1. MOLE CONCEPT - A quantity of hydrogen gas occupies a volume of 30.0 mL at a certain temperature and pressure. 1. What volume would half this mass of hydrogen occupy at triple the absolute temperature if the pressure were one-ninth that of the original gas? $(1) 270 \, \text{mL}$ $(2) 90 \, mL$ (3) 405 mL (4) 135 mL 2. A metal carbonate decomposes according to following reaction $M_2CO_3(s) \longrightarrow M_2O(s) + CO_2(g)$ Percentage loss in mass on complete decomposition of M₂CO₃(s) (Atomic mass of M = 102) - $(1) \frac{100}{3} \%$ $(2) \frac{50}{3} \% (3) \frac{25}{3} \%$ (4) 15% - How many litres of oxygen at 1atm & 273K will be required to burn completely 2.2 g of propane 3. (C_3H_8) (1) 11.2 L (2) 22.4 L (3) 5.6 L(4) 44.8 L - 4. In the given isobaric process shown by graph between T & V. - (1) Moles decreases throughout - (2) Moles first increases then decreases - (3) Moles first decreases then increases - (4) Moles cannot be predicted form given data - $0.8~\mathrm{M}~\mathrm{FeSO_4}$ solution requires $160\mathrm{ml},~0.2\mathrm{M}~\mathrm{Al_2(Cr_2O_7)_3}$ in acidic medium, Calculate volume of 5. FeSO₄ consumed - - $(1) 480 \, ml$ - $(2) 240 \, ml$ - (3) 720 ml - $(4) 40 \, ml$ - 6. If a pure compound is composed of X_2Y_3 molecules and consists of 60 % X by weight what is the atomic weight of Y in term of atomic weight of X (Atomic mass of $X = M_v$)? - (1) $\frac{9}{4}$ M_x (2) $\frac{4}{9}$ M_x (3) $\frac{2}{3}$ M_x (4) $\frac{3}{2}$ M_x - 10 mole of A₂B₃ contains 100gm of A atom & 60 gm of B atoms. Choose the correct 7. statements - - (A) Molecular weight of A_2B_3 is equal to 16 - (B) Atomic weight of A is equal to 5 - (C) Weight of one atom of B is equal to 2 - (D) Atomic weight of B is equal to 6 - (1) A, B, C - (2) A, B - (3) C, D - (4) A, B, D | 8. | Select the incorrect statement(s) | | | | | | | | | | |-----|---|---|-----------------------------------|-------------------------|--|--|--|--|--|--| | | (A) During a reaction, moles and mass of atoms remain constant | | | | | | | | | | | | (B) For reaction $2A + 3B \longrightarrow C + 3D$, for maximum product formation per gram of reactant mixture, | | | | | | | | | | | | mass ratio of A & B must be 2:3 | | | | | | | | | | | | (C) Both molarity and mole fraction are temperature dependent | | | | | | | | | | | | (D) 22.7 litre of wa | ter at S.T.P. conditions co | ntains 6×10^{24} protons | S. | | | | | | | | | (1) A, B, C | (2) B, C, D | (3) A, C, D | (4) A, B | | | | | | | | 9. | A 150 ml mixutre of CO and $\rm CO_2$ is passed through a tube containing excess of red hot charcoal. The volume become 200 ml due to reaction. | | | | | | | | | | | | $CO_2(g) + C(s) \longrightarrow 2CO(g)$ | | | | | | | | | | | | Select the correct st | atement(s). | | | | | | | | | | | (A) mole percent of | (A) mole percent of CO ₂ in the original mixture is 50 | | | | | | | | | | | (B) mole fraction of CO in the original mixture is 0.66 | | | | | | | | | | | | (C) the original mixture contains 50 ml of CO ₂ | | | | | | | | | | | | (D) the orginal mixture contain 50 ml of CO. | | | | | | | | | | | | (1) A, B | (2) B, D | (3) A, C | (4) B, C | | | | | | | | 10. | Monosodium glutamate (MSG) is salt of one of the most abundant naturally occuring non-essential amino acid which is commonly used in food products like in "MAGGI" having structural formula as | | | | | | | | | | | | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | | | | | | | | | | | | Mass % of Na in MSG is- | | | | | | | | | | | | (1) 14.8 | (2) 15.1 | (3) 13.6 | (4) 16.5 | | | | | | | | 11. | One gram of the silver salt of an organic dibasic acid yields, on strong heating, 0.6 g of silver approximately. Determine the molecular formula of the acid. [Atomic weight of Ag = 108] | | | | | | | | | | | | $(1) C_4 H_6 O_4$ | $(2) C_4 H_6 O_6$ | $(3) C_2 H_6 O_2$ | (4) C5H6O5 | | | | | | | | 12. | A sample of pure Cu $(4.00g)$ heated in a stream of oxygen for some time, gains in weight with the formation of black oxide of copper (CuO). The final mass is 4.90 g. What percent of copper remains unoxidized (Cu = 64) | | | | | | | | | | | | (1) 90 % | (2) 10 % | (3) 20 % | (4) 80 % | | | | | | | | 13. | 40 gm of a carbonate of an alkali metal or alkaline earth metal containing some inert impurities was made to react with excess HCl solution. The liberated CO ₂ occupied 12.315 lit. at 1 atm & 300 K. The correct option is | | | | | | | | | | | | - | y is 1 gm and metal is Be | (2) Mass of impurity | is 3 gm and metal is Li | | | | | | | | | | y is 5 gm and metal is Be | | is 2 gm and metal is Mg | | | | | | | | 14. | 1 mole of H ₂ SO ₄ will exactly neutralise : | | | | | | | | | | |-----|---|---|--|-------------------------------------|--|--|--|--|--|--| | | (A) 2 mole of amm | nonia | (B) 1 mole of Ba(OH) ₂ | | | | | | | | | | (C) 0.5 mole of Ca | $(OH)_2$ | (D) 2 mole of KOH | [| | | | | | | | | (1) A, B, D | (2) A, B, C | (3) B, C, D | (4) A, C, D | | | | | | | | 15. | 12 g of Mg was burn | nt in a closed vessel conta | ining 32 g oxygen. Which | n of the following is /are correct. | | | | | | | | | (A) 2 gm of Mg w | ill be left unburnt. | | | | | | | | | | | (B) 0.75 gm-molec | ule of O ₂ will be left un | reacted. | | | | | | | | | | (C) 20 gm of MgO | will be formed. | | | | | | | | | | | (D) The mixture at | the end will weight 44 | g. | | | | | | | | | | (1) B, C, D | | (3) B, C | (4) C, D | | | | | | | | 16. | 50 gm of CaCO ₃ is | | | ect the correct option(s)- | | | | | | | | | | | $\rightarrow \text{Ca}_3(\text{PO}_4)_2 + 3\text{H}_2\text{O} +$ | 3CO ₂ | | | | | | | | | (A) 51.67 gm salt i | | | | | | | | | | | | (B) Amount of unro | eacted reagent = 35.93 g | m | | | | | | | | | | (C) $n_{CO_2} = 0.5 \text{ mol}$ | es evolved | | | | | | | | | | | (D) 0.7 mole CO ₂ i | s evolved | | | | | | | | | | | (1) B, C, D | (2) A, C, D | (3) A, B, C | (4) A, B, D | | | | | | | | 17. | <u>*</u> | ing two parallel reactions n-II. Then, select the cor | _ | A' goes into reaction I and other | | | | | | | | | $A + N \xrightarrow{I} B + L$ | | | | | | | | | | | | $A + N \xrightarrow{II} \frac{1}{2} B$ | $+\frac{1}{2}(C) + L$ | | | | | | | | | | | (A) B will be alway | s greater than C | | | | | | | | | | | (B) If 2 mole of C a | are formed then total 2 m | ole of B are also formed | | | | | | | | | | (C) If 2 mole of C are formed then total 4 mole of B are also formed | | | | | | | | | | | | (D) If 2 mole of C are formed then total 6 mole of B are also formed | | | | | | | | | | | | (1) A, D | (2) B, C | (3) A, C | (4) B, D | | | | | | | | 18. | Select the correct s | statement(s) for (NH ₄) ₃ H | PO_4 . | | | | | | | | | | (A) Ratio of numb | er of oxygen atoms to | number of hydrogen ato | oms is 1:3 | | | | | | | | | (B) Ratio of numb | er of cations to number | of anions is 3:1 | | | | | | | | | | | er of gm-atoms of nitro | | ygen is 3:2 | | | | | | | | | • | of atoms in one mole o | | , 0 | | | | | | | | | (1) C, D | (2) B, C | (3) A, B | (4) A, D | | | | | | | | 19. | | | . , , | | | | | | | | | 17. | The ratio of mass percent of C and H of an organic compound $(C_XH_YO_Z)$ is 6 : 1. If one molecule of the above compound $(C_XH_YO_Z)$ contains half as much oxygen as required to burn one molecule | | | | | | | | | | | | | | | mula of compound $C_X H_Y O_Z$ is | | | | | | | | | (1) C_2H_4O | $(2) C_3H_4O_2$ | (3) $C_2H_4O_3$ | (4) $C_3H_6O_3$ | | | | | | | | | | 5 · - | | 2 0 3 | | | | | | | | 20. | For per gram of read decomposition read | | ntity of N ₂ gas is produced | in which of the following thermal | | | | | | |-----|---|---|---|--|--|--|--|--|--| | | - | vt Cr = 52u, Ba = 13 | 37u) | | | | | | | | | | | $\rho_2(g) (2) Ba(N_3)_2(s) \to B$ | $Ba(s) + 3N_{o}(\sigma)$ | | | | | | | | | | (4) $2NH_3(g) \rightarrow N_2(g)$ | - - | | | | | | | 21. | , | | <u>.</u> | ecule of the hydrocarbon has one | | | | | | | 21. | | <u> </u> | nt in 1 g of chlorohydroc | • | | | | | | | | (Atomic wt. of Cl | | it in 1 g of emotory arec | aroon are. | | | | | | | | | $z = 6.023 \times 10^{23} \text{ mol}^{-1}$ |) | | | | | | | | | _ | | $(3) 6.023 \times 10^{20}$ | $(4) 6.023 \times 10^9$ | | | | | | | 22. | ` ' | ` ' | * * | * * | | | | | | | | An ideal gaseous mixture of ethane (C_2H_6) and ethene (C_2H_4) occupies 28 litre at 1atm, 0°C. The mixture reacts completely with 128 gm O_2 to produce CO_2 and H_2O . Mole fraction of C_2H_6 in the mixture is— | | | | | | | | | | | (1) 0.6 | (2) 0.4 | (3) 0.5 | (4) 0.8 | | | | | | | 23. | ` ' | ` ' | ` ' | ` ' | | | | | | | | For a chemical reaction occurring at constant pressure and temperature.
$2A(g) + 5B(g) \longrightarrow C(g) + 2D(g)$ | | | | | | | | | | | (1) contraction in | volume is double the v | olume of A taken if B is | taken in excess. | | | | | | | | (2) contraction in | volume is more than th | e volume of B taken if A | a is in excess. | | | | | | | | (3) volume contracts by 20 mL if 10 mL A is reacted with 20 mL B. | | | | | | | | | | | (4) no change in volume due to reaction | | | | | | | | | | 24. | Each volume of a gaseous organic compound containing C, H and S only produce 1 volume CO ₂ , | | | | | | | | | | | 2 volume H ₂ O vapours and 1 volume SO ₂ gases on complete combustion. The molecular formula | | | | | | | | | | | of compound is - | 2 | | | | | | | | | | = | (2) CH S | $(3) C_2H_4S$ | (4) C H S | | | | | | | 25. | | | | The only products of the reaction | | | | | | | -0. | | | | The formula of the hydrocarbon | | | | | | | | is - | 10 102 011120 (8), 1111 111 | roo e una rumi pressure | . 1110 101111010 01 0110 11.j 0110 00110 011 | | | | | | | | (1) C_5H_{12} | (2) C_4H_5 | (3) C_4H_{10} | (4) C ₀ H ₁₀ | | | | | | | 26. | 3 12 | | | 76 gm. The reduction in volume | | | | | | | | on passing this through alkaline pyrogallol solution is - | | | | | | | | | | | (1) 896 ml | (2) 224 ml | (3) 448 ml | (4) 672 ml | | | | | | | 27. | ` ' | which react according | ` ' | | | | | | | | | $aA_{(g)} + bB_{(g)} \longrightarrow$ | | 1 | | | | | | | | | to give two gases C and D are taken (amount not known) in an Eudiometer tube (operating at a | | | | | | | | | | | constant Pressure and temperature) to cause the above. | | | | | | | | | | | If on causing the reaction there is no volume change observed then which of the following statement | | | | | | | | | | | is/are correct. | | | | | | | | | | | (A) (a + b) = (c + c) | 1) | | | | | | | | | | (B) average molecu | ılar mass may increase o | or decrease if either of A | or B is present in limited amount. | | | | | | | | (C) Vapour Density | of the mixture will ren | nain same throughout the | course of reaction. | | | | | | | | (D) Total moles of | all the component of m | ixture will change. | | | | | | | | | (1) A, C | (2) B, C | (3) A, D | (4) B, D | | | | | | - 28. 20 ml mixture of C₃H₈ and CO gas when burnt in excess of oxygen produce 40 ml CO₂ gas. Choose the correct statement(s). (Volume of gases measured under same T & P) (Considering H₂O liquid) - (A) Volume of C₃H₈ in the mixture is 15 ml - (B) Volume of CO in the mixture is 10 ml - (C) Total volume contraction due to combustion is 35 ml. - (D) The volume of oxygen used for combustion is 75 ml - (1) A, D - (2) A, B - (3) B, C - (4) C, D - 29. 10 ml of a gaseous mixture containing C_2H_x and C_3H_8 exactly requires 40 ml O_2 for complete combustion and produces 25 ml CO_2 and 30 ml H_2O vapour. The correct information (s) is/are - (A) Total volume contraction = 5 ml - (B) Volume contraction due to combustion of $C_2H_x = 0$ - (C) x = 4 - (D) Volume of C_2H_x in the initial mixture = 5 ml - (1) A, B, C - (2) B, C, D - (3) C, D, A - (4) A, B, D - 30. 100 ml mixture of CO and CO₂ mixed with 30 mL of O₂ and sparked in eudiometer tube. The residual gas after treatment with aq. KOH has a volume of 10 mL which remains unchanged when treated with alkaline pyrogallol. If all the volumes are under the same conditions, point out **correct** options(s): - (A) The volume of CO that reacts, is 60 mL - (B) The volume of CO that remains unreacted, is 10 mL - (C) The volume of O₂ that remains unreacted, is 10 mL - (D) The volume of CO_2 that gets absorbed by aq.KOH, is 90 mL. - (1) A, B, C - (2) A, B, D - (3) B, C, D - (4) A, C, D | ANSWER KEY | | | | | | | | | | | | | | | | |------------|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----| | Que. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | Ans. | 3 | 2 | 3 | 3 | 3 | 2 | 2 | 2 | 4 | 3 | 4 | 2 | 2 | 1 | 1 | | Que. | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | Ans. | 3 | 1 | 3 | 3 | 4 | 3 | 2 | 1 | 2 | 3 | 1 | 1 | 3 | 2 | 2 |