Chapter 12

Introduction To Three Dimensional Geometry Exercise 12.1

Question 1: A point is on the x-axis. What are its y-coordinates and z-coordinates?

Answer 1:

If a point is on the x-axis, then its y-coordinates and z-coordinates are zero.

Question 2: A point is in the XZ-plane. What can you say about its y-coordinate?

Answer 2:

If a point is in the XZ plane, then its y-coordinate is zero.

Question 3: Name the octants in which the following points lie:

$$(1, 2, 3), (4, -2, 3), (4, -2, -5), (4, 2, -5), (-4, 2, -5), (-4, 2, 5), (-3, -1, 6), (2, -4, -7)$$

Answer 3:

The x-coordinate, y-coordinate, and z-coordinate of point (1, 2, 3) are all positive.

Therefore, this point lies in octant I.

The x-coordinate, y-coordinate, and z-coordinate of point (4, -2, 3) are positive, negative, and positive respectively. Therefore, this point lies in octant IV.

The x-coordinate, y-coordinate, and z-coordinate of point (4, -2, -5) are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.

The x-coordinate, y-coordinate, and z-coordinate of point (4, 2, -5) are positive, positive, and negative respectively. Therefore, this point lies in octant V.

The x-coordinate, y-coordinate, and z-coordinate of point (-4, 2, -5) are negative, positive, and negative respectively. Therefore, this point lies in octant VI.

The x-coordinate, y-coordinate, and z-coordinate of point (-4, 2, 5) are negative, positive, and positive respectively. Therefore, this point lies in octant II.

The x-coordinate, y-coordinate, and z-coordinate of point (-3, -1, 6) are negative, negative, and positive respectively. Therefore, this point lies in octant III.

The x-coordinate, y-coordinate, and z-coordinate of point (2, -4, -7) are positive, negative, and negative respectively. Therefore, this point lies in octant VIII.

Question 4: Fill in the blanks:

- (i) The x-axis and y-axis taken together determine a plane known as_____.
- (ii) The coordinates of points in the XY-plane are of the form
- (iii) Coordinate planes divide the space into octants.

Answer 4:

- (i) The x-axis and y-axis taken together determine a plane known as xy plane.
- (ii) The coordinates of points in the XY-plane are of the form (x, y, 0).
- (iii) Coordinate planes divide the space into eight octants.

Exercise 12.2

Question 1: Find the distance between the following pairs of points:

(i)
$$(2, 3, 5)$$
 and $(4, 3, 1)$ (ii) $(-3, 7, 2)$ and $(2, 4, -1)$

(iii)
$$(-1, 3, -4)$$
 and $(1, -3, 4)$ (iv) $(2, -1, 3)$ and $(-2, 1, 3)$

Answer 1:

The distance between points $P(x_1, y_1, z_1)$ and $P(x_2, y_2, z_2)$ is given by

$$PQ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

(i) Distance between points (2, 3, 5) and (4, 3, 1)

$$=\sqrt{(4-2)^2+(3-3)^2+(1-5)^2}$$

$$=\sqrt{(2)^2+(0)^2+(-4)^2}$$

$$=\sqrt{4+16}=\sqrt{20}=2\sqrt{5}$$

(ii) Distance between points (-3, 7, 2) and (2, 4, -1)

$$= \sqrt{(2-(-3))^2 + (4-7)^2 + (-1-2)^2}$$

$$=\sqrt{(5)^2+(-3)^2+(-3)^2}$$

$$=\sqrt{25+9+9}=\sqrt{43}$$

(iii) Distance between points (-1, 3, -4) and (1, -3, 4)

$$=\sqrt{(1-(-1))^2+(-3-3)^2+(4-(-4))^2}$$

$$=\sqrt{(2)^2+(-6)^2+(8)^2}$$

$$=\sqrt{4+36+64}=\sqrt{104}=2\sqrt{26}$$

(iv)Distance between points (2, -1, 3) and (-2, 1, 3)

$$=\sqrt{(-2-2)^2+(1-(-1))^2+(3-3)^2}$$

$$=\sqrt{(4)^2+(2)^2+(0)^2}$$

$$=\sqrt{16+4}=\sqrt{20}=2\sqrt{5}$$

Question 2: Show that the points (-2, 3, 5), (1, 2, 3) and (7, 0, -1) are collinear.

Answer 2:

Let points (-2, 3, 5), (1, 2, 3), and (7, 0, -1) be denoted by P, Q, and R respectively.

Points P, Q, and R is collinear if they lie on a line.

$$PQ = \sqrt{(1-(-2))^2 + (2-3)^2 + (3-5)^2}$$

$$=\sqrt{(3)^2+(-1)^2+(2)^2}$$

$$=\sqrt{9+1+4}=\sqrt{14}$$

$$QR = \sqrt{(7-1)^2 + (0-2)^2 + (-1-3)^2}$$

$$=\sqrt{(6)^2+(-2)^2+(-4)^2}$$

$$=\sqrt{36+4+16}=\sqrt{56}=2\sqrt{14}$$

$$PR = \sqrt{(7 - (-2))^2 + (0 - 3)^2 + (-1 - 5)^2}$$

$$=\sqrt{(9)^2+(-3)^2+(-6)^2}$$

$$=\sqrt{81+9+36}$$

$$=\sqrt{126} = 3\sqrt{14}$$

Here, PQ + QR =
$$\sqrt{14} + 2\sqrt{14} = 3\sqrt{14}PR$$

Hence, points P (-2, 3, 5), Q (1, 2, 3), and R (7, 0, -1) are collinear.

Question 3: Verify the following:

- (i) (0, 7, -10), (1, 6, -6) and (4, 9, -6) are the vertices of an isosceles triangle.
- (ii) (0, 7, 10), (-1, 6, 6) and (-4, 9, 6) are the vertices of a right angled triangle.
- (iii) (-1, 2, 1), (1, -2, 5), (4, -7, 8) and (2, -3, 4) are the vertices of a parallelogram.

Answer 3:

(i) Let points (0, 7, -10), (1, 6, -6), and (4, 9, -6) be denoted by A, B, and C respectively.

$$AB = \sqrt{(1-0)^2 + (6-7)^2 + (-6+10)^2}$$

$$= \sqrt{(1)^2 + (-1)^2 + (4)^2}$$

$$= \sqrt{1+1+8}$$

$$= \sqrt{10} = 3\sqrt{2}$$

$$BC = \sqrt{(4-1)^2 + (9-6)^2 + (-6+6)^2}$$

$$= \sqrt{(3)^2 + (3)^2 + (0)^2}$$

$$= \sqrt{9+9} = \sqrt{18} = 3\sqrt{2}$$

$$CA = \sqrt{(0-4)^2 + (7-9)^2 + (-10+6)^2}$$

$$= \sqrt{(-4)^2 + (-2)^2 + (-4)^2}$$

Here,
$$AB = BC \neq CA$$

 $=\sqrt{16+4+16}=\sqrt{36}$

Thus, the given points are the vertices of an isosceles triangle

(ii)Let (0, 7, 10), (-1, 6, 6), and (-4, 9, 6) be denoted by A, B, and C respectively.

$$AB = \sqrt{(-1-0)^2 + (6-7)^2 + (6-10)^2}$$

$$= \sqrt{(-1)^2 + (-1)^2 + (-4)^2}$$

$$= \sqrt{1+1+16} = \sqrt{18}$$

$$= 3\sqrt{2}$$

$$BC = \sqrt{(-4+1)^2 + (9-6)^2 + (6-6)^2}$$

$$= \sqrt{(-3)^2 + (3)^2 + (0)^2}$$

$$=\sqrt{9+9}=\sqrt{18}=3\sqrt{2}$$

$$CA = \sqrt{(0+4)^2 + (7-9)^2 + (10-6)^2}$$

$$=\sqrt{(4)^2+(-2)^2+(4)^2}$$

$$=\sqrt{16+4+16}=\sqrt{36}=6$$

Now,
$$AB^2 + BC^2 = (3\sqrt{2})^2 + (3\sqrt{2})^2 = 18 + 18 = 30 = AC^2$$

Therefore, by Pythagoras theorem, ABC is a right triangle.

Hence, the given points are the vertices of a right-angled triangle.

(iii) Let (-1, 2, 1), (1, -2, 5), (4, -7, 8), and (2, -3, 4) be denoted by A, B, C, and D respectively.

AB =
$$\sqrt{(1+1)^2 + (-2-2)^2 + (5-1)^2}$$

$$=\sqrt{4+16+16}$$

$$=\sqrt{36}=6$$

BC =
$$\sqrt{(4-1)^2 + (-7-2)^2 + (8-5)^2}$$

$$= \sqrt{9 + 25 + 9} = \sqrt{43}$$

$$CD = \sqrt{(2-4)^2 + (-3+7)^2 + (4-8)^2}$$

$$= \sqrt{4 + 16 + 16}$$
$$= \sqrt{36}$$
$$= 6$$

$$DA = \sqrt{(-1-2)^2 + (2+3)^2 + (1-4)^2}$$
$$= \sqrt{9+25+9} = \sqrt{43}$$

Here, AB = CD = 6, BC = AD =
$$\sqrt{43}$$

Hence, the opposite sides of quadrilateral ABCD, whose vertices are taken in order, are equal.

Therefore, ABCD is a parallelogram.

Hence, the given points are the vertices of a parallelogram.

Question 4: Find the equation of the set of points which are equidistant from the points (1, 2, 3) and (3, 2, -1).

Answer 4:

Let P (x, y, z) be the point that is equidistant from points A (1, 2, 3) and B (3, 2, -1).

Accordingly, PA = PB

$$= PA^2 = PB^2$$

$$= (x-1)2 + (y-2)2 + (z-3)2 = (x-3)2 + (y-2)2 + (z-1)2$$

$$\Rightarrow x^2 - 2x + 1 + y^2 - 4y + 4 + z^2 - 6z + 9 = x^2 - 6x + 9 + y^2 - 4y + 4 + z^2 + 2z + 1$$

Here,
$$AB = CD = 6$$
, $BC = AD =$

$$\Rightarrow$$
 -2x -4y - 6z + 14 = -6x - 4y + 2z + 14

$$\Rightarrow$$
 -2x -6z + 6x -2z = 0

$$\Rightarrow 4x - 8z = 0$$

$$\Rightarrow$$
 x - 2z = 0

Thus, the required equation is x - 2z = 0.

Question 5: Find the equation of the set of points P, the sum of whose distances from A (4, 0, 0) and B (-4, 0, 0) is equal to 10.

Answer 5:

Let the coordinates of P be (x, y, z).

The coordinates of points A and B are (4, 0, 0) and (-4, 0, 0) respectively.

It is given that PA + PB = 10

$$=\sqrt{(x-4)^2+y^2+z^2}+\sqrt{(x+4)^2+y^2+z^2}=10$$

$$=\sqrt{(x-4)^2+y^2+z^2}=10-\sqrt{(x+4)^2+y^2+z^2}$$

On squaring both sides, we obtain

=
$$(x-4)^2 + y^2 + z^2 = 100 - 20\sqrt{(x+4)^2 + y^2 + z^2} + (x+4)^2 + y^2 + z^2$$

$$= x^2 - 8x + 16 + y^2 + z^2 = 100 - 20\sqrt{x^2 + 8x + 16 + y^2 + z^2} + x^2 + 8x + 16 + y^2 + z^2$$

$$+ 16 + y^2 + z^2$$

$$= 20\sqrt{x^2 + 8x + 16 + y^2 + z^2} = 100 + 16x$$

$$= 5\sqrt{x^2 + 8x + 16 + y^2 + z^2} = (25 + 4x)$$

On squaring both sides again, we obtain

$$25(x^2 + 8x + 16 + y^2 + z^2)$$

$$=625+16x^2+200x$$

$$\Rightarrow 25x^2 + 200x + 400 + 25y^2 + 25z^2 = 625 + 16x^2 + 200x$$

$$\Rightarrow$$
 9x² + 25y² + 25z² - 225 = 0

Thus, the required equation is $9x^2 + 25y^2 + 25z^2 - 225 = 0$.

Exercise 12.3

Question 1: Find the coordinates of the point which divides the line segment joining the points (-2, 3, 5) and (1, -4, 6) in the ratio (i) 2:3 internally, (ii) 2:3 externally.

Answer 1:

(i) The coordinates of point R that divides the line segment joining points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ internally in the ratio m: n is

$$\left(\frac{mx_2+nx_1}{m+n}, \frac{my_2+ny_1}{m+n}, \frac{mz_2nz_1}{m+n}\right)$$

Let R (x, y, z) be the point that divides the line segment joining points (-2, 3, 5) and (1, -4, 6) internally in the ratio 2:3

$$x = \frac{2(1)+3(-2)}{2+3}$$
, $y = \frac{2(-4)+3(3)}{2+3}$ and $z = \frac{2(6)+3(5)}{2+3}$

i.e.,
$$x = \frac{-4}{5}$$
, $y = \frac{1}{5}$, and $z = \frac{27}{5}$

Thus, the coordinates of the required point are $\left(\frac{-4}{5}, \frac{1}{5}, \frac{27}{5}\right)$

(ii) The coordinates of point R that divides the line segment joining points P (x_1, y_1, z_1) and Q (x_2, y_2, z_2) externally in the ratio m: n is

$$\left(\frac{mx_2-nx_1}{m-n}, \frac{my_2-ny_1}{m-n}, \frac{mz_2-nz_1}{m-n}\right)$$

Let R (x, y, z) be the point that divides the line segment joining points (2, 3, 5) and (1, -4, 6) externally in the ratio 2:3

$$x = \frac{2(1)-3(-2)}{2-3}$$
, $y = \frac{2(-4)-3(3)}{2-3}$, and $z = \frac{2(6)-3(5)}{2-3}$

i.e.,
$$x = -8$$
, $y = 17$, and $z = 3$

Thus, the coordinates of the required point are (-8, 17, 3).

Question 2: Given that P (3, 2, -4), Q (5, 4, -6) and R (9, 8, -10) are collinear. Find the ratio in which Q divides PR.

Answer 2:

Let point Q (5, 4, -6) divide the line segment joining points P (3, 2, -4) and R (9, 8, -10) in the ratio k:1.

Therefore, by section formula,

$$(5, 4, -6) = \left(\frac{k(9)+3}{k+1}, \frac{k(8)+2}{k+1}, \frac{k(-10)-4}{k+1}\right)$$

$$= \frac{9k+3}{k+1} = 5$$

$$= 9k + 3 = 5k + 5$$

$$= 4k = 2$$

$$= k = \frac{2}{4} = \frac{1}{2}$$

Thus, point Q divides PR in the ratio 1:2.

Question 3: Find the ratio in which the YZ-plane divides the line segment formed by joining the points (-2, 4, 7) and (3, -5, 8).

Answer 3:

Let the YZ plane divide the line segment joining points (-2, 4, 7) and (3, -5, 8) in the ratio k:1.

Hence, by section formula, the coordinates of point of intersection are given by

$$\left(\frac{k(3)-2}{k+1}, \frac{k(-5)+4}{k+1}, \frac{k(8)+7}{k+1}\right)$$

On the YZ plane, the x-coordinate of any point is zero

$$= \frac{3k-2}{k+1} = 0$$
$$= 3k - 2 = 0$$

$$=k=\frac{2}{3}$$

Thus, the YZ plane divides the line segment formed by joining the given points in the ratio 2:3.

Question 4: Using section formula, show that the points A (2, -3, 4), B (-1, 2, 1) and C $(0, \frac{1}{3}, 2)$ are collinear.

Answer 4:

The given points are A (2, -3, 4), B (-1, 2, 1), and C $(0, \frac{1}{3}, 2)$.

Let P be a point that divides AB in the ratio k:1.

Hence, by section formula, the coordinates of P are given by

$$\left(\frac{k(-1)+2}{k+1}, \frac{k(2)-3}{k+1}, \frac{k(1)+4}{k+1}\right)$$

Now, we find the value of k at which point P coincides with point C.

By taking, $\frac{-k+2}{k+1} = 0$ we obtain k = 2.

For k = 2, the coordinates of point p is $(0, \frac{1}{3}, 2)$.

i.e., $C(0,\frac{1}{3},2)$ is a point that divides AB externally in the ratio 2:1 and is the same as point P.

Hence, points A, B, and C are collinear.

Question 5: Find the coordinates of the points which trisect the line segment joining the points P (4, 2, -6) and Q (10, -16, 6).

Answer 5:

Let A and B be the points that trisect the line segment joining points P (4, 2, -6) and Q (10, -16, 6)

$$\begin{array}{ccccc}
P & & A & B & & \\
(4, 2, -6) & & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
(10, -16, 6)
\end{array}$$

Point A divides PQ in the ratio 1:2. Therefore, by section formula, the coordinates of point A are given by

$$\left(\frac{1(10)+2(4)}{1+2}, \frac{1(-16)+2(2)}{1+2}, \frac{1(6)+2(-6)}{1+2}\right) = (6, -4, -2)$$

Point B divides PQ in the ratio 2:1. Therefore, by section formula, the coordinates of point B are given by

$$\left(\frac{2(10)+1(4)}{2+1}, \frac{2(-16)+1(2)}{2+1}, \frac{2(6)-1(6)}{2+1}\right) = (8, -10, 2)$$

Thus, (6, -4, -2) and (8, -10, 2) are the points that trisect the line segment joining points P (4, 2, -6) and Q (10, -16, 6).

Miscellaneous Exercise

Question 1: Three vertices of a parallelogram ABCD are A (3, -1, 2), B (1, 2, -4) and C (-1, 1, 2). Find the coordinates of the fourth vertex.

Answer 1:

The three vertices of a parallelogram ABCD are given as A (3, -1, 2), B (1, 2, -4), and C (-1, 1, 2). Let the coordinates of the fourth vertex be D (x, y, z).

We know that the diagonals of a parallelogram bisect each other.

Therefore, in parallelogram ABCD, AC and BD bisect each other.

$$= \left(\frac{3-1}{2}, \frac{-1+1}{2}, \frac{2+2}{2}\right) = \left(\frac{x+1}{2}, \frac{y+2}{2}, \frac{z-4}{2}\right)$$

$$=(1,0,2)=\left(\frac{x+1}{2},\frac{y+2}{2},\frac{z-4}{2}\right)$$

$$=\frac{x+1}{2}=1, \frac{y+2}{2}=0$$
 and $\frac{z-4}{2}$

$$\Rightarrow$$
 x = 1, y = -2, and z = 8

Thus, the coordinates of the fourth vertex are (1, -2, 8).

Question 2: Find the lengths of the medians of the triangle with vertices A (0, 0, 6), B (0, 4, 0) and (6, 0, 0).

Answer 2:

Let AD, BE, and CF be the medians of the given triangle ABC.

Since AD is the median, D is the mid-point of BC.

: Coordinates of point D =
$$\left(\frac{0+6}{2}, \frac{4+0}{2}, \frac{0+0}{2}\right) = (3, 2, 0)$$

$$AD = \sqrt{(0-3)^2 + (0-2)^2 + (6-0)^2} = \sqrt{9+4+36} = \sqrt{49} = 7$$

Since, BE is the median, E is the mid – point of AC

∴Coordinates of point
$$E = \left(\frac{0+6}{2}, \frac{0+0}{2}, \frac{6+0}{2}\right) = (3, 0, 3)$$

BE =
$$\sqrt{(3-0)^2 + (0-4)^2 + (3-0)^2} = \sqrt{9+16+9} = \sqrt{34}$$

Since, CF is the median, F is the mid – point of AB

∴Coordinates of point
$$F = \left(\frac{0+0}{2}, \frac{0+4}{2}, \frac{6+0}{2}\right) = (0, 2, 3)$$

Length of CF =
$$\sqrt{(6-0)^2 + (0-2)^2 + (0-3)^2} = \sqrt{36+4+9} = \sqrt{49} = 7$$

Thus, the lengths of the medians of $\triangle ABC$ are 7, $\sqrt{34}$, and 7.

Question 3: If the origin is the centroid of the triangle PQR with vertices P(2a, 2, 6), Q(-4, 3b, -10) and R(8, 14, 2c), then find the values of a, b and c.

It is known that the coordinates of the centroid of the triangle, whose vertices are (x_1, y_1, z_1) , (x_2, y_2, z_2) and (x_3, y_3, z_3) , are.

$$\left(\frac{x_1+x_2+x_3}{3}, \frac{y_1+y_2+y_3}{3}, \frac{z_1+z_2+z_3}{3}\right)$$

Therefore, coordinates of the centroid of ΔPQR

$$= \left(\frac{2a-4+8}{3}, \frac{2+3b+17}{3}, \frac{6-10+2c}{3}\right) = \left(\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3}\right)$$

It is given that origin is the centroid of ΔPQR

$$= (0, 0, 0) = \left(\frac{2a+4}{3}, \frac{3b+16}{3}, \frac{2c-4}{3}\right)$$

$$= \frac{2a+4}{3} = 0, \frac{3b+16}{3} = 0 \text{ and } \frac{2c-4}{3} = 0$$

$$= a = -2, b = -\frac{16}{3} \text{ and } c = 2$$

Thus, the respective values of a, b, and c are -2, $-\frac{16}{3}$, and 2.

Question 4: Find the coordinates of a point on y-axis which are at a distance of $5\sqrt{2}$ from the point P (3, -2, 5).

Answer 4:

If a point is on the y-axis, then x-coordinate and the z-coordinate of the point are zero.

Let A (0, b, 0) be the point on the y-axis at a distance of $5\sqrt{2}$ from point P (3, -2, 5).

Accordingly, AP = $5\sqrt{2}$

$$AP2 = 50$$

$$= (3 - 0)^{2} + (-2 - b)^{2} + (5 - 0)^{2} = 50$$

$$= 9 + 4 + b^{2} + 4b + 25 = 50$$

$$= b^{2} + 4b - 12 = 0$$

$$= b^{2} + 6b - 2b - 12 = 0$$

$$= b (b + 6) - 2 (b + 6) = 0$$

$$= (b + 6) (b - 2) = 0$$

$$= b = -6 \text{ or } 2$$

Thus, the coordinates of the required points are (0, 2, 0) and (0, -6, 0).

Question 5: A point R with x-coordinate 4 lies on the line segment joining the point P (2, -3, 4) and Q (8, 0, 10). Find the coordinates of the point R.

[Hint suppose R divides PQ in the ratio k: 1. The coordinates of the point R are given by $\left(\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1}\right)$]

Answer 5:

The coordinates of points P and Q are given as P (2, -3, 4) and Q (8, 0, 10).

Let R divide line segment PQ in the ratio k:1.

Hence, by section formula, the coordinates of point R are given by

$$\left(\frac{k(8)+2}{k+1}, \frac{k(0)-3}{k+1}, \frac{k(10)+4}{k+1}\right) = \left(\frac{8k+2}{k+1}, \frac{-3}{k+1}, \frac{10k+4}{k+1}\right)$$

It is given that the x-coordinate of point R is 4

$$=\frac{8k+2}{k+1}=4$$

$$= 8k + 2 = 4k + 4$$

$$= 4k = 2$$

$$= k = \frac{1}{2}$$

Therefore, the coordinates of point R are $\left(4, \frac{-3}{\frac{1}{2}+1}, \frac{10(\frac{1}{2})+4}{\frac{1}{2}+1}\right)$

Question 6: If A and B be the points (3, 4, 5) and (-1, 3, -7), respectively, find the equation of the set of points P such that $PA^2 + PB^2 = k^2$, where k is a constant.

Answer 6:

The coordinates of points A and B are given as (3, 4, 5) and (-1, 3, -7) respectively.

Let the coordinates of point P be (x, y, z).

On using distance formula, we obtain

$$PA^2 = (x-3)^2 + (y-4)^2 + (z-5)^2$$

$$= x^2 + 9 - 6x + y^2 + 16 - 8y + z^2 + 25 - 10z$$

$$= x^2 - 6x + y^2 - 8y + z^2 - 10z + 50$$

$$PB^2 = (x + 1)^2 + (y - 3)^2 + (z + 7)^2$$

$$= x^2 + 2x + y^2 - 6y + z^2 + 14z + 59$$

Now, if $PA^2 + PB^2 = k^2$, then

$$(x^2 - 6x + y^2 - 8y + z^2 - 10z + 50) + (x^2 + 2x + y^2 - 6y + z^2 + 14z + 59)$$

$$= k^2$$

$$= 2x^2 + 2y^2 + 2z^2 - 4x - 14y + 4z + 109 = k^2$$

$$= 2 (x^2 + y^2 + z^2 - 2x - 7y + 2z) = k^2 - 109$$

$$= x^2 + y^2 + z^2 - 2x - 7y + 2z = \frac{k^2 - 109}{2}$$

Thus, the required equation is = $x^2 + y^2 + z^2 - 2x - 7y + 2z = \frac{k^2 - 109}{2}$