

# Reactivity series and Electrochemistry

# To Remember.....

#### ■ Electrochemical series.

**Electropositive nature decreases** 

```
K > Na > Ca > Mg > Al > Zn > Fe > Ni > Sn > Pb > Cu > Ag > Au
```

#### Electropositive nature increases

■ A highly electropositive metal can displace less electropositive metal from salt solution.

its

#### ■ In galvanic cell

Highly electropositive metal – Anode (Oxidation) Less electro positive metal – Cathode (Reduction) Direction of electron flow – Anode to Cathode

| Cell              | Energy change                        |
|-------------------|--------------------------------------|
| Galvanic cell     | Chemical energy to electrical energy |
| Electrolytic cell | Electrical energy to chemical energy |

#### **Electrolysis of molten sodium chloride**

| Reaction                                     |                                        | Products                    |            |  |
|----------------------------------------------|----------------------------------------|-----------------------------|------------|--|
| Anode                                        | Cathode                                | Anode                       | Cathode    |  |
| Oxidation<br>$2Cl - 2e^{-} \rightarrow Cl_2$ | Reduction $Na^+ + 1e^- \rightarrow Na$ | Chlorine (Cl <sub>2</sub> ) | Sodium(Na) |  |

### Each question from 1 to 4 carries 1 marks

1. Which of the following metals can displace Fe from  $FeSO_4$ 

(Ag, Cu, Au, Zn)

- 2. Electrode at which oxidation takes place is called ------
- 3. In Fe-Cu Cell, which electrode acts as anode?

4. Which is the product obtained at the anode during the electrolysis of molten sodium chloride?

### Each question from 5 to 6 carries 2 marks

- 5.  $Cu + 2AgNO_3 \rightarrow Cu(NO_3)_2 + 2Ag$ 
  - a) Name the type of reaction takes place here.
  - b) Write down reduction reaction in the above reaction ?
- 6. Fe + CuSO<sub>4</sub>  $\rightarrow$  FeSO<sub>4</sub> + Cu
  - a) Which ion is responsible for the blue colour of  $CuSO_4$  solution ?
  - b) Write down the oxidation reaction takes place here ?

## Each question from 7 to 8 carries 3 marks

- 7. Electrolysis of molten sodium chloride (NaCl) is conducted.
  - a) Which are the ions present in the molten sodium chloride?
  - b) Which ion is attracted towards positive electrode ?
  - c) Write down the reaction takes place in cathode ?
- 8. Analyse the following reactions and answer the following questions.
  - (Hint : Oder of reactivity Mg>Zn>Fe>Cu)

Testtube1 : A copper rod is dipped in FeSO<sub>4</sub> solution Testtube 2 : A Zinc rod is dipped in FeSO<sub>4</sub> solution

- a) In which test tube does displacement reaction take place ? Give reason ?
- b) Write the redox reaction taking place here

# Each question from 9 to 10 carries 4 marks

- 9. Fe rod is dipped in  $CuSO_4$  Solution.
  - a) What changes takes place in the Fe rod after some time ?
  - b) Which metal undergoes oxidation ?
  - c) If Ag rod is used instead of Fe, does displacement reaction takes place ? Give reason?
- 10. A picture of galvanic cell is given below (Hint:- Reactivity- Mg > Zn)



a) Which is the energy change takes place in the galvanic cell ?

- b) Write down the reaction takes place at cathode ?
- c) Which electrode acts as anode ?

# Answer Key

| Qtn<br>No | Answer Key/ Value Points                                                                                                                                                                | Score            | Total<br>Score |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|----------------|
| 1         | Zn                                                                                                                                                                                      | 1                | 1              |
| 2         | Anode                                                                                                                                                                                   | 1                | 1              |
| 3.        | Fe                                                                                                                                                                                      | 1                | 1              |
| 4.        | Cl <sub>2</sub> (Chlorine)                                                                                                                                                              | 1                | 1              |
| 5.        | a) Displacement reaction<br>b) $2Ag + 2e^- \rightarrow 2Ag$                                                                                                                             | 1<br>1           | 2              |
| 6         | a) Cu <sup>2+</sup><br>b) Fe $\rightarrow$ Fe <sup>2+</sup> + 2e <sup>-</sup>                                                                                                           | 1<br>1           | 2              |
| 7.        | a) Na <sup>+</sup> , Cl <sup>-</sup><br>b) Cl <sup>-</sup><br>c) Na <sup>+</sup> 1e <sup>-</sup> $\rightarrow$ Na                                                                       | 1<br>1<br>1      | 3              |
| 8         | a) Test tube -2, Zn more reactive than Fe<br>b) Zn + Fe <sup>2+</sup> $\rightarrow$ Zn <sup>2+</sup> + Fe                                                                               | 1<br>1           | 2              |
| 9.        | <ul> <li>a) Cu deposited over Fe rod</li> <li>b) Fe</li> <li>c) If Ag is used instead of Fe displacement reaction does not takes place.<br/>Reactivity of Ag is less than Cu</li> </ul> | 1<br>1<br>1<br>1 | 4              |
| 10.       | a) Chemical energy is converted to electrical energy.<br>b) $Zn^{2+} + 2e^{-} \rightarrow Zn$<br>c) Mg<br>d) Mg + Zn <sup>2+</sup> $\rightarrow$ Mg <sup>2+</sup> + Zn                  | 1<br>1<br>1<br>1 | 4              |