[SINGLE CORRECT CHOICE TYPE]

Q.1 to Q. 15 has four choices (A), (B), (C), (D) out of which ONLY ONE is correct.

- The values of the parameter 'a' for which the quadratic equations $(1-2a)x^2-6ax-1=0$ and $ax^2-x+1=0$ 1. have at least one root common, are
 - (A) 0, 1/2
- (B) 1/2, 2/9
- (C) 2/9
- (D) 1/3, 1/2, 2/9
- If $\alpha + \beta = 3$ and $\alpha^3 + \beta^3 = 7$, then α and β are the roots of the equation 2.
 - (A) $3x^2 + 9x + 7 = 0$ (B) $9x^2 27x + 20 = 0$ (C) $2x^2 6x + 15 = 0$ (D) none of these
- If α , β are roots of the equation $ax^2 + bx + c = 0$, then the equation whose roots are $2\alpha + 3\beta$ and $3\alpha + 2\beta$ is 3.
 - (A) $abx^2 (a+b)cx + (a+b)^2 = 0$
- (B) $acx^2 (a+c)bx + (a+c)^2 = 0$
- (C) $acx^2 + (a+c)bx (a+c)^2 = 0$
- (D) None of these
- The equations $ax^2 + bx + a = 0$ (a, b \in R) and $x^3 2x^2 + 2x 1 = 0$ have 2 roots common. Then a + b must be 4. equal to
 - (A) 1

- (B) -1

- (D) None of these
- The value of m for which the equation $\frac{a}{x+a+m} + \frac{b}{x+b+m} = 1$ has roots equal in magnitude and opposite 5. in signs is
- (B) -1
- (C) 0
- (D) $\frac{a+b}{a-b}$
- 6. If the product of 2 positive numbers is 9, then the possible value of the sum of their reciprocals lies in the interval
 - (A) $\left|\frac{1}{3}, \infty\right|$ (B) $[1, \infty)$
- (C) $\left[\frac{4}{9}, \infty\right)$ (D) $\left[\frac{2}{3}, \infty\right)$

- If $(49)^{3\log_{\sqrt{343}}\sqrt{x}} 2x 3 = 0$, then x is equal to 7.

- (C) -1, 3
- (D) 2, 3
- The curve of the quadratic expression $y = ax^2 + bx + c$ is shown in the figure and α, β be the roots of the 8. equation $ax^2 + bx + c = 0$ then correct option is [D is the discriminant]
 - (A) a > 0, b > 0, c > 0, D > 0, $\alpha + \beta > 0$, $\alpha\beta > 0$
 - (B) a > 0, b > 0, c > 0, D < 0, $\alpha + \beta < 0$, $\alpha\beta < 0$
 - (C) $a > 0, b > 0, c > 0, D < 0, \alpha + \beta < 0, \alpha\beta > 0$
 - (D) $a > 0, b < 0, c > 0, D < 0, \alpha + \beta > 0, \alpha\beta > 0$

- If graph of $f(x) = x^2 + bx + c$ is drawn in adjacent diagram, where b, $c \in I$, then number of such quadratic 9. equation f(x) = 0 is
 - (A) 1
 - (B) 2
 - (C) 3
 - (D) 4

11.	If $x^2 + 3x + 3 = 0$ and $ax^2 + bx + 1 = 0$, $a, b \in Q$ have a common root, then value of $(3a + b)$ is equal to				
	(A) 1/3	(B) 1	(C) 2	(D) 4	
12.	The number of inte	r of integral values of k for which the curve $y = x^2 + kx + 4$ touches the x axis is			
	(A) 0	(B) 1	(C) 2	(D) 4	
13.	If α , β are the roots of $x^2 - px + r = 0$ and $\alpha + 1$, $\beta - 1$ are the roots of $x^2 - qx + r = 0$, then r is				
	$(A) \ \frac{p-1}{4}$	(B) $\frac{q+1}{4}$	(C) $\frac{p^2-1}{4}$	(D) $\frac{q^2+1}{4}$	
14.	If the roots of the equation $x^2 - bx + c = 0$ are two consecutive integers, then $b^2 - 4c$ equals.				
	(A) -2	(B) 3	(C) 2	(D) 1	
15.	The sum of all values of p for which the vertex of the parabola $y = x^2 + 2px + 13$ lie at a distance of 5 from the				
	origin, is				
	(A) 0	(B) 6	(C) 7	(D) 8	
			CORRECT CHOICE		
Q.16	_	hoices (A), (B), (C), (D)		·	
16.	If equations $ax^2 - (a + b)x + b = 0$ & $bx^2 + (b - c)x - c = 0$ has exactly one root in common {a, b, $c \ne 0$ }, then which of the following can be correct				
	$(A) b^2 = ac$	$(B) -a = b \neq c$	(C) $b = a \neq c$	$(D) -a \neq b = c$	
17.	If one of the roots of $x^2 - bx + c = 0$, $b c \in Q$ is $\sqrt{7 - 4\sqrt{3}}$ then				
	$(A) \log_b c = 0$	(B) $b + c = 5$	(C) $\log_c b = 0$	(D) $bc = -4$	
		[COM]	PREHENSION TYPE]		
		Paragrap	oh for Question 18 to 2	20	
	Consider the quadratic expression $y = x^2 - px + q$ where $p, q \in R$.				
	On the basis of ab	pove information, answer	the following questions	:	
18.		, then minimum value of	_		
	(A) 3	(B) 4	(C) 5	(D) 6	
19.	If $p < 0$ & $q < 0$, then the possible graph of $y = x^2 - px + q$ is				
	(A) **	→ x (B)	x (C)	\Rightarrow x (D) \xrightarrow{y} x	
20.	If p is positive odd integer and roots of equation $y = 0$ are prime numbers and $p + q = 23$, then absolute value				

(C) 3

(D) 5

The value of 'a' for which the equation $x^7 + ax^2 + 3 = 0$ and $x^8 + ax^3 + 3 = 0$ have a common root, can be

(C) -3

(D) -4

(B) -2

10.

(A) 1

of difference of roots is

(B) 2

(A) 1

Answers

RACE # 17

1. (C) 2. (B) 3. (D) 4. (C) 5. (C) 6. (D) 7. (B) 8. (C) 9. (A) 10. (D)

11. (C) **12.** (C) **13.** (C) **14.** (D) **15.** (A) **16.** (ABD) **17.** (A,B) **18.** (C)

19. (B) **20.** (D)