

DIFFERENTIAL EQUATION

- An equation involving an independent variable, a dependent variable and the derivatives of the dependent variable is called differential equation.
- ► A differential equation involving derivatives

of the dependent variable with respect to only one independent variable is called an ordinary differential equation.

 A differential equation involving derivatives with respect to more than one independent variables is called a partial differential equation.

Order and Degree of a Differential Equation

- The order of highest derivative appearing in a differential equation is called order of the differential equation.
- The power of the highest order derivative appearing in a differential equation, after it is made free from radicals and fractions, is called degree of the differential equation.

Note : Order and degree (if defined) of a differential equation are always positive integ rs.

HOMOGENEOUS DIFFERENTIAL EQUATIONS

A differential equation of the form

$$\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}$$

where, f(x, y) and g(x, y) are homogeneous functions of *x* and *y* of the same degree.

LINEAR DIFFERENTIAL EQUATIONS

An equation of the form $\frac{dy}{dx} + Py = Q$ where *P*

and *Q* are functions of *x* only (or constants) is called a linear differential equation of the first order.

SOLUTION OF A DIFFERENTIAL EQUATION

Solution of a differential equation is a function of the form y = f(x) + C which satisfies the given differential equation.

Particular Solution : A solution obtained by giving particular values to arbitrary constants in the general solution.

FORMATION OF A DIFFERENTIAL EQUATION

 \bigcirc

Differential equation of the equation of a family of curves is obtained by eliminating arbitrary constants occurring in it with the help of equation of the curves and equations formed by its differentiation.

METHODS OF SOLVING DIFFERENTIAL EQUATIONS

Equation in variable separable form : If the differential equation is of the form f(x) dx = g(y) dy, then the variables are separable and such equations can be solved by integrating on both sides. The solution is given by

 $\int f(x) dx = \int g(y) dy + C$, where *C* is an arbitrary constant.

Equation reducible to homogeneous form : If the equation is of the form $\frac{dy}{dx} = \frac{f(x, y)}{g(x, y)}$, where

 $\frac{dy}{dx} = v + x \frac{dv}{dx}$ so that the dependent variable y is changed to another variable v, then apply

variable separable method.

Solution of Linear Differential Equation : A differential equation of the form $\frac{dy}{dx} + Py = Q$, where *P* and *Q* are functions of *x* (or constants) can be solved as :

1. Find Integrating Factor (I.F.) = $e^{\int P dx}$

2. The solution of the differential equation is $y(I.F.) = \int Q(I.F.) dx + C$, where *C* is constant of integration.

Previous Years' CBSE Board Questions

9.2 Basic Concepts

VSA (1 mark)

1. Write the sum of the order and degree of the following differential equation

$$\frac{d}{dx}\left\{\left(\frac{dy}{dx}\right)^3\right\} = 0.$$
 (AI 2015)

2. Write the sum of the order and degree of the differential equation $(-2)^{2} = (-3)^{3}$

$$\left(\frac{d^2 y}{dx^2}\right) + \left(\frac{dy}{dx}\right)^3 + x^4 = 0 \qquad (Foreign \ 2015)$$

3. Write the sum of the order and degree of the differential equation

$$1 + \left(\frac{dy}{dx}\right)^4 = 7 \left(\frac{d^2y}{dx^2}\right)^3.$$
 (Delhi 2015C)

4. Write the degree of the differential equation

$$\left(\frac{dy}{dx}\right)^4 + 3x\frac{d^2y}{dx^2} = 0.$$
 (Delhi 2013)

- 5. Write the degree of differential equation $x^{3} \left(\frac{d^{2} y}{dx^{2}}\right)^{2} + x \left(\frac{dy}{dx}\right)^{4} = 0. \qquad (Delhi \ 2013)$
- 6. Write the degree of the differential equation

$$x\left(\frac{d^2y}{dx^2}\right)^3 + y\left(\frac{dy}{dx}\right)^4 + x^3 = 0. \quad (Delhi\ 2013)$$

7. Write the degree of the differential equation :

$$\left(\frac{dy}{dx}\right)^4 + 3y\frac{d^2y}{dx^2} = 0 \qquad (Delhi\ 2013C)$$

- 8. Write the degree of the differential equation $\left(\frac{d^2s}{dt^2}\right)^2 + \left(\frac{ds}{dt}\right)^3 + 4 = 0.$ (AI 2013C)
- 9. What is the degree of the following differential $(dy)^2 d^2y$

equation?
$$5x\left(\frac{dy}{dx}\right) - \frac{d^2y}{dx^2} - 6y = \log x$$

(Delhi 2010)

9.3 General and Particular Solutions of a Differential Equation

SA (4 marks)

10. Verify that $y = 3\cos(\log x) + 4\sin(\log x)$ is a solution of the differential equation

$$x^{2}\frac{d^{2}y}{dx^{2}} + x\frac{dy}{dx} + y = 0.$$
 (AI 2008 C)

9.4 Formation of a Differential Equation whose General Solution is given

VSA (1 mark)

- 11. Find the differential equation representing the family of curves $v = \frac{A}{r} + B$, where *A* and *B* are arbitrary constants. (*Delhi 2015*)
- 12. Write the differential equation obtained by eliminating the arbitrary constant *C* in the equation representing the family of curves $xy = C \cos x$. (*Delhi 2015C*)
- 13. Write the differential equation representing the family of curves y = mx, where m is an arbitrary constant. (AI 2013)
- 14. Form the differential equation of the family of curves $y = a \cos (x + b)$, where *a* and *b* are arbitrary constants. (*Delhi 2007*)

SA (4 marks)

- **15.** Form the differential equation of the family of circles in the second quadrant and touching the coordinate axes. (*AI 2016, 2012*)
- **16.** Form the differential equation of the family of parabolas having vertex at origin and axis along positive *y*-axis. (*Delhi 2011*)
- 17. Find the differential equation of the family of all circles touching the *y*-axis at the origin. (*Delhi 2010C, AI 2009*)

- 18. Form the differential equation of the family of circles touching the *x*-axis at origin. (*Delhi 2010C, AI 2009 C*)
- 19. Find the differential equation of all circles in the first quadrant which touch the coordinate axes. (AI 2010 C)
- **20.** Form the differential equation representing the family of ellipses having foci on *x*-axis and centre at the origin. (*AI 2010C, Delhi 2009 C*)
- **21.** Form the differential equation representing the family of curves given by $(x a)^2 + 2y^2 = a^2$, where *a* is an arbitrary constant. (AI 2009)
- **22.** Form the differential equation of the family of curves $y = A \cos 2x + B \sin 2x$, where *A* and *B* are constants. (*Delhi 2007*)
- **9.5** Methods of Solving First Order, First Degree Differential Equations

VSA (1 mark)

23. Find the integrating factor of the differential $(-2\sqrt{r})$

equation
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1.$$

(Delhi 2015, AI 2015C)

24. Write the integrating factor of the following differential equation :

$$(1+y^2)+(2xy-\cot y)\frac{dy}{dx}=0$$
 (AI 2015)

- 25. Write the solution of the differential equation $\frac{dy}{dx} = 2^{-y} \qquad (Foreign \ 2015)$
- 26. Find the solution of the differential equation $\frac{dy}{dx} = x^3 e^{-2y}.$ (AI 2015C)
- 27. Solve the following differential equation : $x \cos y \, dy = (xe^x \log x + e^x) \, dx.$ (Delhi 2007)
- **28.** Solve the following differential equation : $\tan y \, dx + \sec^2 y \tan x \, dy = 0.$ (Delhi 2007, AI 2007)
- **29.** Solve the following differential equation : $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0.$ (AI 2007)

30. Solve the following differential equation :

$$y(1-x^2)\frac{dy}{dx} = x(1+y^2).$$
 (AI 2007)

SA (4 marks)

31. Find the general solution of the following differential equation :

$$(1+y^2) + (x-e^{\tan^{-1}y})\frac{dy}{dx} = 0$$
 (Delhi 2016)

- **32.** Find the particular solution of the differential equation $(1 y^2)(1 + \log x)dx + 2xy dy = 0$, given that y = 0 when x = 1. (*Delhi 2016*)
- 33. Solve the differential equation :

$$y + x\frac{dy}{dx} = x - y\frac{dy}{dx}$$
(AI 2016)

- **34.** Solve the following differential equation $y^2 dx + (x^2 - xy + y^2) dy = 0$ (Foreign 2016)
- **35.** Solve the following differential equation $(\cot^{-1} y + x)dy = (1 + y^2)dx$ (Foreign 2016)
- **36.** Find the particular solution of the differential

equation
$$\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y \cos y}$$
, given that $y = \frac{\pi}{2}$, when $x = 1$. (Delhi 2014)

37. Solve the following differential equation :

$$(x^{2}-1)\frac{dy}{dx}+2xy=\frac{2}{x^{2}-1}, |x|\neq 1$$
 (Delhi 2014)

- **38.** Find the particular solution of the differential equation $e^x \sqrt{1-y^2} dx + \frac{y}{x} dy = 0$ given that y = 1 when x = 0. (Delhi 2014)
- **39.** Solve the following differential equation : $\operatorname{cosec} x \log y \frac{dy}{dx} + x^2 y^2 = 0.$ (*Delhi 2014*)
- **40.** Find the particular solution of the differential equation $\frac{dy}{dx} = 1 + x + y + xy$, given that y = 0 when x = 1 (AI 2014)
- 41. Solve the differential equation $(1+x^2)\frac{dy}{dx} + y = e^{\tan^{-1}x} \qquad (AI \ 2014)$

- **42.** Find the particular solution of the differential equation $x (1 + y^2) dx y (1 + x^2) dy = 0$, given that y = 1 when x = 0. (AI 2014)
- **43.** Find the particular solution of the differential equation $\log \left(\frac{dy}{dx}\right) = 3x + 4y$, given that y = 0 when x = 0. (AI 2014)
- 44. Solve the differential equation $(x^2 - yx^2)dy + (y^2 + x^2y^2)dx = 0$, given that y = 1 when x = 1. (Foreign 2014)
- 45. Solve the differential equation

$$\frac{dy}{dx} + y \cot x = 2 \cos x, \text{ given that } y = 0 \text{ when}$$
$$x = \frac{\pi}{2}.$$
 (Foreign 2014)

- **46.** Find a particular solution of the differential equation $\frac{dy}{dx} + 2y \tan x = \sin x$, given that y = 0, when $x = \frac{\pi}{3}$. (Foreign 2014)
- **47.** Solve the differential equation

$$x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x.$$
(Foreign 2014, Delhi 2010)

48. If
$$y(x)$$
 is a solution of the differential equation
 $\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx} = -\cos x$ and $y(0) = 1$, then
find the value of $y\left(\frac{\pi}{2}\right)$. (Delhi 2014C)

- **49.** Find the general solution of the differential equation $(x y)\frac{dy}{dx} = x + 2y$. (*Delhi 2014C*, *AI 2010*)
- **50.** Find the particular solution of the differential equation $x \frac{dy}{dx} y + x \csc\left(\frac{y}{x}\right) = 0$; given that y = 0 when x = 1. (AI 2014C, 2011C, Delhi 2009)
- 51. Solve the differential equation $x \frac{dy}{dx} + y = x \cos x + \sin x$, given $y\left(\frac{\pi}{2}\right) = 1$.

52. Solve the following differential equation :

$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x; \ x \neq 0.$$
(AI 2014C, Delhi 2012C)

53. Find the particular solution of the following differential equation : dv

$$xy \frac{dy}{dx} = (x+2)(y+2); y = -1$$
 when $x = 1$.
(Delhi 2012)

54. Solve the following differential equation : $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$

$$2x^{2}\frac{dy}{dx} - 2xy + y^{2} = 0$$
 (Delhi 2012)

- **55.** Find the particular solution of the following differential equation; $\frac{dy}{dx} = 1 + x^2 + y^2 + x^2y^2$, given that y = 1 when x = 0. (*Delhi 2012*)
- 56. Find the particular solution of the following differential equation : $(x+1)\frac{dy}{dx} = 2e^{-y} 1;$ y = 0 when x = 0. (*Delhi 2012*)
- 57. Find the particular solution of the following differential equation : $x(x^2-1)\frac{dy}{dx}=1$; y = 0when x = 2 (AI 2012)
- **58.** Solve the following differential equation : $(1 + x^2) dy + 2xy dx = \cot x dx; x \neq 0$ (AI 2012, 2012C, Delhi 2011C)
- **59.** Find the particular solution of the differential equation : $\frac{dy}{dx} + y$ cot x = 4x cosec x, $(x \neq 0)$, given that y = 0 when $x = \frac{\pi}{2}$. (AI 2012)
- **60.** Find the particular solution of the following differential equation :

$$x \frac{dy}{dx} - y + x \sin\left(\frac{y}{x}\right) = 0, \text{ given that when}$$

$$x = 2, y = \pi. \qquad (AI 2012)$$

- 61. Solve the following differential equation : $\frac{dy}{dx} - y = \cos x, \text{ given that if } x = 0, y = 1.$ (Delhi 2012C)
- **62.** Find the particular solution of the following differential equation, given that x = 2, y = 1:

$$x\frac{dy}{dx} + 2y = x^2, (x \neq 0) \qquad (Delhi \ 2012C)$$

63. Find the particular solution of the differential equation :

$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x, x \neq 0, \text{ given that } y = 0,$$

when $x = \frac{\pi}{2}$. (Delhi 2012C)

- 64. Solve the following differential equation : $\frac{dy}{dx} + \sec x \cdot y = \tan x, \left(0 \le x < \frac{\pi}{2}\right).$ (AI 2012C, Delhi 2008C)
- **65.** Solve the following differential equation : $x\frac{dy}{dx} + y - x + xy \cot x = 0, x \neq 0.$ (AI 2012C, Delhi 2011C)
- 66. Solve the following differential equation : $\cos^{2} x \frac{dy}{dx} + y = \tan x.$ (Delhi 2011, 2008, 2008C, AI 2009, 2008)
- **67.** Solve the following differential equation :
- $(1 + y^2) (1 + \log x) dx + xdy = 0.$ (*Delhi 2011*) 68. Solve the following differential equation :
- $e^{x} \tan y dx + (1 e^{x}) \sec^{2} y dy = 0.$ (Delhi 2011)
- **69.** Solve the differential equation : $xdy + (y - x^3)dx = 0.$ (AI 2011)
- **70.** Solve the differential equation : $xdy - (y + 2x^2)dx = 0.$ (AI 2011)
- 71. Solve the differential equation : $(y + 3x^2)\frac{dx}{dy} = x.$ (AI 2011)
- 72. Solve the following differential equation : $xdy - ydx = \sqrt{x^2 + y^2} dx$ (AI 2011)
- 73. Solve the following differential equation : $\left[x\sin^2\left(\frac{y}{x}\right) - y\right]dx + x \ dy = 0 \quad (Delhi \ 2011C)$
- 74. Find the particular solution of the differential equation satisfying the given conditions : $\frac{dy}{dx} = y \tan x, \text{ given that } y = 1, \text{ when } x = 0.$ (Delhi 2010)
- 75. Solve the following differential equation : $(x^{2} + 1)\frac{dy}{dx} + 2xy = \sqrt{x^{2} + 4}.$

(AI 2010, 2008, Delhi 2008)

76. Solve the following differential equation :

$$(x^{3} + x^{2} + x + 1)\frac{dy}{dx} = 2x^{2} + x. \quad (AI \ 2010)$$

77. Show that the following differential equation is homogeneous and then solve it.

$$y dx + x \log\left(\frac{y}{x}\right) dy - 2x dy = 0.$$
 (AI 2010)

78. Solve the following differential equation:

$$(x^{2}-1)\frac{dy}{dx} + 2xy = \frac{1}{x^{2}-1}; |x| \neq 1 \qquad (AI\ 2010)$$

- 79. Solve the following differential equation : $xy \log\left(\frac{y}{x}\right) dx + \left[y^2 - x^2 \log\left(\frac{y}{x}\right)\right] dy = 0.$ (Delhi 2010 C)
- **80.** Solve the following differential equation : $x \log x \frac{dy}{dx} + y = 2 \log x.$ (Delhi 2009)
- 81. Solve the following differential equation : $\frac{dy}{dx} + y = \cos x - \sin x.$ (Delhi 2009)
- 82. Solve the following differential equation : $(1 + x^2) \frac{dy}{dy} + x + x + x^{-1} + x + y^{-1} + y + y^{-1} + y^{-$

$$(1 + x^{2})\frac{dx}{dx} + y = \tan^{-1}x$$
 (Delhi 2009)

83. Solve:
$$x \frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$$
. (AI 2009)

84. Solve the following differential equation : $(x^2 - y^2)dx + 2xydy = 0$, given that y = 1, when x = 1. (*Delhi 2008*)

85. Solve the following differential equation :

$$\frac{dy}{dx} = \frac{x(2y - x)}{x(2y + x)}, \text{ if } y = 1, \text{ when } x = 1.$$
(Delhi 2008)

- 86. Solve: $\frac{dy}{dx} + 2y \tan x = \sin x$. (AI 2008)
- 87. Solve the following differential equation : $x^{2} \frac{dy}{dx} = 2xy + y^{2}$. Given that y = 1, when x = 1 (AI 2008)

88. Solve the following differential equation :

$$(1 + e^{2x})dy + (1 + y^2)e^x dx = 0.$$
 (AI 2008 C)

39. Solve the differential equation :

$$\frac{dy}{dx} + 2y = 6e^{x}.$$
(Delhi 2007)

90. Solve the following differential equation : $x \cos y dy = (xe^x \log x + e^x) dx.$ (*Delhi 2007*)

91. Solve the following differential equation :

$$4\frac{dy}{dx} + 8y = 5e^{-3x}.$$
 (AI 2007)

(6 marks)

- **92.** Solve the differential equation : $(\tan^{-1}y - x)dy = (1 + y^2)dx.$ (Delhi 2015)
- 93. Find the particular solution of the differential equation $\frac{dy}{dx} = \frac{xy}{2}$ given that y = 1, when

$$x = 0.$$
 $dx = x^2 + y^2$ (Delhi 2015)

94. Show that the differential equation $\frac{dy}{dx} = \frac{y^2}{xy - x^2}$ is homogeneous and also solve (AI 2015)

95. Find the particular solution of the differential equation $(\tan^{-1}y - x) dy = (1+y^2)dx$, given that x = 1 when y = 0. (AI 2015)

96. Solve the following differential equation : $y - x \cos\left(\frac{y}{x}\right) dy + y \cos\left(\frac{y}{x}\right) - 2x \sin\left(\frac{y}{x}\right) dx$ -0

(Foreign 2015)

97. Solve the following differential equation :

$$\sqrt{1 + x^{2} + y^{2} + x^{2} y^{2}} dx + xy dy = 0$$

(Foreign 2015, AI 2010)

- 98. Find the particular solution of the differential equation $x \frac{dy}{dx} + y - x + xy \cot x = 0$; $x \neq 0$, given that when $x = \frac{\pi}{2}$, y = 0. (Delhi 2015C)
- **99.** Solve the differential equation $x^2 dy + (xy+y^2)dx$ = 0 given y = 1, when x = 1(Delhi 2015C, 2013C, 2010)
- 100. Solve the differential equation

$$\left(x\sin^2\left(\frac{y}{x}\right) - y\right)dx + xdy = 0 \quad \text{given} \quad y = \frac{\pi}{4}$$

when $x = 1$ (AI 2015C, 2014C, 2013C, 2013)

when
$$x = 1$$
 (A1 2015C, 2014C, 2013C, 2013

101. Solve the differential equation

$$\frac{dy}{dx} - 3y \quad \cot x = \sin 2x \text{ given } y = 2 \text{ when } x = \frac{\pi}{2}.$$
(AI 2015C)

102. Show that the differential equation

$$x\frac{dy}{dx}\sin\left(\frac{y}{x}\right) + x - y\sin\left(\frac{y}{x}\right) = 0$$

is homogeneous. Find the particula

- ar solution of this differential equation, given that x = 1 when $y = \frac{\pi}{2}$. (Delhi 2013)
- 103. Show that the differential equation $2ye^{x/y} dx + (y - 2x e^{x/y}) dy = 0$ is homogeneous. Find the particular solution of this differential equation, given that x = 0 when y = 1(Delhi 2013, AI 2012C)
- **104.** Show that the differential equation $(x e^{x/y} + y) dx$ = xdy is homogeneous. Find the particular solution of this differential equation, given that x = 1 when y = 1(Delhi 2013)
- 105. Find the particular solution of the differential equation $(\tan^{-1} y - x) dy = (1 + y^2) dx$, given that when x = 0, y = 0(AI 2013)
- 106. Find the particular solution of the differential $\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, (y \neq 0),$ equation

given that x = 0 when $y = \frac{\pi}{2}$. (AI 2013)

- 107. Find the particular solution of the differential equation $(3xy + y^2) dx + (x^2 + xy) dy = 0$: for x = 1, y = 1(Delhi 2013C)
- 108. Find the particular solution of the following differential equation given that y = 0 when $x = 1: (x^{2} + xy) dy = (x^{2} + y^{2}) dx$ (Delhi 2013C)
- 109. Find the particular solution of the differential

equation
$$(x - y) \frac{dy}{dx} = x + 2y$$
, given that when
 $x = 1, y = 0$ (AI 2013C)

110. Find the particular solution of the differential equation
$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x$$
, given that when $x = 1$, $y = \frac{\pi}{2}$. (AI 2013C)

given that when
$$x = 1$$
, $y = \frac{1}{4}$. (A12013C)
111. Solve the following differential equation :

$$x\cos\left(\frac{y}{x}\right)(y\,dx+x\,dy) = y\sin\left(\frac{y}{x}\right)(xdy-ydx).$$
(AI 2013C, 2010C)

Detailed Solutions

- The given differential equation is 1. $r = 0 \implies 3 \cdot \left(\frac{dy}{dx}\right)^2 \cdot \frac{d^2y}{dx^2} = 0$ $\frac{d}{dx}$ $\left(\frac{dy}{dx}\right)^3$ Order = 2 and Degree = 1Order + Degree = 2 + 1 = 3*.*.. Order = 2, Degree = 2. 2. Order + Degree = 2 + 2 = 4*:*.. 3. Order = 2, Degree = 3Order + Degree = 2 + 3 = 5... Degree of the given differential equation is 1. 4. Degree of the given differential equation is 2. 5.
- 6. Degree of the given differential equation is 3.
- 7. The degree of the differential equation is 1.
- 8. Degree of given differential equation is 2.
- 9. Degree of the given differential equation is 1.

10. We have,
$$y = 3\cos(\log x) + 4\sin(\log x)$$
 ...(i) Differentiating (i) w.r.t. *x*, we get

$$\frac{dy}{dx} = -3\sin(\log x)\frac{1}{x} + 4\cos(\log x)\frac{1}{x}$$
$$\Rightarrow \quad x\frac{dy}{dx} = -3\sin(\log x) + 4\cos(\log x) \qquad \dots (ii)$$

Differentiating (ii) w.r.t. *x*, we get

$$x\frac{d^2y}{dx^2} + \frac{dy}{dx} = -3\cos(\log x)\frac{1}{x} - 4\sin(\log x)\frac{1}{x}$$
$$\Rightarrow \quad x^2\frac{d^2y}{dx^2} + x\frac{dy}{dx} = -(3\cos(\log x) + 4\sin(\log x))$$

$$\Rightarrow x^{2} \frac{d^{2} y}{dx^{2}} + x \frac{dy}{dx} + y = 0$$

11. $v = \frac{A}{r} + B \Rightarrow \frac{dv}{dr} = -\frac{A}{r^{2}} \Rightarrow \frac{d^{2} v}{dr^{2}} = \frac{2A}{r^{3}}$
Now, $\frac{d^{2} v}{dr^{2}} \div \frac{dv}{dr} = \frac{2A}{r^{3}} \div \left(\frac{-A}{r^{2}}\right)$
 $\Rightarrow \frac{d^{2} v}{dr^{2}} \div \frac{dv}{dr} = \frac{-2}{r} \Rightarrow \frac{d^{2} v}{dr^{2}} = \frac{-2}{r} \cdot \frac{dv}{dr}$
 $\frac{d^{2} v}{dr^{2}} = \frac{2}{r} \cdot \frac{dv}{dr} = \frac{-2}{r} = \frac{2}{r} \cdot \frac{dv}{dr}$

$$\Rightarrow \frac{d^2 r}{dr^2} + \frac{2}{r} \frac{dr}{dr} = 0$$
 is the required D.E.

12. Here, $xy = C \cos x$ Differentiating (i) w.r.t. *x*, we get

$$1 \cdot y + x \cdot \frac{dy}{dx} = -C \sin x \qquad \dots (ii)$$

:. Eliminating *C* from (i) and (ii), we get

 $\frac{y + x\frac{dy}{dx}}{xy} = -\frac{\sin x}{\cos x} \Rightarrow x \cdot \frac{dy}{dx} + y = -xy \tan x, \text{ is the required differential equation.}$

13. Here, y = mx ...(i)

$$\frac{dy}{dx} = m \qquad \dots (ii)$$

Eliminating *m* from (i) and (ii), we get

 $y = x \cdot \frac{dy}{dx} \implies x \frac{dy}{dx} - y = 0$, is the required differential equation.

14. Here,
$$y = a \cos (x + b)$$
 ...(i)
Differentiating (i) w.r.t. *x*, we get
$$\frac{dy}{dx} = -a \sin (x + b)$$

Again differentiating w.r.t. *x*, we get

$$\frac{d^2y}{dx^2} = -a\,\cos(x+b) \Rightarrow \frac{d^2y}{dx^2} = -y \Rightarrow \frac{d^2y}{dx^2} + y = 0.$$

15. The equation of the circles in IInd quadrant touching co-ordinate axes is

[Here C is (-a, a) and radius = a] which has only one arbitrary constant a. Differentiating (i) w.r.t. x, we get

$$2(x+a) + 2(y-a)\frac{dy}{dx} = 0 \implies a = \frac{x+yy'}{y'-1}$$

...(i)

...(i)

Substituting for *a* in (i), we get

$$\left(x + \frac{x + y'y}{y' - 1}\right)^2 + \left(y - \frac{x + y'y}{y' - 1}\right)^2 = \left(\frac{x + y'y}{y' - 1}\right)^2$$
$$\Rightarrow [x(y' - 1) + x + y'y]^2 + [y(y' - 1) - x - y'y]^2 = (x + y'y)^2$$
$$\Rightarrow (x + y)^2 (y')^2 + (x + y)^2 = (x + y'y)^2$$
$$\Rightarrow (x + y)^2 \left[\left(\frac{dy}{dx}\right)^2 + 1\right] = \left(x + y\frac{dy}{dx}\right)^2, \text{ is the required}$$

differential equation.

Equation of parabola having vertex at origin and axis along positive *y*-axis is

 $x^2 = 4ay$, where *a* is the parameter. ...(i) Differentiating (i) w.r.t. *x*, we get

$$2x = 4ay_1 \implies \frac{2x}{y_1} = 4a$$
 ...(ii)

Substituting the value of 4*a* from equation (ii) in equation (i), we get

$$x^{2} = \frac{2x}{y_{1}}y \implies x^{2}y_{1} - 2xy = 0 \implies xy_{1} - 2y = 0,$$

is the required differential equation.

17. Let *C* denote the family of circles touching y-axis at the origin. Let (a, 0) be the co-ordinates of the centre of any member of the family.

Therefore, equation of family *C* is $(x - a)^2 + y^2 = a^2$ or $x^2 + y^2 = 2ax$...(i) where, *a* is any arbitrary constant.

Differentiating (i) w.r.t. x, we get

$$2x + 2y \frac{dy}{dx} = 2a \implies x + y \frac{dy}{dx} = a$$
 ...(ii)

Substituting the value of *a* from (ii) in (i), we get

$$x^{2} + y^{2} = 2x \left(x + y \frac{dy}{dx} \right)$$

$$\Rightarrow x^{2} + y^{2} - 2x^{2} = 2xyy_{1} \Rightarrow 2xyy_{1} + x^{2} = y^{2}$$

which is the required differential equation.

18. Equation of circle touching *x*-axis at origin is

$$x^{2} + (y - a)^{2} = a^{2} \implies x^{2} + y^{2} - 2ay = 0$$
 ...(i)
Differentiating (i) with respect to *x* we get
 $2x + 2yy' - 2ay' = 0 \implies a = \frac{x + yy'}{x'}$

Substituting the value of *a* in eq. (i), we get

$$x^{2} + y^{2} - \frac{2(x + yy')}{y'}y = 0$$

$$\Rightarrow y'(x^{2} - y^{2}) = 2xy \Rightarrow y' = \frac{2xy}{x^{2} - y^{2}}$$

19. Let the equation of the family of circles which touch the coordinate axes in the first quadrant be

...(i)

...(i)

 $(x - a)^{2} + (y - a)^{2} = a^{2}$ where *a* is the radius of the circle.

Refer to answer 15.

20. The equation of family of ellipses is 2^{2}

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
...(i)

Differentiating both sides of (i) w.r.t. *x*, we get

$$\frac{2x}{a^2} + \frac{2y}{b^2}\frac{dy}{dx} = 0 \implies \frac{y}{x}\left(\frac{dy}{dx}\right) = \frac{-b^2}{a^2} \qquad \dots (ii)$$

Differentiating (i) both sides of (ii) w.r.t. *x*, we get $\begin{pmatrix} dy \end{pmatrix}$

$$\left(\frac{y}{x}\right)\left(\frac{d^2y}{dx^2}\right) + \left(\frac{x\frac{dy}{dx} - y}{x^2}\right)\frac{dy}{dx} = 0$$

$$\Rightarrow xy\frac{d^2y}{dx^2} + x\left(\frac{dy}{dx}\right)^2 - y\frac{dy}{dx} = 0, \text{ is the required}$$

differential equation.

21. We have,
$$(x - a)^2 + 2y^2 = a^2$$

 $\Rightarrow x^2 + 2y^2 - 2ax = 0 \Rightarrow x^2 + 2y^2 = 2ax$
Differentiating (i) with respect to x, we get

$$2x + 4yy' = 2a$$

Substituting the value of 2a in (i), we get
$$x^{2} + 2y^{2} = (2x + 4yy')x$$
$$\Rightarrow x^{2} + 2y^{2} = 2x^{2} + 4xyy'$$
$$\Rightarrow 2y^{2} - x^{2} = 4xyy' \Rightarrow x^{2} - 2y^{2} + 4xyy' = 0$$

22. We have, $y = A\cos 2x + B\sin 2x$ Differentiating (i) both sides w.r.t. *x*, we get

$$\frac{dy}{dx} = -2A\sin 2x + 2B\cos 2x \qquad \dots (ii)$$

Differentiating (ii) both sides w.r.t. x, we get
$$\frac{d^2 y}{dx^2} = -4A\cos 2x - 4B\sin 2x$$
$$= -4(A\cos 2x + B\sin 2x)$$
$$\Rightarrow \quad \frac{d^2 y}{dx^2} + 4y = 0$$

...(i)

23. We have,
$$\left(\frac{e^{-2\sqrt{x}}}{\sqrt{x}} - \frac{y}{\sqrt{x}}\right) \frac{dx}{dy} = 1$$

or
$$\frac{dy}{dx} + \frac{1}{\sqrt{x}}y = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}$$

This is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{1}{\sqrt{x}}, Q = \frac{e^{-2\sqrt{x}}}{\sqrt{x}}$$

$$\therefore \quad \text{I.F.} = e^{\int Pdx} \implies \text{I.F.} = e^{\int \frac{1}{\sqrt{x}}dx} = e^{2\sqrt{x}}$$

24. The given differential equation is

$$(1+y^{2}) + (2xy - \cot y)\frac{dy}{dx} = 0$$

$$\Rightarrow (1+y^{2})\frac{dx}{dy} + 2xy - \cot y = 0$$

$$\Rightarrow \frac{dx}{dy} + \frac{2y}{1+y^{2}} \cdot x = \frac{\cot y}{1+y^{2}}$$

This is a linear differential equation of the form $\frac{dx}{dy} + Px = Q, \text{ where, } P = \frac{2y}{1+y^2} \text{ and } Q = \frac{\cot y}{1+y^2}$ $\therefore \text{ I.F.} = e^{\int P \, dy} = e^{\int \frac{2y}{1+y^2} \, dy} = e^{\log(1+y^2)} = 1 + y^2.$ 25. We have, $\frac{dy}{dx} = 2^{-y}$ $\Rightarrow \frac{dy}{dx} = \frac{1}{2^y} \Rightarrow 2^y \, dy = dx \qquad \dots(i)$ Integrating both sides of (i), we get

$$\Rightarrow \frac{2^{y}}{\log 2} = x + C \quad \Rightarrow \quad 2^{y} = (C + x) \log 2$$

Taking log on both sides to the base 2, we get $\Rightarrow \log_2 2^y = \log_2 [(C + x) \log 2]$ $\Rightarrow y = \log_2 [(C + x) \log 2]$ which is the required solution.

26. We have,
$$\frac{dy}{dx} = x^3 e^{-2y} \Rightarrow e^{2y} dy = x^3 dx$$

On integrating, we get $\frac{e^{2y}}{2} = \frac{x^4}{4} + C'$
 $\Rightarrow 2e^{2y} = x^4 + C$, where $C = 4C'$
27. We have, $x \cos y \, dy = (xe^x \log x + e^x) \, dx$
 $\cos y \, dy = \left(\frac{xe^x \log x + e^x}{x}\right) dx$
 $\int \cos y \, dy = \int \left(e^x \log x + \frac{e^x}{x}\right) dx$
 $\sin y = e^x \log x - \int \frac{1}{x} \cdot e^x \, dx + \int \frac{e^x}{x} \, dx$
 $\sin y = e^x \log x - \int \frac{1}{x} \cdot e^x \, dx + \int \frac{e^x}{x} \, dx$
 $\sin y = e^x \log x + C.$
28. We have, $\sec^2 y \tan x \, dy = -\tan y \, dx$
 $\frac{\sec^2 y}{\tan y} \, dy = -\frac{dx}{\tan x} \Rightarrow \int \frac{\sec^2 y}{\tan y} \, dy = -\int \cot x \, dx$
[Put $\tan y = t \Rightarrow \sec^2 y \, dy = dt$]
 $\int \frac{dt}{t} = -\log |\sin x| + \log C$
 $\Rightarrow \log |t| = -\log |\sin x| + \log C$
 $\Rightarrow \log |\tan y| + \log |\sin x| = \log C$
 $\Rightarrow \log |\tan y| + \log |\sin x| = \log C$
 $\Rightarrow \tan y \sin x = C$
29. We have, $\sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = 0$
 $\sec^2 y \tan x \, dy = -\sec^2 x \tan y \, dx$
 $\Rightarrow \int \frac{\sec^2 y}{\tan y} \, dy = -\int \frac{\sec^2 x}{\tan x} \, dx$
 $\Rightarrow \log |\tan y| = -\log |\tan x| + \log C$
 $\Rightarrow \log |\tan y| = -\log |\tan x| + \log C$
 $\Rightarrow \log |\tan x| + \log |\tan y| = \log C$
 $\Rightarrow \log |\tan x| + \log |\tan y| = \log C$
 $\Rightarrow \log |\tan x| + \log |\tan y| = \log C$
 $\Rightarrow \log |\tan x + \log |\tan y| = \log C$
 $\Rightarrow \log |\tan x + \log |\tan y| = \log C$
 $\therefore \tan x \tan y = C.$
30. We have, $y(1 - x^2) \, \frac{dy}{dx} = x(1 + y^2)$

$$\Rightarrow \quad \frac{y}{(1+y^2)}dy = \frac{x}{1-x^2}dx \Rightarrow \frac{2y}{(1+y^2)}dy = \frac{2x}{1-x^2}dx$$

Integrating both sides, we get $\log(1 + y^2) = -\log(1 - x^2) + \log C$ $\Rightarrow \quad \log(1 + y^2) + \log(1 - x^2) = \log C$ $\Rightarrow \quad \log(1 - x^2)(1 + y^2) = \log C$ $\Rightarrow \quad (1 - x^2)(1 + y^2) = C$ 31. We have, $(1+y^2) + (x - e^{\tan^{-1} y}) \frac{dy}{dx} = 0$ $\Rightarrow (x - e^{\tan^{-1} y}) \frac{dy}{dx} = -(1 + y^2)$ $\Rightarrow \quad \frac{dx}{dy} = \frac{x - e^{\tan^{-1}y}}{-(1 + y^2)} \Rightarrow \frac{dx}{dy} + \frac{1}{1 + y^2} \cdot x = \frac{e^{\tan^{-1}y}}{1 + y^2}$ This is a linear differential equation of the form $\frac{dx}{dy} + Px = Q$, where $P = \frac{1}{1+y^2}$ and $Q = \frac{e^{\tan^{-1}y}}{1+y^2}$ $\therefore \quad \text{I.F.} = e^{\int \frac{dy}{1+y^2}} = e^{\tan^{-1}y}$ $\therefore \quad \text{Solution is}$ $x \cdot e^{\tan^{-1} y} = \int \frac{(e^{\tan^{-1} y})^2}{1 + v^2} \, dy + C$ $= \int \frac{e^{2 \tan^{-1} y}}{1 + v^2} \, dy + C$ $\Rightarrow x \cdot e^{\tan^{-1}y} = \frac{e^{2\tan^{-1}y}}{2} + C_1$ $\Rightarrow x = \frac{e^{\tan^{-1}y}}{2} + C_1 e^{-\tan^{-1}y}$ 32. We have, $(1 - y^2)(1 + \log x) dx + 2xy dy = 0$ $\Rightarrow (1 - y^2)(1 + \log x) \, dx = -2xy \, dy$ $(1 + \log x) \quad 2y$

$$\Rightarrow \quad \frac{(1+\log x)}{x}dx = -\frac{2y}{1-y^2}dy$$

On integrating both sides, we get

$$\frac{(1+\log x)^2}{2} = \log|1-y^2| + C$$

When $x = 1, y = 0$
$$\therefore \quad \frac{(1+\log 1)^2}{2} = \log(1) + C \implies C = \frac{1}{2}$$
$$\implies \quad \frac{(1+\log x)^2}{2} = \log|1-y^2| + \frac{1}{2}$$
$$\implies \quad (1+\log x)^2 = 2\log|1-y^2| + 1 \text{ is the required solution.}$$

33. We have,
$$y + x \frac{dy}{dx} = x - y \frac{dy}{dx}$$

$$\Rightarrow x \frac{dy}{dx} + y \frac{dy}{dx} = x - y \Rightarrow \frac{dy}{dx} = \frac{x - y}{x + y} \qquad \dots(i)$$
This is a linear homogeneous D.E.

$$\therefore \text{ Put } y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore \text{ Equation (i) becomes}$$

$$v + x \frac{dv}{dx} = \frac{x - vx}{x + vx} = \frac{1 - v}{1 + v}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{1 - v}{1 + v} - v = \frac{1 - v - v^2 - v}{1 + v} = \frac{1 - 2v - v^2}{1 + v}$$

$$\Rightarrow \frac{(1 + v)}{v^2 + 2v - 1} dv = -\frac{dx}{x}$$
Integrating both sides, we get

$$\frac{1}{2} \log |v^2 + 2v - 1| = -\log |x| + \log C$$

$$\Rightarrow \frac{1}{2} \log |v^2 + 2v - 1| + \log |x| = \log C$$

$$\Rightarrow \log \left| \frac{y^2}{x^2} + \frac{2y}{x} - 1 \right| + 2\log |x| = 2\log C$$

$$\Rightarrow \log \left| \frac{y^2 + 2xy - x^2}{x^2} \times x^2 \right| = \log C^2$$

$$\Rightarrow y^2 + 2xy - x^2 = \pm C^2$$

$$\Rightarrow y^2 + 2xy - x^2 = C_1 \text{ (where } C_1 = \pm C^2\text{)}$$

34. We have,
$$y^2 dx + (x^2 - xy + y^2) dy = 0$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{-y^2}{x^2 - xy + y^2}$$

$$\therefore \text{ Put } y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}, \text{ we get}$$

$$v + x \frac{dv}{dx} = \frac{-v^2 x^2}{x^2 - v x^2 + v^2 x^2}$$
$$\Rightarrow \quad v + x \frac{dv}{dx} = \frac{-v^2}{1 - v + v^2}$$

$$\Rightarrow x \frac{dv}{dx} = \frac{-v^2}{1 - v + v^2} - v$$
$$\Rightarrow x \frac{dv}{dx} = \frac{-v - v^3}{1 - v + v^2}$$
$$\Rightarrow \frac{1 - v + v^2}{v(1 + v^2)} dv = -\frac{1}{x} dx$$

Integrating both sides, we get

$$\int \frac{1+v^2}{v(1+v^2)} dv - \int \frac{v}{v(1+v^2)} dv = -\int \frac{1}{x} dx$$

$$\Rightarrow \quad \int \frac{1}{v} dv - \int \frac{1}{1+v^2} dv = -\int \frac{1}{x} dx$$

$$\Rightarrow \quad \log |v| - \tan^{-1}v = -\log |x| + \log C$$

$$\Rightarrow \quad \log \left| \frac{vx}{C} \right| = \tan^{-1}v \quad \Rightarrow \quad \left| \frac{vx}{C} \right| = e^{\tan^{-1}v}$$

$$\Rightarrow \quad |y| = Ce^{\tan^{-1}y/x} \text{ is the required solution.}$$

35. We have, $(\cot^{-1}y + x) dy = (1+y^2)dx$

$$\Rightarrow \quad \frac{dx}{dx} = \frac{\cot^{-1}y + x}{dx}$$

$$\Rightarrow \frac{dy}{dy} + \left(-\frac{1}{1+y^2}\right)x = \frac{\cot^{-1}y}{1+y^2}$$

This is a linear differential equation of the form $\frac{dx}{dy} + Px = Q, \text{ where, } P = -\frac{1}{1+y^2} \text{ and } Q = \frac{\cot^{-1} y}{1+y^2}$ $\therefore \text{ I.F.} = e^{-\int \frac{1}{1+y^2} dy} = e^{\cot^{-1} y}$ $\therefore \text{ Solution is,}$ $xe^{\cot^{-1} y} = \int \frac{\cot^{-1} y}{(1+y^2)} e^{\cot^{-1} y} dy + C$ $[\text{Put } t = \cot^{-1} y \Rightarrow dt = -\frac{1}{1+y^2} dy]$ $xe^{\cot^{-1} y} = -\int te^t dt + C$ $\Rightarrow xe^{\cot^{-1} y} = -e^t (t-1) + C$ $\Rightarrow xe^{\cot^{-1} y} = e^{\cot^{-1} y} (1 - \cot^{-1} y) + C$ 36. We have, $\frac{dy}{dx} = \frac{x(2\log x + 1)}{\sin y + y \cos y}$ $\Rightarrow (\sin y + y \cos y) dy = x(2\log x + 1) dx$ On integrating both sides, we get $\Rightarrow -\cos y + y \sin y - (-\cos y)$ $= 2\left[\log x \times \frac{x^2}{2} - \int \frac{1}{x} \times \frac{x^2}{2} dx\right] + \frac{x^2}{2} + C$ $\Rightarrow y \sin y = x^2 \log x - \frac{x^2}{2} + \frac{x^2}{2} + C$ $\Rightarrow y \sin y = x^2 \log x + C$ when $x = 1, y = \frac{\pi}{2}$ $\therefore \frac{\pi}{2} \sin \frac{\pi}{2} = 1 \cdot \log(1) + C \Rightarrow \frac{\pi}{2} = C$ $\therefore y \sin y = x^2 \log x + \pi/2 \text{ is the required solution.}$ 37. We have, $(x^2 - 1) \frac{dy}{dx} + 2xy = \frac{2}{x^2 - 1}, |x| \neq 1$ $\Rightarrow \frac{dy}{dx} + \frac{2xy}{x^2 - 1} = \frac{2}{(x^2 - 1)^2}$ This is a linear differential equation of the form, $\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{2x}{x^2 - 1} \text{ and } Q = \frac{2}{(x^2 - 1)^2}$

$$dx^{(11)} = Q; \text{ where } x^2 - 1 \text{ and } Q (x^2 - 1)^2$$

$$\therefore \quad \text{I.F.} = e^{\int Pdx} = e^{\int \frac{2x}{x^2 - 1}} dx = e^{\log(x^2 - 1)} = x^2 - 1$$

Hence, solution of differential equation is given by

$$y(x^{2}-1) = \int \frac{2(x^{2}-1)}{(x^{2}-1)^{2}} dx + C$$

$$\Rightarrow \quad y(x^{2}-1) = 2 \int \frac{dx}{x^{2}-1} + C$$

$$\Rightarrow \quad y(x^{2}-1) = 2 \times \frac{1}{2} \log \left| \frac{x-1}{x+1} \right| + C$$

$$\Rightarrow \quad y(x^{2}-1) = \log \left| \frac{x-1}{x+1} \right| + C$$

38. We have, $e^{x} \sqrt{1-y^{2}} dx + \frac{y}{x} dy = 0$
 $x e^{x} dx + \frac{y}{\sqrt{1-y^{2}}} dy = 0$

Integrating both sides, we get

$$\Rightarrow x \cdot e^{x} - \int 1 \cdot e^{x} dx - \frac{1}{2} \int \left(1 - y^{2}\right)^{-\frac{1}{2}} \left(-2y\right) dy = C$$

 $\Rightarrow x e^{x} - e^{x} - \frac{1}{2} \frac{(1 - y^{2})^{\frac{1}{2}}}{1 + 2} = C$ $\Rightarrow e^{x}(x-1) - \sqrt{1-y^2} = C$ When x = 0, y = 1, $e^{0}(0-1) - \sqrt{1-1} = C \implies C = -1$ $\therefore e^{x}(x-1) - \sqrt{1-y^2} = -1$ is the required solution. **39.** We have, $\operatorname{cosec} x \log y \frac{dy}{dx} + x^2 y^2 = 0$ $\frac{\log y}{v^2}dy + \frac{x^2}{\csc x}dx = 0$ Integrating both sides, we get $\int \frac{\log y}{v^2} dy + \int x^2 \sin x \, dx = 0$ [Put log $y = t \Rightarrow \frac{1}{y} dy = dt$ and $y = e^t$] $\Rightarrow \int t \cdot e^{-t} dt + \int x^2 \sin x \, dx = C$ $\Rightarrow t \cdot \frac{e^{-t}}{1} - \int 1 \cdot \frac{e^{-t}}{1} dt + x^2 (-\cos x) - \int 2x (-\cos x) dx = C$ $\Rightarrow -t e^{-t} - e^{-t} - x^2 \cos x + 2x \sin x - 2 \int 1 \sin x \, dx = C$ $\Rightarrow -\frac{1+\log y}{y} - x^2 \cos x + 2x \sin x + 2 \cos x = C$

is the required solution.

40. We have,
$$\frac{dy}{dx} = 1 + x + y + xy$$

$$\Rightarrow \frac{dy}{dx} = (1+x) + (1+x)y = (1+x)(1+y)$$

$$\Rightarrow \frac{dy}{1+y} = (1+x)dx$$

Integrating both sides, we get

$$\int \frac{dy}{1+y} = \int (1+x) dx + C$$

$$\Rightarrow \log(1+y) = x + \frac{x^2}{2} + C \qquad \dots(i)$$

When $x = 1, y = 0$

$$\therefore \quad \log 1 = 1 + \frac{1}{2} + C \Rightarrow C = -\frac{3}{2}$$

$$\therefore \quad \text{The particular solution of (i) is}$$

$$= 1, y = 0$$

 $\log(1+y) = x + \frac{x}{2} - \frac{3}{2}.$

41. *Refer to answer 31.*

42. We have,
$$x(1 + y^2) dx - y(1 + x^2) dy = 0$$

$$\Rightarrow \frac{x}{1+x^2}dx - \frac{y}{1+y^2}dy = 0$$
$$\Rightarrow \frac{2x}{1+x^2}dx = \frac{2y}{1+y^2}dy$$

Integrating both sides, we get $\log(1 + y^2) = \log(1 + x^2) + \log C$ $\Rightarrow 1 + y^2 = C(1 + x^2)$ When x = 0, y = 1 \therefore $1 + 1 = C(1 + 0) \Longrightarrow C = 2$ $1 + y^2 = 2(1 + x^2)$ is the required particular *:*.. solution.

43. We have,
$$\log\left(\frac{dy}{dx}\right) = 3x + 4y$$

 $\frac{dy}{dx} = e^{3x+4y} = e^{3x} \cdot e^{4y} \implies e^{-4y} dy = e^{3x} dx$
Integrating both sides, we get

$$\int e^{3x} dx - \int e^{-4y} dy = C \implies \frac{e^{3x}}{3} - \frac{e^{-4y}}{-4} = C$$

When $x = 0, y = 0$
$$\therefore \quad \frac{1}{3} + \frac{1}{4} = C \implies C = \frac{7}{12}$$
$$\implies \frac{e^{3x}}{3} + \frac{e^{4y}}{4} = \frac{7}{12}$$

 \Rightarrow 4 e^{3x} + 3 e^{4y} = 7 is the required particular solution.

44. We have,
$$(x^2 - yx^2)dy + (y^2 + x^2y^2)dx = 0$$

 $\Rightarrow x^2(1 - y)dy + y^2(1 + x^2)dx = 0$
 $\Rightarrow \int \frac{(1 - y)}{y^2}dy + \int \frac{(1 + x^2)}{x^2}dx = 0$
 $\Rightarrow \int \left(\frac{1}{y^2} - \frac{1}{y}\right)dy + \int \left(\frac{1}{x^2} + 1\right)dx = 0$
 $\Rightarrow -\frac{1}{y} - \log|y| - \frac{1}{x} + x = C$
 $\Rightarrow -x - xy \log|y| - y + x^2 y = C(xy)$...(i)
when $x = 1, y = 1$
 $\therefore -(1) - (1) (1) \log|1| - (1) + (1)^2 (1) = C (1)$
 $\Rightarrow C = -1$
Equation (i) becomes
 $x^2y = x + xy \log|y| + y - xy$

45. We have,
$$\frac{dy}{dx} + y \cot x = 2 \cos x$$

This is a linear differential equation of the form
 $\frac{dy}{dx} + Py = Q$, where $P = \cot x$, $Q = 2\cos x$
 \therefore I.F. $= e^{\int \cot x \, dx} = e^{\log|\sin x|} = |\sin x|$
 $\therefore y |\sin x| = \int |\sin x| (2\cos x) \, dx$
 $\Rightarrow y |\sin x| = \int \sin 2x \, dx$
 $\Rightarrow y (\sin x) = -\frac{1}{2}\cos 2x + C$
when $x = \frac{\pi}{2}$, $y = 0$
 $0(\sin \frac{\pi}{2}) = -\frac{1}{2}\cos 2(\frac{\pi}{2}) + C \Rightarrow C = -\frac{1}{2}$
 $\therefore y (\sin x) = -\frac{1}{2}\cos 2x - \frac{1}{2}$

i.e., $2y \sin x + \cos 2x + 1 = 0$ is the required solution.

46. We have $\frac{dy}{dx} + 2y \tan x = \sin x$ It is linear differential equation of the form $\frac{dy}{dx} + Py = Q$ where $P = 2 \tan x$, and $Q = \sin x$ Now, I.F. $= e^{\int 2 \tan x \, dx} = e^{2\log|\sec x|} = |\sec^2 x|$ $\therefore \quad y(\sec^2 x) = \int (\sec^2 x)(\sin x) \, dx$ $\Rightarrow y(\sec^2 x) = \int \sec x \tan x \, dx$ $\Rightarrow y(\sec^2 x) = \sec x + C$ when $x = \frac{\pi}{3}, y = 0$ (0) $[\sec^2(\pi/3)] = \sec(\pi/3) + C \Rightarrow C = -2$ $\therefore \quad y(\sec^2 x) = \sec x - 2 i.e., y = \cos x - 2 \cos^2 x \text{ is the required solution.}$ 47. We have, $x \log x \frac{dy}{dx} + y = \frac{2}{x} \log x$ $\Rightarrow \frac{dy}{dx} + \frac{1}{x \log x} y = \frac{2}{x^2}$ It is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q$$
, where $P = \frac{1}{x \log x}$, $Q = \frac{2}{x^2}$

$$\therefore \quad \text{I.F.} = e^{\int \frac{1}{x \log x} dx} = e^{\log \log x} = \log x$$

$$\therefore \quad y(\log x) = \int (\log x) \frac{2}{x^2} dx$$

$$\Rightarrow \quad y(\log x) = \log x \int \frac{2}{x^2} dx - \int \left(\frac{d}{dx} (\log x) \int \frac{2}{x^2} dx\right) dx$$

$$\Rightarrow \quad y(\log x) = \log x \left(-\frac{2}{x}\right) + \int \frac{2}{x^2} dx$$

$$\Rightarrow \quad y(\log x) = \log x \left(-\frac{2}{x}\right) - \frac{2}{x} + C$$

48 We have $\left(\frac{2 + \sin x}{x}\right) \frac{dy}{dx} = -\cos x$

48. We have,
$$\left(\frac{2+\sin x}{1+y}\right)\frac{dy}{dx} = -\cos x$$

 $\Rightarrow \frac{dy}{1+y} = -\frac{\cos x}{2+\sin x}dx$

Integrating both sides, we get log(y + 1) = -log(2 + sin x) + log C $\Rightarrow log(y + 1) = log \frac{C}{2 + sin x}$ $\Rightarrow y + 1 = C/(2 + sin x) \Rightarrow (y + 1) (2 + sin x) = C$ Given: $y(0) = 1 \Leftrightarrow x = 0, y = 1$ $\therefore (1 + 1).(2 + sin 0) = C \Rightarrow C = 4$ (y + 1)(2 + sin x) = 4 $\Rightarrow y = \frac{4}{2 + sin x} - 1$...(i) Put $x = \frac{\pi}{2}$ in it (i), $y\left(\frac{\pi}{2}\right) = \frac{4}{2 + 1} - 1 = \frac{1}{3}$. **49.** We have, $(x - y)\frac{dy}{dx} = x + 2y$ $\Rightarrow \frac{dy}{dx} = \frac{x + 2y}{x - y}$...(i) This is a linear homogeneous differential equation

$$\therefore \text{ Put } y = vx \implies \frac{dy}{dx} = v.1 + x\frac{dv}{dx}$$

$$\therefore \quad \text{Equation (i) becomes}$$

$$v + x \frac{dv}{dx} = \frac{x + 2vx}{x - vx} = \frac{1 + 2v}{1 - v}$$

$$\Rightarrow \quad x \frac{dv}{dx} = \frac{1 + 2v}{1 - v} - v = \frac{1 + v + v^2}{1 - v}$$

$$\Rightarrow \quad \frac{1 - v}{1 + v + v^2} dv = \frac{dx}{x}$$

Integrating both sides, we get $\frac{1}{2}(2n+1) + \frac{3}{2}$

$$\int \frac{-\frac{1}{2}(2v+1) + \frac{3}{2}}{v^2 + v + 1} dv = \log x + C$$

$$\Rightarrow -\frac{1}{2} \int \frac{2v+1}{v^2 + v + 1} dv + \frac{3}{2} \int \frac{dv}{\left(v + \frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2}$$

 $=\log x + C$

$$\Rightarrow -\frac{1}{2}\log(v^2 + v + 1)$$

$$+\frac{3}{2} \cdot \frac{1}{\sqrt{3}/2} \tan^{-1}\left[\frac{v + \frac{1}{2}}{\sqrt{3}/2}\right] = \log x + C$$

$$\Rightarrow -\frac{1}{2}\log\left(\frac{y^2}{x^2} + \frac{y}{x} + 1\right)$$

$$+\sqrt{3}\tan^{-1}\left(\frac{2y + x}{\sqrt{3} \cdot x}\right) = \log x + C$$

$$\Rightarrow -\frac{1}{2}\log(y^2 + xy + x^2) + \sqrt{3}\tan^{-1}\left(\frac{x+2y}{\sqrt{3}\cdot x}\right) = C.$$

50. We have,
$$x \frac{dy}{dx} - y + x \operatorname{cosec}\left(\frac{y}{x}\right) = 0$$

$$\Rightarrow \frac{dy}{dx} - \frac{y}{x} = -\operatorname{cosec}\left(\frac{y}{x}\right) \qquad \dots(i)$$

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v.1 + x.\frac{dv}{dx}$$

$$\therefore \quad \text{Equation (1) becomes} \\ v + x \frac{dv}{dx} - v = -\text{cosec } v \implies x \frac{dv}{dx} = -\text{cosec } v \\ \implies -\sin v \, dv = \frac{dx}{x} \\ \text{Integrating both sides, we get } \cos v = \log x + C \\ (y) = 1 \quad \text{cosec } v = 0 \\ \text{for } x = 0 \\ \text{fo$$

$$\Rightarrow \cos\left(\frac{2}{x}\right) = \log x + C$$

When $x = 1, y = 0$
$$\Rightarrow \cos\left(\frac{0}{1}\right) = \log 1 + C \Rightarrow C = 1$$

$$\therefore \cos\left(\frac{y}{x}\right) = \log x + 1$$

is the required particular solution.

51. We have,
$$x \frac{dy}{dx} + y = x \cos x + \sin x$$

$$\Rightarrow \quad \frac{dy}{dx} + \frac{1}{x} \cdot y = \frac{x \cos x + \sin x}{x}$$

This is a linear differential equation of the form $\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{1}{x}, \quad Q = \frac{x \cos x + \sin x}{x}$ $\therefore \quad \text{I.F.} = e^{\int P \, dx} = e^{\int \frac{1}{x} \, dx} = e^{\log x} = x.$ $\therefore \quad y \cdot x = \int \frac{x \cos x + \sin x}{x} \cdot x \, dx + C$ $\Rightarrow \quad xy = \int x \cos x \, dx + \int \sin x \, dx + C$ $= x \cdot \sin x - \int 1 \cdot \sin x \, dx + \int \sin x \, dx + C$ $= x \sin x + C$ Given $y\left(\frac{\pi}{2}\right) = 1$ $\therefore \quad \frac{\pi}{2}.1 = \frac{\pi}{2} \sin \frac{\pi}{2} + C \Rightarrow C = 0$ $\therefore \quad xy = x \sin x \Rightarrow y = \sin x \text{ is the required}$

52. We have,
$$x \cos\left(\frac{y}{x}\right) \frac{dy}{dx} = y \cos\left(\frac{y}{x}\right) + x; x \neq 0$$

$$\Rightarrow \cos\left(\frac{y}{x}\right) \cdot \frac{dy}{dx} = \left(\frac{y}{x}\right) \cos\left(\frac{y}{x}\right) + 1 \qquad \dots(i)$$

solution.

This is a linear homogeneous differential equation Put $y = vx \implies \frac{dy}{dx} = v \cdot 1 + x \cdot \frac{dv}{dx}$

Now (i) becomes $\cos v \cdot \left[v + x \frac{dv}{dx} \right] = v \cos v + 1$ $\Rightarrow x \cos v \frac{dv}{dx} = 1 \Rightarrow \cos v dv = \frac{dx}{x}$ Integrating both sides, we get $\sin v = \log x + C \Rightarrow \sin\left(\frac{y}{x}\right) = \log x + C$ is the required solution.

53. We have,
$$xy \frac{dy}{dx} = (x+2)(y+2)$$

$$\Rightarrow \frac{y \, dy}{(y+2)} = \left(\frac{x+2}{x}\right) dx$$

$$\Rightarrow dy - \frac{2}{(y+2)} \, dy = dx + \frac{2}{x} \, dx$$

Integrating both sides, we get $y - 2\log(y + 2) = x + 2\log x + C$ when x = 1, y = -1So, $-1 - 2\log(-1+2) = 1 + 2\log 1 + C$ $\Rightarrow C = -1 - 1 = -2$ So, we have $y - 2\log(y + 2) = x + 2\log x - 2$ $\Rightarrow y - x + 2 = 2\log x(y + 2)$. 54. We have, $2x^2 \frac{dy}{dx} - 2xy + y^2 = 0$ $\Rightarrow \frac{dy}{dx} - \frac{y}{x} + \frac{y^2}{2x^2} = 0$...(i)

This is a homogeneous linear differential equation

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$$

 \therefore (i) becomes
 $v + x\frac{dv}{dx} - v + \frac{v^2}{2} = 0 \Rightarrow x\frac{dv}{dx} = \frac{-v^2}{2}$
 $\Rightarrow \frac{dv}{-v^2} = \frac{1}{2}\frac{dx}{x}$

Integrating both sides, we get

$$\frac{1}{v} = \frac{1}{2}\log x + C_1 \Rightarrow \frac{x}{y} = \frac{1}{2}\log x + C_1$$
$$\Rightarrow \frac{2x}{y} = \log x + C. \text{ [where } C = 2C_1\text{]}$$

55. We have,
$$\frac{dy}{dx} = 1 + x^2 + y^2 + x^2 y^2$$

 $\therefore \frac{dy}{dx} = 1 + x^2 + y^2 (1 + x^2)$
 $= (1 + x^2) \cdot (1 + y^2)$
 $\Rightarrow \frac{dy}{1 + y^2} = (1 + x^2) dx$

Integrating both sides, we get

$$\tan^{-1} y = x + \frac{x^3}{3} + C$$

when $x = 0, y = 1$
$$\tan^{-1} 1 = 0 + 0 + C \Longrightarrow C = \frac{\pi}{4}$$

$$\therefore \tan^{-1} y = x + \frac{1}{3} x^3 + \frac{\pi}{4}$$

is the required particular solution.
56. We have, $(x+1)\frac{dy}{dx} = 2e^{-y} - 1$...(i)
$$\Longrightarrow \frac{dy}{2e^{-y} - 1} = \frac{dx}{x+1} \implies \frac{e^y}{2 - e^y} dy = \frac{dx}{x+1}$$

Integrating both sides, we get $-\log (2 - e^y) = \log (x + 1) + C$...(ii) (Taking $2 - e^y = t$ on L.H.S.) when x = 0, y = 0 \therefore $-\log (2 - 1) = \log (0 + 1) + C \implies C = 0$ \therefore Eq. (ii) becomes $-\log (2 - e^y) = \log (x + 1)$ $\implies \log (x + 1) \log (2 - e^y) = 0$ $\implies \log (x + 1) (2 - e^y) = 0 \implies (x + 1) (2 - e^y) = 1$ is the required particular solution.

57. We have,
$$x(x^2 - 1)\frac{dy}{dx} = 1$$
 ...(i)
 $dy = \frac{1}{x(x^2 - 1)}dx$
Integrating both sides, we get
 $\int dy = \int \frac{1}{x(x - 1)(x + 1)}dx + C$

$$\Rightarrow y = \int \left[-\frac{1}{x} + \frac{1}{2} \cdot \frac{1}{x-1} + \frac{1}{2} \cdot \frac{1}{x+1} \right] dx + C$$

= $-\log x + \frac{1}{2} \log(x-1) + \frac{1}{2} \log(x+1) + C$...(ii)
when $x = 2, y = 0$
 $\therefore 0 = -\log 2 + \frac{1}{2} \log 1 + \frac{1}{2} \log 3 + C$
 $\Rightarrow C = \log 2 - \frac{1}{2} \log 3 = \frac{1}{2} \log \frac{4}{3}$
 \therefore From (ii),
 $y = -\log x + \frac{1}{2} \log(x-1) + \frac{1}{2} \log(x+1) + \frac{1}{2} \log \frac{4}{3}$
 $= \frac{1}{2} \log \frac{4(x^2-1)}{3x^2}$ is the required particular solution

58. We have,
$$(1 + x^2) dy + 2xy dx = \cot x dx; x \neq 0$$

 $\Rightarrow \frac{dy}{dx} + \frac{2x}{1 + x^2} \cdot y = \frac{\cot x}{1 + x^2} \dots (i)$

This is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{2x}{1+x^2}, Q = \frac{\cot x}{1+x^2}$

$$\therefore \quad \text{I.F.} = e^{\int Pdx} = e^{\int \frac{2x}{1+x^2}dx} = e^{\log(1+x^2)} = 1+x^2$$

$$\therefore \quad \text{The solution of (i) is}$$

$$y \cdot (1+x^2) = \int \frac{\cot x}{1+x^2} \cdot (1+x^2)dx + C$$

$$= \int \cot x \, dx + C = \log |\sin x| + C$$

$$\Rightarrow y = \frac{\log |\sin x| + C}{1 + x^2}$$
 is the solution of the given differential equation.

59. We have
$$\frac{dy}{dx} + y \cot x = 4x \operatorname{cosec} x(x \neq 0)$$
 ...(i)
This is a linear differential equation of the form

This is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q,$$
where, $P = \cot x$, $Q = 4x \operatorname{cosec} x$
 \therefore I.F. $= e^{\int P dx} = e^{\int \cot x \, dx} = |\sin x|$
 \therefore The solution of (i) is
 $y \cdot |\sin x| = \int 4x \operatorname{cosec} x \cdot |\sin x| \, dx + C = \int 4x \, dx + C$
 $= 2x^2 + C$...(ii)
when $x = \frac{\pi}{2}$, $y = 0$

$$\therefore \quad \text{From (ii), } 0.\sin\frac{\pi}{2} = 2 \cdot \left(\frac{\pi}{2}\right)^2 + C \implies C = -\frac{\pi^2}{2}$$

 $\Rightarrow y \cdot \sin x = 2x^2 - \frac{\pi^2}{2}$ is the required particular solution.

60. We have
$$x \frac{dy}{dx} - y + x \sin\left(\frac{y}{x}\right) = 0$$

 $\Rightarrow \frac{dy}{dx} - \frac{y}{x} + \sin\left(\frac{y}{x}\right) = 0$

This is a linear homogeneous differential equation.

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v \cdot 1 + x \frac{dv}{dx}$$

 $\therefore v + x \frac{dv}{dx} - v + \sin v = 0$
 $\Rightarrow x \frac{dv}{dx} + \sin v = 0 \Rightarrow \operatorname{cosec} v \, dv + \frac{dx}{x} = 0$
Integrating both sides, we get
 $\log |\operatorname{cosec} v - \cot v| + \log x = \log C$
 $\Rightarrow x (\operatorname{cosec} v - \cot v) = C$
 $\Rightarrow x \left[\operatorname{cosec} \left(\frac{y}{x} \right) - \cot \left(\frac{y}{x} \right) \right] = C$
when $x = 2, y = \pi$
 $\therefore 2 \left[\operatorname{cosec} \left(\frac{\pi}{2} - \cot \frac{\pi}{2} \right] = C \Rightarrow C = 2$
 $\Rightarrow x \left[\operatorname{cosec} \left(\frac{y}{x} \right) - \cot \left(\frac{y}{x} \right) \right] = 2$

is the required particular solution.

61. We have,
$$\frac{dy}{dx} - y = \cos x$$
 ... (i)

This is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q, \text{ where } P = -1, Q = \cos x$$

$$\therefore \text{ I.F. } = e^{\int Pdx} = e^{-x}$$
Hence the solution of (i) is

$$y.e^{-x} = \int e^{-x} .\cos x \, dx + C$$

$$\int e^{-x} \cos x \, dx = -e^{-x} \cos x + e^{-x} \sin x - \int e^{-x} \cos x \, dx$$

$$= \frac{1}{2}e^{-x}(\sin x - \cos x)$$

$$y \cdot e^{-x} = \frac{1}{2} e^{-x} (\sin x - \cos x) + C \qquad \dots \text{(ii)}$$

Putting, $x = 0, y = 1$ in (ii), we get
 $1 \cdot e^0 = \frac{1}{2} e^0 (\sin 0 - \cos 0) + C$
 $\Rightarrow 1 = \frac{1}{2} (-1) + C \Rightarrow C = \frac{3}{2}$
From (ii), $y = \frac{1}{2} (\sin x - \cos x) + \frac{3}{2} e^x$
is the required particular solution.
62. We have, $x \frac{dy}{dx} + 2y = x^2, (x \neq 0)$

$$\Rightarrow \quad \frac{dy}{dx} + \frac{2}{x} \cdot y = x \qquad \dots (i)$$

This is linear differential equation of the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{2}{x}, Q = x$

$$\begin{array}{l} dx & x \\ \therefore & \text{I.F.} = e^{\int P dx} = e^{\int 2/x \, dx} = e^{2\log x} = e^{\log x^2} = x^2 \end{array}$$

 \therefore The solution of (i) is

$$y \cdot x^{2} = \int x \cdot x^{2} dx + C = \int x^{3} dx + C = \frac{x^{4}}{4} + C$$

$$\Rightarrow y = \frac{x^{2}}{4} + C x^{-2} \qquad \dots \text{(ii)}$$

When x = 2, y = 1 in (ii), we get

$$\therefore \quad 1 = \frac{2^2}{4} + \frac{C}{2^2} = 1 + \frac{C}{4} \quad \Rightarrow \frac{C}{4} = 0 \Rightarrow C = 0$$

$$y = \frac{x^2}{4} \text{ is the required particular solution.}$$

63. We have,
$$\frac{dy}{dx} + y \cot x = 2x + x^2 \cot x, (x \neq 0)$$

This is a linear D.E of the form $\frac{dy}{dx} + Py = Q$
where $P = \cot x, Q = 2x + x^2 \cot x$
 \therefore I.F. $= e^{\int Pdx} = e^{\int \cot x dx} = e^{\log |\sin x|} = \sin x$
 $\Rightarrow y \cdot \sin x = \int (2x + x^2 \cdot \cot x) \sin x dx + C$
 $= 2\int x \sin x dx + \int x^2 \cos x dx + C$
 $= 2\int x \sin x dx + x^2 \sin x - \int 2x \sin x dx + C$
 $= x^2 \sin x + C$
When $x = \frac{\pi}{2}, y = 0$
 \therefore $0 \cdot \sin \frac{\pi}{2} = \left(\frac{\pi}{2}\right)^2 \cdot \sin \frac{\pi}{2} + C$
 $\Rightarrow 0 = \frac{\pi^2}{4} + C \Rightarrow C = -\frac{\pi^2}{4}$
 $\Rightarrow y \cdot \sin x = x^2 \sin x - \frac{\pi^2}{4}$
 $\Rightarrow y = x^2 - \frac{\pi^2}{4} \csc x$
64. We have, $\frac{dy}{dx} + \sec x.y = \tan x, \left(0 \le x < \frac{\pi}{2}\right) \dots (i)$
This is a linear D.E. of the form $\frac{dy}{dx} + Py = Q$,
where $P = \sec x, Q = \tan x$
 \therefore I.F. $= e^{\int Pdx} = e^{\int \sec x dx}$
 $= e^{\log|\sec x + \tan x|} = |\sec x + \tan x|$
 \therefore The solution of (i) is
 $y \cdot |\sec x + \tan x| \cdot \tan x dx + C$
 $= \int |\sec x \tan x + \tan^2 x | dx + C$
 $= \int |\sec x \tan x | dx + \int |\sec^2 x - 1| dx + C$
 $= \sec x + \tan x - x + C$
65. We have, $x \frac{dy}{dx} + y - x + xy \cot x = 0, (x \neq 0)$
 $\Rightarrow x \frac{dy}{dx} + (1 + x \cot x). y = x$
 $\Rightarrow \frac{dy}{dx} + \frac{1 + x \cot x}{x}. y = 1$...(i)

This is linear D.E. of the form
$$\frac{dy}{dx} + Py = Q$$

where $P = \frac{1 + x \cot x}{x} = \frac{1}{x} + \cot x, Q = 1$
 \therefore Now I.F. $= e^{\int Pdx} = e^{\log(x \sin x)} = x \sin x$
 \therefore The solution. of (i) is
 $y \cdot x \sin x = \int 1 \cdot x \sin x \, dx + C$
 $= x(-\cos x) + \int 1 \cdot \cos x \, dx + C$
 $\Rightarrow x y \sin x = -x \cos x + \sin x + C$
66. We have, $\cos^2 x \cdot \frac{dy}{dx} + y = \tan x$
Dividing by $\cos^2 x$ on both sides, we get
 $\frac{dy}{dx} + \frac{y}{\cos^2 x} = \frac{\tan x}{\cos^2 x}$
This is a linear D.E. of the form
 $\frac{dy}{dx} + Py = Q$, where $P = \frac{1}{\cos^2 x} = \sec^2 x, Q = \frac{\tan x}{\cos^2 x}$
I.F. $= e^{\int Pdx} = e^{\int \sec^2 x \cdot dx} = e^{\tan x}$
 $y.e^{\tan x} = \int e^{\tan x} \times \tan x \cdot \sec^2 x. dx$
Put $\tan x = t \Rightarrow \sec^2 x \cdot dx = dt$
 $y \times e^{\tan x} = \int e^t x t \cdot dt$
 $\Rightarrow y e^{\tan x} = t \int e^t dt - \int \left[\frac{d}{dt}(t)\int e^t dt\right] \cdot dt$
 $\Rightarrow y e^{\tan x} = t x e^t - e^t + C$
 $\Rightarrow y e^{\tan x} = \tan x e^{\tan x} - e^{\tan x} + C$
 $\Rightarrow y e^{\tan x} = \tan x e^{\tan x} - e^{\tan x} + C$
 $\Rightarrow y e^{\tan x} = t x e^t - e^t + C$
 $\Rightarrow y e^{\tan x} = t x e^t - e^t + C$
 $\Rightarrow y e^{\tan x} = t x e^t - e^t + C$
 $\Rightarrow y e^{\tan x} = t x e^t - e^t + C$
 $\Rightarrow y e^{\tan x} = t x e^t - e^t + C$
 $\Rightarrow y e^{\tan x} = t x e^t - e^t + C$
 $\Rightarrow y e^{\tan x} = t x e^{\tan x} - e^{\tan x} + C$
 $\Rightarrow y e^{\tan x} = t x e^{\tan x} - e^{\tan x} + C$
 $\Rightarrow y e^{\tan x} = t x e^{\tan x} - t x e^{\tan x} + C$
 $\Rightarrow y e^{\tan x} = t x e^{\tan x} - t x e^{\tan x} + C$
 $\Rightarrow y = (\tan x - 1) + Ce^{-\tan x}$
67. We have, $(1 + y^2)(1 + \log x)dx + xdy = 0$
 $\Rightarrow (1 + y^2)(1 + \log x)dx = -xdy$
 $\Rightarrow \left(\frac{1 + \log x}{x}\right)dx = -\frac{-dy}{1 + y^2}$
Integrating both sides, we get
 $\frac{(1 + \log x)^2}{2} = -\tan^{-1} y + C$

$$\Rightarrow \quad \frac{\left(1 + \log x\right)^2}{2} + \tan^{-1} y = C$$

which is the required general solution.

68. We have,
$$e^x \tan y dx + (1 - e^x) \sec^2 y \, dy = 0$$

 $\Rightarrow e^x \tan y dx = -(1 - e^x) \sec^2 y \, dy$
 $\Rightarrow \frac{e^x}{1 - e^x} dx = \frac{-\sec^2 y}{\tan y} \, dy \qquad \dots(1)$

Integrating both sides, we get $-\log |1-e^x| = -\log |\tan y| - \log C$ $\Rightarrow 1 - e^x = C \tan y$

69. We have, $xdy + (y - x^3)dx = 0$

$$\Rightarrow \quad \frac{dy}{dx} + \frac{y}{x} = x^2$$

This is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{1}{x}, Q = x^2$$

$$\therefore \quad \text{I.F.} = e^{\int \frac{1}{x} dx} = e^{\log x} = x.$$

$$\therefore \quad \text{The solution of differential equation is}$$

$$y \cdot x = \int x^2 \cdot x \, dx + C$$

$$\Rightarrow yx = \frac{x^4}{4} + C \Rightarrow y = \frac{x^3}{4} + \frac{C}{x}.$$

70. We have, $xdy - (y + 2x^2)dx = 0$

$$\Rightarrow \quad \frac{dy}{dx} - \frac{y}{x} = 2x.$$

This is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{-1}{x}, Q = 2x$$

$$\therefore \quad \text{I.F.} = e^{-\int \frac{1}{x} dx} = e^{-\log x} = \frac{1}{x}$$

... The solution of differential equation is

$$y\left(\frac{1}{x}\right) = \int 2x \frac{1}{x} dx + C$$
$$\Rightarrow \quad \frac{y}{x} = 2x + C \Rightarrow y = 2x^{2} + Cx$$

71. Refer to answer 70.

72. We have,
$$x \frac{dy}{dx} - y = \sqrt{x^2 + y^2}$$

$$\Rightarrow x \frac{dy}{dx} = y + \sqrt{x^2 + y^2} \Rightarrow \frac{dy}{dx} = \frac{y}{x} + \sqrt{1 + \left(\frac{y}{x}\right)^2} \quad \dots(i)$$

This is a linear homogeneous differential equation.

Put
$$y = vx \implies \frac{dy}{dx} = v + x\frac{dv}{dx}$$

$$\therefore \quad \text{Eq. (i) becomes}$$

$$v + x \frac{dv}{dx} = v + \sqrt{1 + v^2} \implies x \frac{dv}{dx} = \sqrt{1 + v^2}$$

$$\implies \frac{dx}{x} = \frac{dv}{\sqrt{1 + v^2}} \implies \int \frac{dx}{x} = \int \frac{dv}{\sqrt{1 + v^2}}$$

$$\implies \log x + \log C_1 = \log |v + \sqrt{1 + v^2}|$$

$$\implies \log x + \log C_1 = \log \left| \frac{y}{x} + \sqrt{1 + \frac{y^2}{x^2}} \right|$$

$$\implies \log C_1 x = \log |v + \sqrt{x^2 + y^2}| - \log x$$

$$\implies \pm C_1 x^2 = y + \sqrt{x^2 + y^2}$$

$$\implies Cx^2 = y + \sqrt{x^2 + y^2} \quad [\text{where } C = \pm C_1]$$

which is the required general solution.

73. We have,
$$[x \sin^2\left(\frac{y}{x}\right) - y]dx + x dy = 0$$

$$\Rightarrow \sin^2\left(\frac{y}{x}\right) - \frac{y}{x} + \frac{dy}{dx} = 0 \qquad \dots (i)$$

This is a linear homogeneous differential equation

$$\therefore \quad \text{Put } y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore \quad (i) \text{ becomes}$$

$$\sin^2 v - v + v + x \frac{dv}{dx} = 0$$

$$\implies x \frac{dv}{dx} + \sin^2 v = 0 \implies \text{ cosec}^2 v dv + \frac{dx}{x} = 0$$

Integrating both sides, we get
$$- \cot v + \log x = C \implies - \cot\left(\frac{y}{x}\right) + \log x = C$$

is the required solution.

74. We have,
$$\frac{dy}{dx} = y \tan x \implies \frac{dy}{y} = \tan x \, dx$$

Integrating both sides, we get

$$\int \frac{dy}{y} = \int \tan x \, dx \Rightarrow \log y = \log|\sec x| + C$$

When $x = 0, y = 1 \Rightarrow \log 1 = \log(\sec 0) + C$
$$\Rightarrow C = 0$$

$$\therefore \quad \log y = \log|\sec x| \Rightarrow y = \sec x.$$

which is required particular solution.

75. We have,
$$(x^2 + 1)\frac{dy}{dx} + 2xy = \sqrt{x^2 + 4}$$

$$\Rightarrow \quad \frac{dy}{dx} + \frac{2xy}{x^2 + 1} = \frac{\sqrt{x^2 + 4}}{x^2 + 1}$$

This is linear differential equation of the form

$$\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{2x}{x^2 + 1} \text{ and } Q = \frac{\sqrt{x^2 + 4}}{x^2 + 1}$$

$$\therefore \text{ I.F.} = e^{\int \frac{2x}{x^2 + 1}dx} = e^{\log|x^2 + 1|} = x^2 + 1$$

The solution of the given differential equation is
$$y \cdot (x^2 + 1) = \int \frac{\sqrt{x^2 + 4}}{x^2 + 1} (x^2 + 1) dx + C$$

$$\Rightarrow (x^{2} + 1) = \int \frac{1}{x^{2} + 1} (x^{2} + 1) dx + C$$
$$\Rightarrow (x^{2} + 1) y = \frac{x}{2} \sqrt{x^{2} + 4} + 2 \log |x + \sqrt{x^{2} + 4}| + C$$

76. We have,
$$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{2x^2 + x}{x^3 + x^2 + x + 1}$$

$$\Rightarrow \quad dy = \frac{2x^2 + x}{x^2(x+1) + 1(x+1)} dx \qquad \dots(i)$$

Integrating (i) both sides, we get

$$\int dy = \int \frac{2x^2 + x}{(x^2 + 1)(x + 1)} dx$$

$$\Rightarrow \quad y = \int \frac{2x^2 + x}{(x^2 + 1)(x + 1)} dx$$

Now, let $\frac{2x^2 + x}{(x^2 + 1)(x + 1)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}$

$$\Rightarrow \quad 2x^2 + x = A(x^2 + 1) + (Bx + C) (x + 1)$$

Comparing coefficients of x, we get
 $1 = B + C$...(ii)
Comparing coefficients of x², we get $2 = A + B$...(iv)
Now solving (ii) & (iii), we get $-A + B = 1$...(v)
Solving (iv) & (v), we get $2B = 3 \Rightarrow B = 3/2$
Substituting the value of B in (2) & (5), we get
 $A = 1/2$ and $C = -1/2$

$$\therefore \quad y = \int \left[\frac{\frac{1}{2}}{x+1} + \frac{\frac{3}{2}x - \frac{1}{2}}{x^2 + 1} \right] dx$$

$$\Rightarrow \quad y = \frac{1}{2} \log(x+1) + \frac{3}{4} \int \frac{2x}{x^2 + 1} dx - \frac{1}{2} \int \frac{dx}{x^2 + 1}$$

$$\Rightarrow \quad y = \frac{1}{2} \log(x+1) + \frac{3}{4} \log(x^2 + 1) - \frac{1}{2} \tan^{-1} x + C$$

which is the required general solution.

77. We have,
$$y \, dx + x \log\left(\frac{y}{x}\right) dy - 2x \, dy = 0$$

$$\Rightarrow \frac{y}{x} + \log\left(\frac{y}{x}\right) \frac{dy}{dx} - 2\frac{dy}{dx} = 0$$

$$\Rightarrow \frac{dy}{dx} = \frac{y/x}{2 - \log(y/x)} \qquad \dots(1)$$

This is a homogeneous differential equation.

$$\therefore \quad \operatorname{Put} y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}, \text{ then (1) becomes}$$

$$v + x \frac{dv}{dx} = \frac{v}{2 - \log v}$$

$$\implies \quad x \frac{dv}{dx} = \frac{v}{2 - \log v} - v \implies \frac{(2 - \log v)dv}{v \log v - v} = \frac{dx}{x}$$

$$\implies \quad \frac{1 - (\log v - 1)}{v (\log v - 1)} dv = \frac{dx}{x}$$

Integrating both sides, we get

$$\int \left(\frac{1}{v(\log v - 1)} - \frac{1}{v}\right) dv = \int \frac{dx}{x}$$

$$\Rightarrow \log |\log v - 1| - \log |v| = \log |x| + C_1$$

$$\Rightarrow \log \left|\frac{\log v - 1}{vx}\right| = C_1 \qquad \Rightarrow \qquad \left|\frac{\log v - 1}{vx}\right| = e^{C_1}$$

$$\Rightarrow \qquad \frac{\log v - 1}{vx} = \pm e^{C_1} = C(\text{say})$$

$$\Rightarrow \qquad \frac{\log \frac{y}{x} - 1}{y} = C \Rightarrow \log \frac{y}{x} - 1 = Cy$$

$$\Rightarrow \qquad \log \frac{y}{x} = 1 + Cy$$

which is the required general solution.

78. We have, $\frac{dy}{dx} + \frac{2xy}{x^2 - 1} = \frac{1}{(x^2 - 1)^2}$ This is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$, where $P = \frac{2x}{x^2 - 1}, Q = \frac{1}{(x^2 - 1)^2}$ I.F. $= e^{\int Pdx} = e^{\int \frac{2x}{x^2 - 1}dx} = e^{\log|x^2 - 1|} = x^2 - 1$ Required solution is $y(x^2 - 1) = \int \frac{1}{(x^2 - 1)^2} (x^2 - 1)dx + C$ $y(x^2 - 1) = \int \frac{dx}{x^2 - 1} + C \Longrightarrow y(x^2 - 1) = \frac{1}{2} \log \left| \frac{x - 1}{x + 1} \right| + C$ $\therefore \quad y = \frac{1}{2(x^2 - 1)} \log \left| \frac{x - 1}{x + 1} \right| + \frac{C}{x^2 - 1}$

79. We have,

$$xy \log\left(\frac{y}{x}\right) dx + \left[y^2 - x^2 \log\left(\frac{y}{x}\right)\right] dy = 0$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{xy \log\left(\frac{y}{x}\right)}{x^2 \log\left(\frac{y}{x}\right) - y^2}.$$

This is a homogeneous linear differential equation. Put $y = vx \Rightarrow \frac{dy}{dt} = v + x \frac{dv}{dt}$

$$\therefore \quad v + x \frac{dv}{dx} = \frac{x \cdot vx \log v}{x^2 \log v - v^2 x^2} = \frac{v \log v}{\log v - v^2}$$

$$\Rightarrow \quad x \frac{dv}{dx} = \frac{v \log v}{\log v - v^2} - v = \frac{v^3}{\log v - v^2}$$

$$\Rightarrow \quad \frac{\log v - v^2}{v^3} dv = \frac{dx}{x}$$

$$\Rightarrow \quad v^{-3} \log v dv - \frac{1}{v} dv = \frac{dx}{x}$$
Integrating both sides, we get
$$\frac{v^{-2}}{v^3} = v \frac{1}{v^{-2}} v^{-2}$$

$$\log v \cdot \frac{v}{-2} - \int \frac{1}{v} \cdot \frac{v}{-2} dv - \log v = \log x + C$$
$$\Rightarrow -\frac{\log v}{2v^2} + \frac{1}{2} \int v^{-3} dv - \log v = \log x + C$$

$$\Rightarrow -\frac{\log v}{2v^2} - \frac{1}{4v^2} - \log v = \log x + C$$
$$\Rightarrow -\frac{1}{v^2} \left[\frac{\log v}{2} + \frac{1}{4} \right] - \log vx = C$$

$$\Rightarrow \frac{x^2}{y^2} \left[\frac{\log \frac{y}{x}}{2} + \frac{1}{4} \right] + \log y = -C$$

$$\Rightarrow x^2 \left[2\log\left(\frac{y}{x}\right) + 1 \right] + 4y^2 \log y = -4Cy^2$$

$$\Rightarrow x^2 \left[2\log\left(\frac{y}{x}\right) + 1 \right] + 4y^2 (\log y + C) = 0$$

80. We have,
$$x \log x \frac{dy}{dx} + y = 2 \log x$$

$$\Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2 \log x}{x \log x} \Rightarrow \frac{dy}{dx} + \frac{y}{x \log x} = \frac{2}{x}$$
This is a linear differential equation of the form
 $\frac{dy}{dx} + Py = Q$, where $P = \frac{1}{x \log x}$, $Q = \frac{2}{x}$
Refer to answer 47.
81. We have, $\frac{dy}{dx} + y = \cos x - \sin x$, which is a
linear differential equation of the form
 $\frac{dy}{dx} + Py = Q$, where $P = 1$, $Q = \cos x - \sin x$
 \therefore I.F. $= e^{\int dx} = e^x$
The solution of given differential equation is
 $ye^x = \int e^x (\cos x - \sin x) dx + C$
 $\Rightarrow ye^x = e^x \cos x + C \Rightarrow y = \cos x + Ce^{-x}$
82. We have $(1 + x^2) \frac{dy}{dx} + y = \tan^{-1} x$
 $\Rightarrow \frac{dy}{dx} + \frac{y}{1 + x^2} = \frac{\tan^{-1} x}{(1 + x^2)}$.

This is a linear differential equation of the form

$$\frac{dy}{dx} + Py = Q, \text{ where } P = \frac{1}{1+x^2}, Q = \frac{\tan^{-1} x}{1+x^2}$$

$$\therefore \quad \text{I.F.} = e^{\int \frac{1}{1+x^2} dx} = e^{\tan^{-1} x}$$

Solution of given differential equation is

$$y \cdot e^{\tan^{-1}x} = \int \frac{\tan^{-1}x}{1+x^2} e^{\tan^{-1}x} dx + C$$

$$\Rightarrow \quad ye^t = \int te^t dt + C \qquad [Putting \tan^{-1}x = t]$$

$$\Rightarrow \quad ye^t = e^t(t-1) + C \quad \Rightarrow \quad y = (t-1) + Ce^{-t}$$

$$\Rightarrow \quad y = (\tan^{-1}x - 1) + Ce^{-\tan^{-1}x}$$

83. We have,
$$x \frac{dy}{dx} = y - x \tan\left(\frac{y}{x}\right)$$

 $\Rightarrow \frac{dy}{dx} = \frac{y - x \tan\frac{y}{x}}{x}$

This is a homogeneous differential equation.

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

 $\therefore \quad v + x \frac{dv}{dx} = \frac{vx - x \tan v}{x} = v - \tan v$
 $\Rightarrow \quad \frac{xdv}{dx} = -\tan v \Rightarrow \cot v \, dv = -\frac{1}{x} \, dx$

Integrating both sides, we get $\log |\sin v| = -\log x + \log C$

$$\Rightarrow \log \left| \sin \frac{y}{x} \right| + \log x = \log C$$

$$\Rightarrow \log \left(x \sin \frac{y}{x} \right) = \log C \Rightarrow x \sin \frac{y}{x} = C$$

84. We have, $(x^2 - y^2)dx + 2xy dy = 0$

$$\Rightarrow \frac{dy}{dx} = \frac{y^2 - x^2}{x} = \frac{\left(\frac{y}{x}\right)^2 - 1}{\sqrt{x}}$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{y - x}{2xy} = \frac{(x)}{2\left(\frac{y}{x}\right)} \qquad \dots(i)$$

This is a homogeneous differential equation.

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

 \therefore (i) becomes
 $v + x \frac{dv}{dx} = \frac{v^2 - 1}{2v} \Rightarrow x \frac{dv}{dx} = \frac{v^2 - 1}{2v} - v$
 $\Rightarrow x \frac{dv}{dx} = -\frac{1 + v^2}{2v} \Rightarrow \frac{2vdv}{v^2 + 1} = -\frac{dx}{x}$
Integrating both sides, we get

$$\log |v^2 + 1| = -\log |x| + C_1 \Rightarrow \log |(v^2 + 1)x| = C_1$$
$$\Rightarrow \log \left| \frac{y^2 + x^2}{x} \right| = C_1 \Rightarrow \frac{x^2 + y^2}{x} = \pm e^{C_1} = C \text{ (say)}$$

 $\Rightarrow x^2 + y^2 = Cx$ When $x = 1, y = 1 \Rightarrow 1 + 1 = C \Rightarrow C = 2 \Rightarrow x^2 + y^2 = 2x$ which is the required solution.

85. We have, $\frac{dy}{dx} = \frac{x(2y-x)}{x(2y+x)} \implies \frac{dy}{dx} = \frac{2y-x}{2y+x}$ This is a linear homogeneous differential equation \therefore Put $y = vx \implies \frac{dy}{dx} = v + x\frac{dv}{dx}$

$$\therefore \quad v + x \frac{dv}{dx} = \frac{2vx - x}{2vx + x} \implies x \frac{dv}{dx} = \frac{2v - 1}{2v + 1} - v$$
$$\implies \quad x \frac{dv}{dx} = \frac{2v - 1 - 2v^2 - v}{2v + 1} = \frac{v - 1 - 2v^2}{2v + 1}$$
$$\implies \quad \frac{2v + 1}{2v^2 - v + 1} dv = -\frac{dx}{x}$$

Integrating both sides, we get

$$\frac{1}{2}\int \frac{4v+2}{2v^2-v+1} dv = -\int \frac{dx}{x}$$

$$\Rightarrow \quad \frac{1}{2}\int \frac{4v-1}{2v^2-v+1} dv + \frac{3}{2}\int \frac{dv}{2v^2-v+1} = -\log x + C$$

$$\Rightarrow \quad \frac{1}{2}\log|2v^2-v+1| + \frac{3}{4}\int \frac{dv}{v^2-\frac{v}{2}+\frac{1}{16}+\frac{1}{2}-\frac{1}{16}}$$

$$= -\log x + C$$

$$\Rightarrow \quad \frac{1}{2}\log|2v^2-v+1| + \frac{3}{4}\int \frac{dv}{\left(v-\frac{1}{4}\right)^2+\frac{7}{16}} = -\log x + C$$

$$\Rightarrow \quad \frac{1}{2}\log|2v^2-v+1| + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{4v-1}{\sqrt{7}}\right) = -\log x + C$$

$$\Rightarrow \quad \frac{1}{2}\log\left|\frac{2y^2-xy+x^2}{x^2}\right| + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{4y-x}{\sqrt{7}x}\right)$$

$$= -\log x + C$$

$$\Rightarrow \quad \frac{1}{2}\log\left|\frac{2y^2-xy+x^2}{x^2}\right| + \log x + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{4y-x}{\sqrt{7}x}\right) = C$$

$$\Rightarrow \quad \frac{1}{2}\log\left(\frac{2y^2-xy+x^2}{x^2}\right)(x^2) + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{4y-x}{\sqrt{7}x}\right) = C$$

$$\Rightarrow \quad \frac{1}{2}\log|2y^2-xy+x^2| + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{4y-x}{\sqrt{7}x}\right) = C$$
When $x = 1, y = 1$

$$\therefore \frac{1}{2}\log2 + \frac{3}{\sqrt{7}}\tan^{-1}\frac{3}{\sqrt{7}} = C$$

 \therefore $\;$ The solution of the given equation is

$$\frac{1}{2}\log|2y^2 - xy + x^2| + \frac{3}{\sqrt{7}}\tan^{-1}\left(\frac{4y - x}{\sqrt{7}x}\right)$$
$$= \frac{1}{2}\log 2 + \frac{3}{\sqrt{7}}\tan^{-1}\frac{3}{\sqrt{7}}$$

86. Refer to answer 46. 87. We have, $x^2 \frac{dy}{dx} = 2xy + y^2 \Rightarrow \frac{dy}{dx} = \frac{2xy + y^2}{y^2}$ This is a homogeneous differential equation. Put, $y = vx \implies \frac{dy}{dx} = v + x \frac{dv}{dx}$ $\Rightarrow v + x\frac{dv}{dx} = \frac{2x \cdot vx + v^2 x^2}{r^2} = 2v + v^2$ $\Rightarrow x \frac{dv}{dx} = v^2 + v \Rightarrow \frac{dv}{v(v+1)} = \frac{dx}{x} \Rightarrow \frac{dv}{v} - \frac{dv}{v+1} = \frac{dx}{x}$ Integrating both sides, we get $\log v - \log(v+1) = \log x + \log C$ $\Rightarrow \log\left(\frac{v}{v+1}\right) = \log Cx \Rightarrow \frac{y}{x+y} = Cx$ $\Rightarrow y = Cx(x + y).$ 88. We have, $(1 + e^{2x})dy + (1 + y^2)e^x dx = 0$ $\Rightarrow \quad \frac{dy}{1+y^2} + \frac{e^x}{1+e^{2x}} dx = 0$ $\Rightarrow \quad \frac{dy}{1+y^2} + \frac{dt}{1+t^2} = 0 \quad [\text{putting } e^x = t \Rightarrow e^x dx = dt]$ Integrating both sides, we get $\tan^{-1}y + \tan^{-1}t = C \implies \tan^{-1}y + \tan^{-1}e^x = C$ 89. We have, $\frac{dy}{dx} + 2y = 6e^x$ which is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$, where $P = 2, Q = 6e^{x}$ $\therefore \quad \text{I.F.} = e^{\int 2dx} = e^{2x}$:. The solution of given differential equation is $ye^{2x} = \int 6e^x \cdot e^{2x} dx + C$ $\Rightarrow ye^{2x} = \int 6e^{3x}dx + C \Rightarrow ye^{2x} = \frac{6e^{3x}}{3} + C$ $\Rightarrow v = 2e^{x} + Ce^{-2x}$ **90.** We have, $x\cos y dy = (xe^x \log x + e^x) dx$ $\Rightarrow \cos y \, dy = \left(e^x \log x + \frac{e^x}{x} \right) dx$ $\Rightarrow \int \cos y \, dy = \int e^x \left(\log x + \frac{1}{x} \right) dx$ $\Rightarrow \sin y = e^x \log x + C$ **91.** We have, $4\frac{dy}{dx} + 8y = 5e^{-3x} \implies \frac{dy}{dx} + 2y = \frac{5}{4}e^{-3x}$ which a linear differential equation of the form $\frac{dy}{dx} + Py = Q$, where P = 2, $Q = \frac{5}{4}e^{-3x}$

 $\therefore \quad \text{I.F.} = e^{\int 2dx} = e^{2x}$

The solution of differential equation is

$$ye^{2x} = \int \frac{5}{4}e^{-3x}e^{2x}dx + C \qquad \Rightarrow ye^{2x} = \frac{5}{4}\int e^{-x}dx + C$$

$$\Rightarrow ye^{2x} = \frac{-5}{4}e^{-x} + C \Rightarrow y = \frac{-5}{4}e^{-3x} + Ce^{-2x}$$

92. We have, $(\tan^{-1}y - x)dy = (1 + y^2)dx$

$$\Rightarrow \frac{dx}{dy} = \frac{\tan^{-1}y - x}{1 + y^2}$$

$$\Rightarrow \frac{dx}{dy} + \frac{1}{1 + y^2} \cdot x = \frac{\tan^{-1}y}{1 + y^2}$$

This is a linear differential equation of the form

$$\frac{dx}{dy} + Px = Q$$
, where $P = \frac{1}{1 + y^2}$ and $Q = \frac{\tan^{-1} y}{1 + y^2}$

Refer to answer 82.

93. We have,
$$\frac{dy}{dx} = \frac{xy}{x^2 + y^2}$$

This is a homogeneous linear differential equation

$$\therefore \quad \text{Put } y = vx \implies \frac{dy}{dx} = v + x\frac{dv}{dx}$$
$$\therefore \quad v + x\frac{dv}{dx} = \frac{x \cdot vx}{x^2 + v^2 x^2}$$
$$\implies \quad v + x\frac{dv}{dx} = \frac{v}{1 + v^2} \implies x\frac{dv}{dx} = \frac{v}{1 + v^2} - v$$
$$\implies \quad x\frac{dv}{dx} = \frac{-v^3}{1 + v^2} \implies \frac{dx}{x} = -\left(\frac{1 + v^2}{v^3}\right)dv$$

Integrating both sides, we get

$$\int \frac{dx}{x} = -\int v^{-3} dv - \int \frac{1}{v} dv$$

$$\Rightarrow \log x = \frac{1}{2v^2} - \log v + C$$

$$\Rightarrow \log x = \frac{x^2}{2y^2} - \log y + \log x + C$$

$$\Rightarrow \log y = \frac{x^2}{2y^2} + C$$

When $y = 1, x = 0 \Rightarrow \log 1 = 0 + C \Rightarrow C = 0$

$$\therefore \text{ Particular solution is } y = e^{\frac{x^2}{2y^2}}$$

94. We have,
$$\frac{dy}{dx} = \frac{y^2}{xy - x^2} = \frac{y^2/x^2}{(xy - x^2)/x^2}$$
 ... (i)
 \Rightarrow It is a homogeneous differential equation
 \therefore Put $y = vx \Rightarrow \frac{dy}{dx} = v \cdot 1 + x \frac{dv}{dx}$
 \therefore Equation (i) becomes
 $v + x \frac{dv}{dx} = \frac{v^2}{v-1} \Rightarrow x \frac{dv}{dx} = \frac{v^2}{v-1} - v = \frac{v}{v-1}$
 $\Rightarrow \frac{v-1}{v} dv = \frac{dx}{x} \Rightarrow \left(1 - \frac{1}{v}\right) dv = \frac{dx}{x}$
Integrating, we get
 $v - \log v = \log x + C \Rightarrow v = \log vx + C$
 $\Rightarrow \frac{y}{x} = \log y + C$
 $\Rightarrow y = x(\log y + C)$ is the required solution.
95. Refer to answer 92.
We get the solution as
 $x = \tan^{-1} y - 1 + Ce^{-\tan^{-1}y}$...(i)
Now, putting $x = 1, y = 0$ in (i), we get
 $1 = \tan^{-1} 0 - 1 + Ce^{-\tan^{-1} 0} \Rightarrow C = 2$
So, required particular solution is
 $x = \tan^{-1} y - 1 + 2e - \tan^{-1} y$.
96. We have,
 $\left[y - x \cos\left(\frac{y}{x}\right)\right] dy + \left[y \cos\left(\frac{y}{x}\right) - 2x \sin\left(\frac{y}{x}\right)\right] dx = 0$
 $\Rightarrow \frac{dy}{dx} = \frac{2x \sin\left(\frac{y}{x}\right) - y \cos\left(\frac{y}{x}\right)}{y - x \cos\left(\frac{y}{x}\right)}$...(i)
This is a homogeneous differential equation

This is a homogeneous differential equation. $dy \qquad dv$

$$\therefore \quad \text{Put } y = vx \Rightarrow \frac{dy}{dx} = v + x \frac{dv}{dx}$$

$$\therefore \quad \text{Equation (i) becomes,}$$

$$v + x \frac{dv}{dx} = \frac{2\sin v - v\cos v}{v - \cos v} \Rightarrow x \frac{dv}{dx} = \frac{2\sin v - v\cos v}{v - \cos v} - v$$

$$\Rightarrow x \frac{dv}{dx} = \frac{2\sin v - v^2}{v - \cos v} \Rightarrow \frac{v - \cos v}{2\sin v - v^2} dv = \frac{dx}{x}$$

$$\Rightarrow \frac{-1}{2} \frac{(2\cos v - 2v)}{2\sin v - v^2} dv = \frac{dx}{x}$$

Integrating both sides, we get
$$\frac{-1}{2} \log(2\sin v - v^2) = \log x + C_1$$
$$\Rightarrow \log x^2 + 2C_1 + \log \left(2\sin \frac{y}{x} - \frac{y^2}{x^2}\right) = 0$$
$$\Rightarrow \log \left[x^2 \left(2\sin \frac{y}{x} - \frac{y^2}{x^2}\right)\right] = -2C_1$$
$$\Rightarrow 2x^2 \sin \frac{y}{x} - y^2 = e^{-2C_1} = C \text{ (say)}$$
which is the required solution.

97. We have,
$$\sqrt{1 + x^2 + y^2 + x^2y^2} + xy\frac{dy}{dx} = 0$$

 $\Rightarrow \frac{dy}{dx} = \frac{-\sqrt{(1 + x^2)(1 + y^2)}}{xy}$
 $\Rightarrow \int \frac{y}{\sqrt{1 + y^2}} dy = -\int \frac{\sqrt{1 + x^2}}{x^2} x dx$
 $\Rightarrow \frac{1}{2} \int \frac{2y}{\sqrt{1 + y^2}} dy = -\int \frac{v^2}{v^2 - 1} dv$
[putting $1 + x^2 = v^2 \Rightarrow 2x dx = 2v dv$]
 $\Rightarrow \sqrt{1 + y^2} = -\int \left(1 + \frac{1}{v^2 - 1}\right) dv$
 $\Rightarrow \sqrt{1 + y^2} = -v - \frac{1}{2} \log \left|\frac{v - 1}{v + 1}\right| + C$
 $\Rightarrow \sqrt{1 + y^2} + \sqrt{1 + x^2} + \frac{1}{2} \log \left|\frac{\sqrt{1 + x^2} - 1}{\sqrt{1 + x^2} + 1}\right| = C$

98. Refer to answer 65.
The required solution

$$y \cdot x \sin x = x (-\cos x) + \sin x + C$$
 ...(i)
Putting $x = \frac{\pi}{2}, y = 0$ in (i), we get
 $\therefore \quad 0 = -\frac{\pi}{2} \cos \frac{\pi}{2} + \sin \frac{\pi}{2} + C \implies C = -1$
 $xy \sin x = \sin x - x \cos x - 1$ is the required particular

 $xy \sin x = \sin x - x \cos x - 1$ is the required particular solution.

99. We have,
$$x^2 dy + (xy + y^2) dx = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{xy + y^2}{x^2} \qquad \dots (i)$$

This is a homogeneous linear differential equation

$$\therefore \quad \text{Put } y = vx \implies \frac{dy}{dx} = v \cdot 1 + x \cdot \frac{dv}{dx}$$
$$\therefore \quad (i) \text{ becomes } v + x \frac{dv}{dx} = -\frac{x \cdot vx + v^2 x^2}{x^2}$$
$$\implies x \frac{dv}{dx} = -(2v + v^2)$$

Separating the variables, we get

$$\frac{dv}{2v+v^2} + \frac{dx}{x} = 0 \qquad \frac{dv}{v(v+2)} + \frac{dx}{x} = 0$$
$$\Rightarrow \frac{1}{2} \left[\frac{1}{v} - \frac{1}{v+2} \right] dv + \frac{dx}{x} = 0$$

Integrating, we get

$$\frac{1}{2} \left[\log v - \log(v+2) \right] + \log x = \log C$$

$$\Rightarrow \log \left(\frac{v}{v+2} \right) + 2 \log x = \log C$$

$$\Rightarrow \log \left(\frac{v}{v+2} \right) + \log x^2 = \log C$$

$$\Rightarrow \log \left(\frac{vx^2}{v+2} \right) = \log C \quad \Rightarrow \frac{vx^2}{v+2} = C$$

$$\Rightarrow \frac{\frac{y}{x} \cdot x^2}{\frac{y}{x} + 2} = C \quad \Rightarrow x^2 y = C (2x+y) \qquad \dots (ii)$$

Putting x = 1, y = 1 in (ii), we get $1^2 \cdot 1 = C(2 \cdot 1 + 1) \Rightarrow C = \frac{1}{3}$ \therefore The required particular solution is $3x^2y = 2x + y \Leftrightarrow y = \frac{2x}{3x^2 - 1}$ **100.** We have, $\left(x \sin^2\left(\frac{y}{x}\right) - y\right) dx + x dy = 0$

$$\Rightarrow \quad \frac{dy}{dx} + \sin^2\left(\frac{y}{x}\right) - \frac{y}{x} = 0 \qquad \qquad \dots(i)$$

Put $y = vx \Rightarrow \frac{dy}{dx} = v \cdot 1 + x \frac{dv}{dx}$: (i) becomes $v + x \frac{dv}{dx} + \sin^2 v - v = 0$

$$\Rightarrow x \frac{dv}{dx} + \sin^2 v = 0 \Rightarrow \csc^2 v dv + \frac{dx}{x} = 0$$

Integrating both sides, we get
$$\int \csc^2 v dv + \int \frac{dx}{x} = C$$
$$\Rightarrow -\cot v + \log x = C \Rightarrow -\cot\left(\frac{y}{x}\right) + \log x = C$$
...(ii)
Put $x = 1, y = \pi/4$ in (ii), we get
$$-\cot \frac{\pi}{4} + \log 1 = C \Rightarrow C = -1$$

 $\therefore -\cot\left(\frac{y}{x}\right) + \log x + 1 = 0$ is the required particular solution.

101. We have, $\frac{dy}{dx} - 3y \cot x = \sin 2x$...(i) This is a linear differential equation of the form $\frac{dy}{dx} + Py = Q$

where
$$P = -3 \cot x$$
, $Q = \sin 2 x$
 \therefore I.F. $= e^{\int Pdx} = e^{-3\int \cot x dx}$
 $= e^{-3\log|\sin x|} = |\sin^{-3} x|$
 $\therefore y \cdot \sin^{-3} x = \int \sin 2x \cdot \sin^{-3} x \, dx + C$
 $\Rightarrow \frac{y}{\sin^3 x} = \int \frac{2\sin x \cos x}{\sin^3 x} \, dx + C$
 $= \int \frac{2\cos x}{\sin^2 x} \, dx + C$ (Put $\sin x = t \Rightarrow \cos x \, dx = dt$)
 $= 2\int \frac{dt}{t^2} + C = -\frac{2}{t} + C = -\frac{2}{\sin x} + C$
 $\Rightarrow y = -2\sin^2 x + C\sin^3 x$...(ii)

Put
$$x = \frac{\pi}{2}$$
, $y = 2$ in (ii), we get
 $\therefore 2 = -2 \cdot 1 + C \cdot 1 \Longrightarrow C = 4$
 $y = 4 \sin^3 x - 2 \sin^2 x$ is the

 $y = 4 \sin^3 x - 2 \sin^2 x$ is the required particular solution.

102. We have,
$$x \frac{dy}{dx} \sin\left(\frac{y}{x}\right) + x - y \sin\left(\frac{y}{x}\right) = 0$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{y \sin\left(\frac{y}{x}\right) - x}{x \sin\left(\frac{y}{x}\right)} = \frac{\frac{y}{x} \sin\left(\frac{y}{x}\right) - 1}{\sin\left(\frac{y}{x}\right)} \qquad \dots (i)$$

This is a linear homogeneous differential equation

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v + x\frac{dv}{dx}$$
 : (i) becomes
 $v + x\frac{dv}{dx} = \frac{v\sin v - 1}{\sin v} \Rightarrow x\frac{dv}{dx} = \frac{v\sin v - 1}{\sin v} - v$
 $\Rightarrow x\frac{dv}{dx} = -\frac{1}{\sin v} \Rightarrow \sin v dv = -\frac{dx}{x}$
Integrating both sides, we get
 $-\cos v = -\log x + C$

$$\Rightarrow -\cos\left(\frac{y}{x}\right) + \log x = C \qquad \dots (ii)$$

Put $y = \frac{\pi}{2}, x = 1$ in (ii), we get
$$\Rightarrow -\cos\left(\frac{\pi}{2}\right) + \log 1 = C \Rightarrow C = 0$$

$$\Rightarrow \log x = \cos\left(\frac{y}{x}\right)$$
 is the required solution.

103. We have,
$$2ye^{x/y} dx + (y - 2x e^{x/y}) dy = 0$$

$$\frac{dx}{dy} = \frac{2xe^{x/y} - y}{2ye^{x/y}} = \frac{x}{y} - \frac{1}{2e^{x/y}}.$$
...(i)

This is homogenous linear differential equation.

$$\therefore \quad \operatorname{Put} \frac{x}{y} = t \Longrightarrow x = yt \quad \Longrightarrow \frac{dx}{dy} = 1 \cdot t + y \cdot \frac{dt}{dy}$$

$$\therefore \quad (i) \text{ becomes}$$

$$t + y \frac{dt}{dy} = t - \frac{1}{2e^t} \implies 2 e^t dt + \frac{dy}{y} = 0$$

Integrating both sides, we get $2 e^{t} + \log y = C \implies 2 e^{x/y} + \log y = C$...(ii) Putting x = 0, y = 1 in (ii) we get C = 2 $2 e^{x/y} + \log y = 2$, is the required particular solution.

104. We have,
$$(x e^{x/y} + y) dx = x dy$$

 $\frac{dx}{dy} = \frac{x}{x e^{x/y} + y} = \frac{x / y}{\frac{x}{y} e^{x/y} + 1}$...(i)

This is a homogeneous linear differential equation

$$\therefore \quad \text{Put } x = vy \quad \Rightarrow \frac{dx}{dy} = v + y \cdot \frac{dv}{dy}$$

$$\therefore \quad (i) \text{ becomes}$$

$$v + y \frac{dv}{dy} = \frac{v}{ve^v + 1} \Rightarrow y \frac{dv}{dy} = \frac{v}{ve^v + 1} - v = \frac{-v^2 e^v}{ve^v + 1}$$

$$\Rightarrow \frac{ve^v + 1}{v^2 e^v} dv = -\frac{dy}{y} \Rightarrow \left(\frac{1}{v} + \frac{1}{v^2 e^v}\right) dv = -\frac{dy}{y}$$

Integrating both sides, we get
$$\log v + \int \frac{1}{v^2 e^v} dv = -\log y + C$$

$$\Rightarrow \log vy + \int \frac{dv}{v^2 e^v} = C \Rightarrow \log x + \int \frac{dv}{v^2 e^v} = C$$

which can't be integrated further.
105. Refer to answer 92.
We have, $x = \tan^{-1} y - 1 + C e^{-\tan^{-1}y}$...(i)
Putting $x = 0, y = 0$ in (i), we get
 $\therefore \quad 0 = 0 - 1 + Ce^0 \Rightarrow C = 1$
 $x = \tan^{-1} y - 1 + e^{-\tan^{-1} y}$, is the required particular
solution.

106. We have,

$$\frac{dx}{dy} + x \cot y = 2y + y^2 \cot y, (y \neq 0) \qquad \dots (i)$$

This is a linear differential equation of the form

This is a linear differential equation of the form

$$\frac{dx}{dy} + Py = Q, \text{ where } P = \cot y, Q = 2y + y^{2} \cot y$$
I.F. = $e^{\int Pdy} = e^{\int \cot y \, dy} = e^{\log \sin y} = \sin y$.
 \therefore The required solution is
 $x \cdot \sin y = \int (2y + y^{2} \cot y) \sin y \, dy + C$
 $= \int 2y \sin y \, dy + \int y^{2} \cos y \, dy + C$
 $= \int 2y \sin y \, dy + \int [y^{2} \sin y - \int 2y \sin y \, dy] + C$
 $= y^{2} \sin y + C$...(ii)

Putting $y = \frac{\pi}{2}, x = 0$ in (ii), we get $\therefore \quad 0 = \frac{\pi^2}{4} \sin \frac{\pi}{2} + C \implies C = -\frac{\pi^2}{4}$

Hence the required particular solution of (i) is $x \sin y = y^2 \sin y - \frac{\pi^2}{4}$.

107. We have,
$$(3xy + y^2) dx + (x^2 + xy) dy = 0$$

$$\Rightarrow \frac{dy}{dx} = -\frac{3xy + y^2}{x^2 + xy} \qquad ...(i)$$

This is a homogeneous linear differential equation

Put
$$y = vx \Rightarrow \frac{dy}{dx} = v \cdot 1 + x \cdot \frac{dv}{dx}$$

 \therefore (i) becomes
 $v + x \frac{dv}{dx} = -\frac{3x \cdot vx + v^2 x^2}{x^2 + x \cdot vx} = -\frac{3v + v^2}{1 + v}$
 $\Rightarrow x \frac{dv}{dx} = -v - \frac{3v + v^2}{1 + v} = \frac{-2v^2 - 4v}{v + 1}$
 $= \frac{v + 1}{2v^2 + 4v} dv + \frac{dx}{x} = 0$

Integrating both sides, we get

$$\frac{1}{4}\log|2v^{2} + 4v| + \log|x| = \log C'$$

$$\Rightarrow (2v^{2} + 4v)^{\frac{1}{4}}x = C' \Rightarrow \left(\frac{2y^{2}}{x^{2}} + \frac{4y}{x}\right)^{\frac{1}{4}}x = C'$$

$$\Rightarrow (2x^{2}y^{2} + 4x^{3}y)^{\frac{1}{4}} = C'$$

$$\Rightarrow 2x^{2}y^{2} + 4x^{3}y = C \quad [\text{where } C = (C')^{4}] \qquad \dots (ii)$$
Put $x = 1, y = 1$ in (ii), we get $\Rightarrow C = 6$
Hence $2x^{2}y^{2} + 4x^{3}y = 6 \Rightarrow x^{2}y^{2} + 2x^{3}y = 3$
is the required particular solution.

108. We have,
$$(x^2 + xy) dy = (x^2 + y^2) dx$$

$$\Rightarrow \quad \frac{dy}{dx} = \frac{x^2 + y^2}{x^2 + xy} \qquad ... (i)$$

This is a homogeneous linear differential equation

$$\therefore \quad \text{Put } y = vx \Rightarrow \frac{dy}{dx} = v \cdot 1 + x \frac{dv}{dx}$$

$$\therefore \quad \text{(i) becomes}$$

$$v + x \frac{dv}{dx} = \frac{x^2 + v^2 x^2}{x^2 + x \cdot vx} = \frac{1 + v^2}{1 + v}$$

$$\Rightarrow \quad x \frac{dv}{dx} = \frac{1 + v^2}{1 + v} - v = \frac{1 - v}{1 + v} \Rightarrow \quad \frac{1 + v}{1 - v} dv = \frac{dx}{x}$$

Integrating both sides, we get

$$\Rightarrow \quad \int \left[-1 + \frac{2}{1 - v} \right] dt = \log x + C$$

$$\Rightarrow \quad -v - 2\log(1 - v) = \log x + C$$

$$\Rightarrow \quad -v - 2\log(1 - v) = \log x + C$$

$$\Rightarrow \quad \frac{-y}{x} - 2\log\left(1 - \frac{y}{x}\right) = \log x + C \qquad \dots (\text{ii})$$

Putting $x = 1, y = 0$ in (ii), we get $\Rightarrow C = 0$

 $\Rightarrow \frac{y}{x} - 2\left[\log(x - y) - \log x\right] = \log x$ $\Rightarrow \frac{-y}{x} - 2\log(x - y) + \log x = 0$ is the required particular solution.

109. Refer to answer 49. The general solution is

$$\log x + C = \frac{-1}{2} \log \left(\frac{y^2}{x^2} + \frac{y}{x} + 1 \right) + \sqrt{3} \tan^{-1} \left(\frac{2y}{x} + 1 \right) / \sqrt{3} \quad \dots(i)$$

Putting $x = 1, y = 0$ in (i), we get

 $0 + C = -\frac{1}{2}\log(0 + 0 + 1) + \sqrt{3}\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) \Rightarrow C = \frac{\pi}{2\sqrt{3}}$ $\therefore \quad \log x + \frac{\pi}{2\sqrt{3}} = -\frac{1}{2}[\log(y^2 + xy + x^2) - \log x^2]$ $+\sqrt{3}\tan^{-1}\left(\frac{x+2y}{\sqrt{3}x}\right)$ $\Rightarrow \frac{\pi}{2\sqrt{3}} = -\frac{1}{2}\log(x^2 + xy + y^2) + \sqrt{3}\tan^{-1}\left(\frac{x + 2y}{\sqrt{3}x}\right)$

110. Refer to answer 52.

The general solution is
$$\sin \frac{y}{x} = \log x + C$$
 ...(i)
Putting $x = 1, y = \frac{\pi}{4}$ in (i), we get
 $\therefore \sin \frac{\pi}{4} = \log 1 + C \implies C = \frac{1}{\sqrt{2}}$
 $\sin \left(\frac{y}{x}\right) = \log x + \frac{1}{\sqrt{2}}$, is the required particular solution.

111. We have,

$$x\cos\left(\frac{y}{x}\right)(ydx + xdy) = y\sin\left(\frac{y}{x}\right)(xdy - ydx)$$

$$\Rightarrow \cos\left(\frac{y}{x}\right)\left(y + x\frac{dy}{dx}\right) = \frac{y}{x}\sin\left(\frac{y}{x}\right)\left(x\frac{dy}{dx} - y\right) \quad ...(i)$$

Putting $y = vx \Rightarrow \frac{dy}{dx} = v \cdot 1 + x\frac{dv}{dx}$
 \therefore (i) becomes
 $\cos v\left[vx + x\left(v + x\frac{dv}{dx}\right)\right] = v\sin v\left[x\left(v + x\frac{dv}{dx}\right) - vx\right]$
 $\Rightarrow \cos v\left(2v + x\frac{dv}{dx}\right) = v\sin v \cdot x\frac{dv}{dx}$
 $\Rightarrow 2v\cos v = x(v\sin v - \cos v)\frac{dv}{dx}$
 $\Rightarrow \frac{v\sin v - \cos v}{v\cos v}dv = 2\frac{dx}{x} \Rightarrow \left(\tan v - \frac{1}{v}\right)dv = 2\frac{dx}{x}$
Integrating both sides, we get

 $\log|\sec v| - \log v = 2\log x + \log C$

$$\Rightarrow \log \frac{|\sec v|}{v} = \log Cx^2 \quad \Rightarrow |\sec v| = Cvx^2$$
$$\Rightarrow \sec\left(\frac{y}{x}\right) = Cxy$$