. We classify waves in this topic into two types based on their propagation method:
 - (a) Transverse
 - (b) Longitudinal

Transverse waves		Longitudinal waves	
direction of vibration		direction of propagation rarefaction compression wavelength	
Movement of particles in the medium: Perpendicular to the direction of propagation (movement) of wave		Movement of particles in the medium: Parallel to the direction of propagation (movement) of wave	
Examples		Examples	
Water waves, electromagnetic waves		Sound wave	
Characteristics		Characteristics	
pe the 2. Pe by po	ne particles oscillate erpendicularly (up and down) to e direction of travel. eak: Highest point reached v the particle from its neutral osition ough: Lowest point reached by	 The particles oscillate along (to-and-fro) the direction of travel. Compression: Section in which the particles are closest together Rarefaction: Section in which the particles are furthest apart. The distance between adjacent 	
the po 4. Th pa dir	e particle from its neutral position ne distance between adjacent articles remains constant, in the rection of the propagation of the ave.	particles varies from a maximum value (furthest apart) to a minimum value (closest together), in the direction of the propagation	

12.2 Terms used to describe a wave


- For both transverse and longitudinal waves, the particles oscillate about their undisturbed positions (neutral positions). The neutral positions lie along an axis in the direction of wave propagation.
- 2. The following graphs show sine-curves used to describe the wave terms used for both types of waves.

Note: These are graphs and not transverse waves! Displacement-distance Graph

Displacement-time Graph

Displacement of particle from neutral position

3. Common wave terms:

Term	Transverse waves	Longitudinal waves	
Amplitude, <i>a</i> (m)	The maximum displacement of the particle from its neutral position perpendicular to the direction of propagation. (i.e. height of crest from neutral position.)	The maximum displacement of the particle from its neutral position along the direction of propagation.	
Wavelength, λ (m)	The distance between two successive crests or two successive troughs.	The distance between two successive compressions or two successive rarefractions.	
Frequency, f (Hz)	The number of complete waves produced in one second.		
Period, T (s) The time taken to produce one complete wave. Formula: $T = \frac{1}{f}$		ne complete wave.	
Speed, v (m)	The distance moved by any part of the wave in one second. Formula: $v = f\lambda$		

12.3 Wavefront

- 1. A wavefront is a line or surface, in the path of a wave motion, on which all particles are oscillating in phase.
- 2. There are two types of wavefronts:
 - (a) Circular wavefront (close to point source of disturbance)
 - (b) Plane wavefront (straight wavefronts far from point source of disturbance)
- 3. The amplitude of particles along the same wavefront is the same.