Mathematics

Chapterwise Practise Problems (CPP) for JEE (Main & Advanced)

Chapter - Vector Algebra

Level-1

SECTION - A

Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which ONLY ONE is correct.

- Let non-zero vectors \vec{a} and \vec{b} satisfy 1. $(\vec{3a} - 4\vec{b}) \cdot (\vec{8a} - 15\vec{b}) = 0$ and $(\vec{2a} + 3\vec{b}) \cdot (\vec{3a} + 5\vec{b}) = 0$. Then the angle between \vec{a} and \vec{b} is
 - (B) $\frac{2\pi}{3}$ (A) $\frac{\pi}{4}$
 - (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$
- 2. $\overline{a}, \overline{b}, \overline{c}, \overline{d}$ are such that no three are coplanar; no
 - two are perpendicular; $\frac{(\overline{b} \times \overline{c}) \cdot (\overline{a} \times \overline{d}) + (\overline{c} \times \overline{a}) \cdot (\overline{b} \times \overline{d})}{(\overline{a} \times \overline{b}) \cdot (\overline{d} \times \overline{c})} =$

(A)
$$\left[\overline{a}\,\overline{b}\,\overline{c}\,\right]$$
 (B) $\frac{\overline{a}\,\overline{b}\,\overline{b}\,\overline{b}\,\overline{c}\,\overline{c}+\overline{c}\,\overline{c}\,\overline{a}}{\left[\overline{b}\,\overline{c}\,\overline{d}\,\right]}$
(C) 1 (D) 0

- The lines $\vec{r_1} = \hat{j} + \hat{k} + \lambda (\hat{i} + 3\hat{j} + 4\hat{k}), \vec{r_2} = 2\hat{i} + 3\hat{j} + \hat{k}$ 3.
 - $\mu \left(4\hat{i}-\hat{j}+\hat{k}\right)$ are
 - (A) Parallel
 - (B) Non-parallel and non-intersecting
 - (C) Non-parallel and intersecting
 - (D) Perpendicular

- Let \vec{a}, \vec{b} and \vec{c} be three given vectors such that 4. $|\vec{a}| = 3$, $|\vec{b}| = 4$, $|\vec{c}| = 5$ and each one of them being perpendicular to the sum of the other two, then $|\vec{a} + \vec{b} + \vec{c}|$ equals
 - (B) 5√2 (A) 50
 - (C) $50\sqrt{2}$ (D) $25\sqrt{2}$
- If vectors $\sec^2 \theta \hat{i} + \hat{j} + \hat{k}$, $\hat{i} + \sec^2 \phi \hat{j} + \hat{k}$ 5. and $\hat{i} + \hat{j} + \sec^2 \psi \hat{k}$ are coplanar, then the value of

(B) 2

 $\csc^2\theta$ + $\csc^2\phi$ + $\csc^2\psi$ is (A) 1

- (C) 6 (D) Not define
- Let $\vec{a} = 2\hat{i} \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} 2\hat{k}$ 6. be three vectors. If \vec{d} is a vector coplanar with \vec{b} and \vec{c} and projection of \vec{d} on \vec{a} is $\sqrt{\frac{2}{3}}$ then \vec{d} is

(A)
$$2\hat{i} + 3\hat{j} + 3\hat{k}$$

(B) $-2\hat{i} - \hat{j} + 5\hat{k}$
(C) $2\hat{i} + \hat{j} + 5\hat{k}$

(D) $2\hat{i} + 3\hat{j} + 5\hat{k}$

- 7. STATEMENT-1 : If p^{th} , q^{th} and r^{th} terms of a G.P. are the positive numbers a, band c then the vectors $(\log a)\hat{i} + (\log b)\hat{j} + (\log c)\hat{k}$ and $(q - r)\hat{i} + (r - p)\hat{j} + (p - q)\hat{k}$ are orthogonal.
 - STATEMENT-2: If \hat{a} , \hat{b} and \hat{c} are the unit vectors then $|\hat{a} - \hat{b}|^2 + |\hat{b} - \hat{c}|^2 + |\hat{c} - \hat{a}|^2$ does not exceed 9.
 - STATEMENT-3 : A unit tangent vector at t = 2 on the curve $x = t^2 + 2$, y = 4t - 5,

$$z = 2t^2 - 6t$$
 is $\frac{1}{\sqrt{3}}(\hat{i} + \hat{j} + \hat{k}).$

Identify the correct combination of True (T) and False(F) of the given three statements

- (A) T, F, T (B) T, F, F
- (C) T, T, F (D) F, T, F
- 8. Let $\vec{a}, \vec{b}, \vec{c}$ be three unit vectors of which \vec{b} and \vec{c} are nonparallel, Let the angle between \vec{a} and \vec{b} be α and that between \vec{a} and \vec{c} be β . If $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{1}{2}\vec{b}$ If then

(A)
$$\alpha = \frac{\pi}{3}, \beta = \frac{\pi}{2}$$
 (B) $\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{3}$
(C) $\alpha = \frac{\pi}{6}, \beta = \frac{\pi}{3}$ (D) $\alpha = \frac{\pi}{2}, \beta = \frac{\pi}{6}$

SECTION - B

Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

9.
$$\begin{bmatrix} \vec{a} \times (\vec{b} + \vec{c}) & \vec{b} \times (\vec{c} - 2\vec{a}) & \vec{c} \times (\vec{a} + 3\vec{b}) \end{bmatrix}$$
 equals
(A) $7 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^2$
(B) $5 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^2$
(C) $7 \begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix}$
(D) $5 \begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix}$

10. If $\vec{a} = 3\hat{i} + 2\hat{j} + 6\hat{k}$, $\vec{b} = 2\hat{i} + \hat{j} + \hat{k}$ and $\vec{c} = 5\hat{i} + 3\hat{j} + 7\hat{k}$, then

(A)
$$\begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix} = 2 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

(B) $\begin{bmatrix} \vec{a} - \vec{b} & \vec{b} - \vec{c} & \vec{c} - \vec{a} \end{bmatrix} = 0$
(C) $\begin{bmatrix} \vec{a} + \vec{b} & \vec{b} + \vec{c} & \vec{c} + \vec{a} \end{bmatrix} = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^2$
(D) $\begin{bmatrix} \vec{a} \times (\vec{b} \times \vec{c}) & \vec{b} \times (\vec{c} \times \vec{a}) & \vec{c} \times (\vec{a} \times \vec{b}) \end{bmatrix} = 0$

11. If \vec{a} and \vec{b} are two unit vectors perpendicular to each other and $\vec{c} = t_x \vec{a} + t_x \vec{b} + t_x (\vec{a} \times \vec{b})$ then

(A)
$$t_1 = \overrightarrow{a} \cdot \overrightarrow{c}$$

(B) $t_2 = |\overrightarrow{b} \times \overrightarrow{c}|$
(C) $t_3 = |(\overrightarrow{a} \times \overrightarrow{b}) \times \overrightarrow{c}|$
(D) $t_1 + t_2 + t_3 = (\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{a} \times \overrightarrow{b}) \cdot \overrightarrow{c}$

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

Paragraph for Question Nos. 12 and 13

P is a point on the straight line $\overrightarrow{r} = (\hat{j} - \hat{k}) + \lambda(\hat{i} + \hat{j} + \hat{k})$. *Q* is a point on the straight line $\overrightarrow{r} = (\hat{i} + \hat{k}) + \mu(\hat{j} - \hat{k})$ such that \overrightarrow{PQ} is parallel to the vector $\hat{i} + \hat{j} + 2\hat{k}$.

- 12. The position vector of 'P' is
 - (A) $2\hat{i} + 3\hat{j} + \hat{k}$ (B) $\hat{i} + 2\hat{j} \hat{k}$
 - (C) $2\hat{i} 3\hat{j} + \hat{k}$ (D) $\hat{i} 2\hat{j} + \hat{k}$
- 13. The distance PQ is
 - (A) $\sqrt{6}$ (B) $\sqrt{7}$
 - (C) $\sqrt{8}$ (D) 6

SECTION-D

Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in **Column I** are labelled A, B, C and D, while the statements in **Column II** are labelled p,q,r,s. Four options A, B, C and D are given below. Out of which, only one shows the right matching

	UT III Q	1									
14. Match the expression given in column in column II								I with its results			
		Column I) If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$,						lumn II			
	(A)	lf a	$\dot{a} + \dot{b} +$	(p)	8						
		-	= 1,								
		a	$\vec{b} + \vec{b}$	$\overrightarrow{\mathbf{c}} + \overrightarrow{\mathbf{c}}$							
	(B)	lf tł	ne po	ints w	(q)	5					
		10	î +3j	i,12i							
		are	colli	near,							
	(C)	lf a	and	<i>⊾</i> ar	unit vectors	(r)	4				
		in)	<-Үр	lane i	ed to positive						
		x-a	xis a	tangl							
		res	pecti	vely,	then	$ \dot{a}+\dot{b} ^6$ is					
	(D)	Let $\vec{a}, \vec{b}, \vec{c}$ be vectors of						7			
		ma	ignitu	des 3							
		res	pecti	vely.	5						
		pei	pend	licula							
		is p	erpe								
		→ C	is per								
		the	n <u>1</u> 10								
		Α	в	С	D						
	(A)	р	s	q	r						
		r		р	q						
		S		р	q						
	(D)	s	r	q	р						

15. Match **column I** to **column II** according to the given conditions

Let $\vec{a} = 2\hat{i} - 3\hat{j} + 6\hat{k}$, $\vec{b} = -2\hat{i} + 2\hat{j} - \hat{k}$, if $\vec{a} = \lambda \vec{b} + \mu \vec{c}$, where \vec{c} is a unit vector perpendicular to \vec{b} . Then

Column I Column II

	COIL			00				
(A)	Mag	nitud		(p)	<u>16</u> 7			
	of \vec{a}	on I						
(B)	Mag	nitud	of	(q)	<u>16</u> 3			
	δo	n ái	s					
(C)	Valu	e of		(r)	$\frac{\sqrt{195}}{3}$			
(D)	Valu	e of	μ is				(s)	<u>16</u> 9
	Α	в	С	D				U
(A)	q	r	р	s				
(B)	q	s	r	р				
(C)	q	р	r	S				
(D)	q	р	S	r				
		ne col nditic		l with	colu	ımn II a	acco	ording to the
	Colu	umn	I			Colun	nn II	l
An	equa	tion c	of plan	e				
(A)	Con	tainin	g the	line	(p)	$\vec{r} = (1 - $	t-p	$(\mathbf{a} + \mathbf{t}\mathbf{b} + \mathbf{p}\mathbf{c})$
	r = a	i+tb	and pa	assinę	g			
	throu	ugh a	point	ċ				
(B)	Con	tainin	g the	line	(q)	$\vec{r} = \vec{a}$ -	⊦t(c	$(-\vec{a}) + p\vec{b}$
	$\vec{r} = \vec{a}$	a + tb	and				,	,
	perp	endic	cular to	0				
	the p	blane	r • c =	q				
(C)	Thrc	ugh j	ooints	with	(r)	r = a -	⊦t(b	$(-\vec{a}) + \vec{pc}$
			ector		_		(,
(D)	Thro	ough t	wo po	oint	(s)	r = a ⊣	- tb -	⊦pc
	who	se po	sition					
	vect	ors a	re ā, b	and				
	para	llel to	, c					

16.

		Α	В	С	D		
				р			
				р			
		r r	q				
17	. ,			p Iowing	q		
	IVIG		umn		9	Co	lumn ll
	(A)	lfa	, Ē a	and \vec{c}	are three	(p)	-12
		mut	ually	perpe	ndicular vectors		
		whe	ere a	a = 2	b = 2, c = 1		
		the	n [ā	×bb	$\times \vec{c} \vec{c} \times \vec{a}$		
	(B)	lf á	and	ь́ аге	e two unit vectors	(q)	0
		incli	ined a	at $\frac{\pi}{3}$, then		
		16	a b	$+\overline{a} \times \overline{b}$	\overline{b} \overline{b}] is		
	(C)				e orthogonal unit	(r)	16
		vec	tors a	nd b	$\times \vec{c} = \vec{a}$		
		ther	ן [á⊣	⊦b́b́·	$+\vec{c} \vec{c} + \vec{a}$] is		
	(D)	If [xya] = [x	$\left[\vec{x} \ \vec{y} \ \vec{b}\right] = \left[\vec{a} \ \vec{b} \ \vec{c}\right] = 0$	(s)	1
		ead	ch ve	ctor b	eing non-zero		
		vec	tor, th	ien [ɔ̈́	$\vec{x} \vec{y} \vec{c}$ is		
		_	_	_	_	(t)	2
	(4)	A	B	C	D		
	. ,	r s	р р		q q		
	. ,	r			q		
	(D)		q	r	p		
18.	Ma	tch tl	ne fol	lowing]		
		Col	umn	I		Col	umn II
	(A)	a a	nd _b	are u	nit vectors and	(p)	0
		ā+	2 d is	\perp to	5ā — 4b,		
		ther	n 2(a	.́b) is	equal to		
	(B)	The	poin	ts (1, (0, 3), (–1, 3, 4),	(q)	–1
		•		•	, 2, 5) are		
		сор	lanar	when	k is equal to		

 (C) The vectors (1, 1, m), (1, 1, m+1) (r) 1 and (1, -1, m) are coplanar then the number of values of m

(D)
$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) + \mathbf{b} \times (\mathbf{c} \times \mathbf{a}) + \mathbf{c} \times (\mathbf{a} \times \mathbf{b})$$
 (s) 2
(t) -2

19. Let \vec{a} , \vec{b} , \vec{c} are the three vectors such that $|\vec{a}| = |\vec{b}| = |\vec{c}| = 2$ and angle between \vec{a} and \vec{b} is $\pi/3$, \vec{b} and \vec{c} is $\pi/3$ and \vec{a} and $\vec{c} \pi/3$.

Column - II

(A) If \vec{a} , \vec{b} , \vec{c} represents adjacent (p) $\frac{2\sqrt{2}}{\sqrt{3}}$ edges of parallelepiped then its volume is

Column - I

- (B) If \vec{a} , \vec{b} , \vec{c} represents adjacent (q) $\frac{2\sqrt{2}}{3}$ edges of parallelepiped then its height is
- (C) If \vec{a} , \vec{b} , \vec{c} represents adjacent (r) $4\sqrt{2}$ edges of tetrahedron then its volume is
- (D) If \vec{a} , \vec{b} , \vec{c} represents adjacent (s) $\sqrt{\frac{2}{3}}$ edges of tetrahedron then its height is
- 20. Match the following :

Column - I

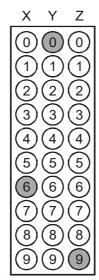
Column - II

- (A) \vec{c} is a vector, such that $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$ and $\vec{b} = \hat{i} - \hat{j}$ and \vec{c} are in right hand system and \vec{c} is perpendicular to both \vec{a} and \vec{b} is
- (B) $\vec{a} = \hat{i} + \hat{j}$ and $\vec{b} = 2\hat{i} \hat{k}$ so that (q) $\frac{3}{2}(\hat{i} + \hat{j})$ $\vec{r} \times \vec{a} = \vec{b} \times \vec{a}$ and $\vec{r} \times \vec{b} = \vec{a} \times \vec{b}$ then \vec{r} (C) $(\vec{a} \times \hat{i}) + 2\vec{a} - 5\hat{j} = \vec{o}$ then \vec{a} (r) $4\hat{i} + 4\hat{j} - 5\hat{k}$
- (D) Vector $\vec{B} = 3\hat{i} + 4\hat{k}$ is the vectors (s) $3\hat{i} + \hat{j} \hat{k}$ \vec{B}_1 parallel to $\vec{A} = \hat{i} + \hat{j}$ is

SECTION-E

Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :



- 21. If $\overline{a}, \overline{b}$ and \overline{c} are unit vectors, then $|\overline{a} - \overline{b}|^2 + |\overline{b} - \overline{c}|^2 + |\overline{c} - \overline{a}|^2$ doesn't exceed P, then P is equal to _____.
- 22. Vectors $-a\hat{i} + \hat{j} + 2\hat{k}$, $\hat{i} + 2a\hat{j} + \hat{k}$ and $\hat{i} + a\hat{j} \hat{k}$ are continuous edges of a parallelopiped. Let λ be

value of *a* for which volume of parallelopiped is minimum, then $\frac{1}{2}$ equal to_____.

- 23. The distance of the point $\hat{i} + 2\hat{j} + 3\hat{k}$ from the plane $\vec{r} \cdot (\hat{i} + \hat{j} + \hat{k}) = 5$ measured parallel to the vector $2\hat{i} + 3\hat{j} - 6\hat{k}$ must be
- 24. Two points *P* and *Q* are given in the rectangular cartesian coordinates on the curve $x = \log_2\left(\frac{y}{4}\right)$ such that $\overrightarrow{OP} \cdot \hat{i} = -1$ and $\overrightarrow{OQ} \cdot \hat{i} = 1$, where \hat{i} is a unit vector along *x*-axis and *O* is the origin. The value of $|\overrightarrow{OQ} 2\overrightarrow{OP}|$ is _____.
- 25. Let $\vec{r} = (\vec{a} \times \vec{b}) \sin x + (\vec{b} \times \vec{c}) \cos y + 2 (\vec{c} \times \vec{a});$ where \vec{a} , \vec{b} , \vec{c} are non zero and non-coplanar vector. If \vec{r} is orthogonal to $\vec{a} + \vec{b} + \vec{c}$ then find the minimum value of $\frac{4}{\pi^2} (x^2 + y^2)$
- 26. Volume of tetrahedron whose vertices are the points with vectors $\hat{i} - 6\hat{j} + 10\hat{k}$, $-\hat{i} - 3\hat{j} + 7\hat{k}$, $5\hat{i} - \hat{j} + h\hat{k}$ and $7\hat{i} - 4\hat{j} + 7\hat{k}$ is 11 cubic units then the value of h is _____ (h > 1)
- 27. If \vec{a} , \vec{b} , \vec{c} are unit vectors such that $\vec{a} \cdot \vec{b} = 0 = \vec{a} \cdot \vec{c}$ and the angle between \vec{b} and \vec{c} is $\frac{\pi}{3}$. Then the value of $|\vec{a} \times \vec{b} - \vec{a} \times \vec{c}|$ is _____.

Level-2

SECTION - A Straight Objective Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

- 1. $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are unit vectors; $|(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d})| = 1;$ $\vec{b} \times \vec{c} = 0;$ then (A) $[\vec{a}\vec{b}\vec{d}] = 0$ (B) $[\vec{a}\vec{c}\vec{d}] = 0$ (C) $\vec{a} \cdot \vec{c} = 0$ (D) $[\vec{a}\vec{b}\vec{d}] = 0$
- 2. If $\overline{x}_1, \overline{x}_2, \overline{x}_3$ and $\overline{y}_1, \overline{y}_2, \overline{y}_3$ are two sets of non-coplanar vectors such that $\overline{x}_r \cdot \overline{y}_s = \begin{pmatrix} 0, \text{if } r \neq s \\ 2, \text{if } r = s \end{pmatrix}$ where r, s = 1, 2, 3 then the value of $[\overline{x}_1 \overline{x}_2 \overline{x}_3][\overline{y}_1 \overline{y}_2 \overline{y}_3]$ is
 - (A) 6 (B) 8
 - (C) 16 (D) 24
- 3. If $\overrightarrow{a}, \overrightarrow{b}, \overrightarrow{c}$ are unit vectors, then the maximum value
 - of $|\vec{a} 2\vec{b}|^2 + |\vec{b} 2\vec{c}|^2 + |\vec{c} 2\vec{a}|^2$ is (A) 10 (B) 21 (C) 11 (D) 6

4. Let $\vec{a} = 2\hat{i} + \hat{j} - 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. If \vec{c} is a vector such that $\vec{a} \cdot \vec{c} = |\vec{c}|, |\vec{c} - \vec{a}| = 2\sqrt{2}$ and the angle between $\vec{a} \times \vec{b}$ and \vec{c} is 30° then $|(\vec{a} \times \vec{b}) \times \vec{c}|$ is equal to

- (A) $\frac{2}{3}$ (B) $\frac{\sqrt{3}}{2}$
- (C) 2 (D) 3

5. The edges of parallelopiped are of unit length and are parallel to non-coplanar unit vectors a, b, c such

that $\hat{a} \cdot \hat{b} = \hat{b} \cdot \hat{c} = \hat{c} \cdot \hat{a} = \frac{1}{2}$. Then the volume of parallelopiped is

(A)
$$\frac{1}{2}$$
 (B) $\frac{3}{2}$

(C)
$$\frac{3}{\sqrt{2}}$$
 (D) $\frac{1}{\sqrt{2}}$

- 6. If $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} + 2\hat{k}$ and $|\vec{c}| = 1$ such that $\begin{bmatrix} \vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a} \end{bmatrix}$ has maximum value then the value of $|(\vec{a} \times \vec{b}) \times \vec{c}|^2$ is (A) 0 (B) 1 (C) $\frac{4}{3}$ (D) $\frac{4}{\sqrt{5}}$
- 7. Let \vec{a} , \vec{b} , \vec{c} be three mutually perpendicular vectors of the same magnitude. If a vector \vec{x} satisfies the equation $\vec{a} \times \{(\vec{x} - \vec{b}) \times \vec{a}\} + \vec{b} \times \{(\vec{x} - \vec{c}) \times \vec{b}\} + \vec{c} \times \{(\vec{x} - \vec{a}) \times \vec{c}\} = 0;$ then
 - \vec{x} is given by-

(A)
$$\frac{1}{2} (\vec{a} + \vec{b} - 2\vec{c})$$
 (B) $\frac{1}{2} (\vec{a} + \vec{b} + \vec{c})$
(C) $\frac{1}{3} (\vec{a} + \vec{b} + \vec{c})$ (D) $\frac{1}{3} (2\vec{a} + \vec{b} - \vec{c})$

If vector \vec{p} satisfying $\vec{p} \times \vec{a} + (\vec{p} \cdot \vec{b})\vec{c} = \vec{d}$ is given by

 $\vec{p} = \vec{a} \times \left(\frac{\vec{a} \times (\vec{d} \times \vec{c})}{(\vec{a} \cdot \vec{c}) |\vec{a}|^2} \right) + k\vec{a} \text{, then the value of } k \text{ is equal}$ to

(A)
$$\frac{\vec{c} \cdot \vec{p}}{\left|\vec{a}\right|^2}$$
 (B) $\frac{\hat{a} \cdot \vec{p}}{\left|\vec{a}\right|}$
(C) $\hat{d} \cdot \vec{p}$ (D) 0

(6)

8.

SECTION - B Multiple Correct Answer Type

This section contains multiple choice questions. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONE OR MORE** is/are correct.

9. Let \vec{a} , \vec{b} be two non-collinear unit vectors. If

$$\vec{u} = \vec{a} - (\vec{a} \cdot \vec{b})\vec{b} \text{ and } \vec{v} = \vec{a} \times \vec{b}, \text{ then } |\vec{v}| \text{ is}$$
(A) $|\vec{u}|$
(B) $|\vec{u}| + |\vec{u} \cdot \vec{a}|$
(C) $|\vec{u}| + |\vec{u} \cdot \vec{b}|$
(D) $|\vec{u}| + \vec{u} \cdot |\vec{u} + \vec{b}|$

- 10. If $2\vec{a}, -3\vec{b}, 2(\vec{a} \times \vec{b})$ are position vectors of the vertices A, B, C of $\triangle ABC$ and $|\vec{a}|=1$, $|\vec{b}|=1$, $\overrightarrow{OA}.\overrightarrow{OB} = -3$ (where O is the origin) then
 - (A) Triangle ABC is right angled
 - (B) Angle B is 90°
 - (C) $A = \cos^{-1} \sqrt{\frac{7}{19}}$
 - (D) The position vector of orthocentre is $2(\vec{a} \times \vec{b})$
- 11. The resolved part of the vector \vec{a} along the vector \vec{b} is $\vec{\lambda}$ and that perpendicular to \vec{b} is $\vec{\mu}$. Then

(A)
$$\vec{\lambda} = \frac{(\vec{a}.\vec{b})\vec{a}}{(\vec{a})^2}$$
 (B) $\vec{\lambda} = \frac{(\vec{a}.\vec{b})\vec{b}}{(\vec{b})^2}$

(C)
$$\vec{\mu} = \frac{(\vec{b}.\vec{b})\vec{a} - (\vec{a}.\vec{b})\vec{b}}{(\vec{b})^2}$$
 (D) $\vec{\mu} = \frac{\vec{b} \times (\vec{a} \times \vec{b})}{(\vec{b})^2}$

12. If A, B and C are three points with position vectors $\vec{a}, \vec{b}, \vec{c}$ respectively, then perpendicular distance of A from the line joining B and C is

(A)
$$\frac{\left|\vec{a} \times (\vec{b} \times \vec{c})\right|}{2\left|(\vec{b} - \vec{c})\right|}$$

(B)
$$\frac{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right|}{2\left|(\vec{b} - \vec{c})\right|}$$

(C)
$$\frac{\left|\vec{a} \times \vec{b} + \vec{c} \times \vec{a} + \vec{b} \times \vec{c}\right|}{2\left|(\vec{b} - \vec{c})\right|}$$

(D)
$$\frac{\left|\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}\right|}{\left|(\vec{b} - \vec{c})\right|}$$

13. Let \vec{r} be a unit vector satisfying $\vec{r} \times \vec{a} = \vec{b}$, where $|\vec{a}| = \sqrt{3}$, and $|\vec{b}| = \sqrt{2}$ then

(A)
$$\vec{r} = \frac{2}{3}(\vec{a} + \vec{a} \times \vec{b})$$
 (B) $\vec{r} = \frac{1}{3}(\vec{a} + \vec{a} \times \vec{b})$
(C) $\vec{r} = \frac{2}{3}(\vec{a} - \vec{a} \times \vec{b})$ (D) $\vec{r} = \frac{1}{3}(-\vec{a} + \vec{a} \times \vec{b})$

- 14. The vector sum of \vec{a} and \vec{b} trisects the angle between them. If $|\vec{a}| = 5$, $|\vec{b}| = 3$; then-
 - (A) angle between the two vectors \vec{a} and \vec{b} is $\cos^{-1}\left\{\frac{-40}{216}\right\}$
 - (B) angle between the two vectors \vec{a} and \vec{b} is $\cos^{-1}\left\{\frac{-30}{216}\right\}$
 - (C) Sum vector $\vec{a} + \vec{b}$ has magnitude $\frac{16}{3}$ units
 - (D) Sum vector $\vec{a} + \vec{b}$ has magnitude $\frac{25}{3}$ units

SECTION - C

Linked Comprehension Type

This section contains paragraph. Based upon this paragraph, 2 multiple choice questions have to be answered. Each question has 4 choices (A), (B), (C) and (D) for its answer, out of which **ONLY ONE** is correct.

Paragraph for question nos. 15 to 17

Let $\vec{p} = 2i + 3j - 6k$; $\vec{q} = 2i - 3j + 6k$ and $\vec{r} = -2i + 3j + 6k$. Let \vec{p}_1 be the projection of \vec{p} on \vec{q} and \vec{p}_2 be the projection of \vec{p}_1 on \vec{r} . Then

15. $\vec{p}_1 \cdot \vec{q}$ is equal to-

(A)
$$-\frac{41}{7}$$
 (B) 41
(C) 287 (D) -41

16. \vec{p}_2 is equal to-

(A)
$$\frac{943}{49}(-2i+3j+6k)$$
 (B) $\frac{943}{49}(2i-3j-6k)$
(C) $\frac{943}{49^2}(2i-3j-6k)$ (D) $\frac{943}{49^2}(-2i+3j+6k)$

- 17. Which of the following is true?
 - (A) \vec{p} and \vec{p}_2 are collinear
 - (B) \vec{p}_1 and \vec{r} are collinear
 - (C) \vec{p} , \vec{p}_1 , \vec{q}_1 are colanar
 - (D) \vec{p} , \vec{p}_1 , \vec{p}_2 are coplanar

Paragraph for question nos. 18 to 20

Let \vec{p} be a position vector of a variable point in cartesian OXY plane such that $\vec{p} \cdot (10j - 8i - \vec{p}) = 40$ and $p_1 = \max\{|\vec{p} + 2i - 3j|^2\}$, $p_2 = \min\{|\vec{p} + 2i - 3j|^2\}$. A tangent line is drawn to the curve $y = \frac{8}{x^2} dt$ point A with abscissa 2. The drawn line cuts the x-axis at point B.

18. $\vec{p}_1 + \vec{p}_2$ is equal to-

(A) 2	(B) 10
(C) 5	(D) 18

	(A) 1	(B) 2
	(C) 3	(D) 4
20.	p_2 is equal to-	
	(A) 9	
	(B) 2√2 −1	
	(C) $6\sqrt{2} + 3$	
	(D) 9−4√2	

19. \overrightarrow{AB} . \overrightarrow{OB} is equal to-

SECTION-D Single-Match Type

This section contains Single match questions. Each question contains statements given in two columns which have to be matched. The statements in **Column I** are labelled A, B, C and D, while the statements in **Column II** are labelled p,q,r,s. Four options A,B,C and D are given below. Out of which, only one shows the right matching

21. Match the column.

Column - I	Column - II							
(A) Centre of the parallelopiped	(P)	$\vec{a} + \vec{b} + \vec{c}$						
whose 3 coterminous edges $\overrightarrow{OA}, \overrightarrow{OB}$ and \overrightarrow{OC} have position	on							
vectors \vec{a}, \vec{b} and \vec{c} respectivel	vectors \vec{a}, \vec{b} and \vec{c} respectively							
where O is the origin is								
(B) OABC is a tetrahedron	(Q)	$\frac{\vec{a}+\vec{b}+\vec{c}}{2}$						
where O is the origin.								
Positions vectors of its angul	ar							
points A, B and C are \vec{a}, \vec{b}								
and \vec{c} respectively. Segment	s							
joining each vertex with the								
centroid of the opposite face								

are concurrent at a point P

whose p.v.'s are

(C) Let ABC be a triangle the

 $\frac{\vec{a}+\vec{b}+\vec{c}}{3}$

(R)

(S)

position vectors of its angular points are \vec{a}, \vec{b} and \vec{c} respectively.

If
$$\left| \vec{a} - \vec{b} \right| = \left| \vec{b} - \vec{c} \right| = \left| \vec{c} - \vec{a} \right|$$

then the p.v. of the orthocentre of the triangle is

(D) Let $\vec{a}, \vec{b}, \vec{c}$ be 3 mutually

$$\frac{\vec{a}+\vec{b}+\vec{c}}{4}$$

perpendicular vectors of the same magnitude. If an unknown vectors satisfies the equation

$$\vec{a} x((\vec{x}-\vec{b})x \vec{a})+((\vec{x}-\vec{c})x \vec{b})$$

$$+\vec{c} x((\vec{x}-\vec{a})x \vec{c})=0.$$

Then \vec{x} is given by

(E) ABC is a triangle whose

centroid is G, orthocentre is

H and circumcentre is the orign.

If position vectos of A, B, C, G

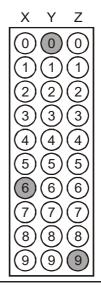
and H are $\vec{a}, \vec{b}, \vec{c}, \vec{g}$ and \vec{h}

respectively, then \vec{h} in terms of \vec{a}, \vec{b}

and $\vec{c}\,$ is equal to

SECTION-E Integer Answer Type

This section contains Integer type questions. The answer to each of the questions is a single digit integer, ranging from 0 to 9. The appropriate bubbles below the respective question numbers in the ORS have to be darkened. For example, if the correct answers to question numbers X, Y and Z(say) are 6, 0 and 9, respectively, then the correct darkening of bubbles will look like the following :



- 22. In triangle *ABC* point *P* divides *BC* in the ratio 2 : 3 internally and *Q* divides *CA* in the ratio 1 : 4 internally. If *R* is the point of intersection of *AP* and *BQ*, point *S* is the intersection of *AB* and *CR* and $AS = \lambda BS$ then the value of λ is _____.
- 23. Let $|\vec{a}| = 1$; $|\vec{b}| = 1$, and $|\vec{a} + \vec{b}| = \sqrt{3}$. If \vec{c} be a vector such that $\vec{c} = \vec{a} + 2\vec{b} - 3(\vec{a} \times \vec{b})$ and $P = |(\vec{a} \times \vec{b}) \times \vec{c}|$, then find [P] (where [.] is GIF)
- 24. A triangle $A(\vec{o}), B(\vec{b}), C(\vec{c})$, as consecutive vertices $(\vec{o}, \vec{b}, \vec{c} \text{ are position vectors of A,B,C}$ respectively), is drawn such that point D divides \overline{BC} in the ratio of 3:2 (internally) and point E divides \overline{AB} in 3 : 2 (externally). Now \overline{AD} and \overline{CE} meet in point F and Q is the mid point of \overline{AC} the \overline{FQ} divides \overline{BC} in the ratio of $2\lambda + 1$; 1 then λ is _____

CPP-10 SS JEE(M) & ADVANCED

ANSWERS

LEVEL-1

1.	(D)	2.	(C)	3.	(B)	4.	(B)	5.	(D)	6.	(B)
7.	(C)	8.	(B)	9.	(A, C)	10.	(A, B, C, D)	11.	(A, D)	12.	(A)
13.	(A)	14.	(C)	15.	(D)	16.	(A)	17.	(B)		
18. (A-r, B-q,C-p, D-p)			19.	(A-r, B-p,C-q, D-	-p)		20.	(A-r, B-s,C-p, D-	q)		
21.	(9)	22.	(3)	23.	(7)	24.	(5)	25.	(5)	26.	(7)

27. (1)

LEVEL-2

1. (A)	2. (B)	s) 3.	(B)	4.	(B)	5.	(D)	6.	(A)
7. (B)	8. (B	9.	(A, C)	10.	(A, C, D)	11.	(B, C, D)	12.	(D)
13. (B, D)	14. (A,	.,C) 15.	(A-Q B-S C-R D-	Q E-I	P)	16.	(D)	17.	(C)
18. (C)	19. (D) 20.	(C)	21.	(D)	22.	(6)	23.	(2)

24. (2)