QUADRATIC EQUATION

- 1. SOLUTION OF QUADRATIC EQUATION & RELATION BETWEEN ROOTS & CO-EFFICIENTS:
 - (a) The solutions of the quadratic equation, $ax^2 + bx + c = 0$ is given by $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
 - **(b)** The expression $b^2 4$ ac $\equiv D$ is called the discriminant of the quadratic equation.
 - (c) If $\alpha \& \beta$ are the roots of the quadratic equation $ax^2 + bx + c = 0$, then;
 - (i) $\alpha + \beta = -b/a$ (ii) $\alpha\beta = c/a$ (iii) $|\alpha \beta| = \sqrt{D}/|a|$
 - (d) Quadratic equation whose roots are $\alpha \& \beta$ is $(x \alpha)(x \beta)=0$ i.e.

 $x^2 - (\alpha + \beta)x + \alpha\beta = 0$ i.e. $x^2 - (\text{sum of roots})x + \text{product of roots} = 0$.

2. NATURE OF ROOTS:

- (a) Consider the quadratic equation $ax^2 + bx + c = 0$ where a, b, $c \in \mathbb{R} \& a \neq 0$ then ;
 - (i) D > 0 ⇔ roots are real & distinct (unequal).
 - (ii) D = 0 ⇔ roots are real & coincident (equal)
 - (iii) D < 0 ⇔ roots are imaginary.
 - (iv) If $p+i\,q$ is one root of a quadratic equation, then the other root must be the conjugate $p-i\,q$ & vice versa.

$$(p, q \in R \& i = \sqrt{-1}).$$

- (b) Consider the quadratic equation ax² + bx + c = 0 where a, b, c ∈ Q & a ≠ 0 then;
 - (i) If D is a perfect square, then roots are rational.

(ii) If $\alpha=p+\sqrt{q}$ is one root in this case, (where p is rational & \sqrt{q} is a surd) then other root will be $p-\sqrt{q}$.

3. COMMON ROOTS OF TWO QUADRATIC EQUATIONS

(a) Only one common root.

Let α be the common root of $ax^2+bx+c=0$ & $a'x^2+b'x+c'=0$ then a $\alpha^2+b\alpha+c=0$ & a' $\alpha^2+b'\alpha+c'=0$. By Cramer's

Rule
$$\frac{\alpha^2}{bc'-b'c} = \frac{\alpha}{a'c-ac'} = \frac{1}{ab'-a'b}$$

Therefore,
$$\alpha = \frac{ca' - c'a}{ab' - a'b} = \frac{bc' - b'c}{a'c - ac'}$$

So the condition for a common root is

$$(ca' - c'a)^2 = (ab' - a'b)(bc' - b'c)$$

(b) If both roots are same then $\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$

4. ROOTS UNDER PARTICULAR CASES

Let the quadratic equation $ax^2 + bx + c = 0$ has real roots and

- (a) If $b = 0 \Rightarrow$ roots are of equal magnitude but of opposite sign
- **(b)** If $c = 0 \Rightarrow$ one roots is zero other is -b/a
- (c) If $a = c \Rightarrow$ roots are reciprocal to each other
- (d) If $\begin{cases} a > 0 & c < 0 \\ a < 0 & c > 0 \end{cases}$ \Rightarrow roots are of opposite signs
- (e) If $\begin{cases} a > 0, b > 0, c > 0 \\ a < 0, b < 0, c < 0 \end{cases}$ \Rightarrow both roots are negative.
- (f) If $\begin{cases} a > 0, b < 0, c > 0 \\ a < 0, b > 0, c < 0 \end{cases}$ \Rightarrow both roots are positive.
- (g) If sign of a = sign of b ≠ sign of c ⇒ Greater root in magnitude is negative.
- (h) If sign of b = sign of c ≠ sign of a ⇒ Greater root in magnitude is positive.
- (i) If $a + b + c = 0 \Rightarrow$ one root is 1 and second root is c/a.

5. MAXIMUM & MINIMUM VALUES OF QUADRATIC EXPRESSION:

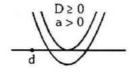
Maximum & Minimum Values of expression $y = ax^2 + bx + c$ is $\frac{-D}{4a}$ which occurs at x = -(b/2a) according as a < 0 or a > 0.

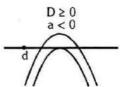
$$y \ \in \left[\frac{-D}{4a}, \infty\right) \text{ if } a>0 \qquad \& \qquad y \ \in \left(-\infty, \frac{-D}{4a}\right] \text{ if } a<0.$$

6. LOCATION OF ROOTS:

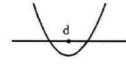
Let $f(x) = ax^2 + bx + c$, where a, b, $c \in R$, $a \ne 0$

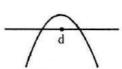
(a) Conditions for both the roots of f(x) = 0 to be greater than a specified number 'd' are $D \ge 0$; a.f(d) > 0 & (-b/2a) > d.



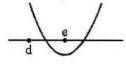


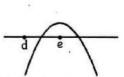
(b) Conditions for the both roots of f(x) = 0 to lie on either side of the number 'd' in other words the number 'd' lies between the roots of f(x) = 0 is $\mathbf{a} \cdot f(\mathbf{d}) < \mathbf{0}$.



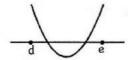


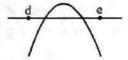
(c) Conditions for exactly one root of f(x) = 0 to lie in the interval (d,e) i.e., d < x < e is f(d). f(e) < 0





(d) Conditions that both roots of f(x) = 0 to be confined between the numbers d & e are (here d < e).</p> $D \ge 0$; a.f(d) > 0 & af(e) > 0; d < (-b/2a) < e





7. GENERAL QUADRATIC EXPRESSION IN TWO VARIABLES:

 $f(x, y) = ax^2 + 2 hxy + by^2 + 2gx + 2 fy + c$ may be resolved into two linear factors if;

$$\Delta = abc + 2fgh - af^2 - bg^2 - ch^2 = 0 \quad OR \quad \begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0$$

8. THEORY OF EQUATIONS:

If $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ are the roots of the equation ;

 $\begin{array}{l} f(x)=a_0~x^n+a_1~x^{n-1}+a_2~x^{n-2}+.....+a_{n-1}~x+a_n=0~~where~~a_0~,\\ a_1,.....a_n~~are~constants~a_0~\neq~0~then, \end{array}$

$$\begin{split} \sum \alpha_1 &= -\frac{a_1}{a_0}, \ \sum \alpha_1 \alpha_2 &= +\frac{a_2}{a_0}, \ \sum \alpha_1 \alpha_2 \alpha_3 \\ &= -\frac{a_3}{a_0}, \dots, \alpha_1 \alpha_2 \alpha_3, \dots, \alpha_n &= (-1)^n \frac{a_n}{a_0} \end{split}$$

Note:

(i) Every odd degree equation has at least one real root whose sign is opposite to that of its last term, when coefficient of highest degree term is (+)ve {If not then make it (+) ve}.

Ex.
$$x^3 - x^2 + x - 1 = 0$$

- (ii) Even degree polynomial whose last term is (-)ve & coefficient of highest degree term is (+)ve has atleast two real roots, one (+)ve & one (-)ve.
- (iii) If equation contains only even power of x & all coefficient are (+)ve, then all roots are imaginary.