Session 7

Differentiability in an Interval

- (i) A function f (x) defined in an open interval (a, b) is said to be differentiable or derivable in open interval (a, b), if it is differentiable at each point of (a, b).
- (ii) A function f(x) defined in a close interval [a, b] is said to be differentiable or derivable at the end points a and b, if it is differentiable from the right at a and from the left at b. In other words, $\lim_{x \to a^+} \frac{f(x) - f(a)}{x - a}$

and
$$\lim_{x \to b^-} \frac{f(x) - f(b)}{x - b}$$
 both exist.

Example 44 Discuss the differentiability of

$$f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right).$$

Sol. We have, $f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$

$$\Rightarrow f'(x) = \frac{1}{\sqrt{1-\left(\frac{2x}{1+x^2}\right)^2}} \times \frac{d}{dx}\left(\frac{2x}{1+x^2}\right)$$

$$= \frac{(1+x^2)}{\sqrt{(1+x^2)^2 - 4x^2}} \times \left[\frac{(1+x^2)(2) - 2x(2x)}{(1+x^2)^2}\right]$$

$$= \frac{(1+x^2)}{\sqrt{1+2x^2 + x^4} - 4x^2} \times \frac{(2+2x^2 - 4x^2)}{(1+x^2)^2}$$

$$= \frac{(1+x^2)}{\sqrt{1-2x^2 + x^4}} \times \frac{(2-2x^2)}{(1+x^2)^2}$$

$$= \frac{(1+x^2)}{\sqrt{(1-x^2)^2}} \times \frac{(2-2x^2)}{(1+x^2)^2} = \frac{(1+x^2)}{|1-x^2|} \times \frac{2(1-x^2)}{(1+x^2)^2}$$

[since $1 + x^2 \neq 0$]

$$\Rightarrow f'(x) = \frac{1}{|(1 - x^2)|} \times \frac{2(1 - x^2)}{(1 + x^2)} \qquad \dots (i)$$

Here, in Eq. (i), f'(x) exists only if, $|1-x^2| \neq 0$

$$\Rightarrow \qquad 1 - x^2 \neq 0$$

$$\Rightarrow \qquad x^2 \neq 1 \Rightarrow x \neq \pm 1$$

Thus, f'(x) exists only, if $x \in R - \{-1, 1\}$.

 \therefore f(x) is differentiable for all $x \in R - \{1, -1\}$.

Remark

The above example, can also be solved as follows

$$y = f(x) = \sin^{-1}\left(\frac{2x}{1+x^2}\right), \text{ let } x = \tan \theta$$

$$\therefore \qquad y = \sin^{-1}\left(\frac{2\tan \theta}{1+\tan^2 \theta}\right) \implies y = \sin^{-1}(\sin 2\theta)$$

$$\therefore \qquad y = 2\theta \quad \text{or} \quad y = 2\tan^{-1} x$$

 $\frac{dy}{dx} = \frac{2}{1 + x^2}$, which states f'(x) exists for all $x \in R$. "Which is

wrong as we have not checked the domain of f(x)." So, students are advised to solve these problems carefully, while applying this method.

Example 45 Let [] denotes the greatest integer function and $f(x) = [\tan^2 x]$. then

(a)
$$\lim_{x \to 0} f(x)$$
 doesn't exist (b) $f(x)$ is continuous at $x = 0$

(c) f(x) is not differentiable at x = 0

(d) f'(0) = 1

Sol. Here, [] denotes the greatest integral function.

Thus,

$$-45^{\circ} < x < 45^{\circ}$$

$$\Rightarrow \qquad \tan(-45^{\circ}) < \tan x < \tan(45^{\circ})$$

$$\Rightarrow \qquad -1 < \tan x < 1 \Rightarrow 0 < \tan^{2} x < 1$$
Since,

$$f(x) = [\tan^{2} x] = 0$$

Therefore, f(x) is zero for all values of x from (-45°) to (45°) . Thus, f(x) exists when $x \to 0$ and also it is continuous at x = 0, f(x) is differentiable at x = 0 and has a value 0. (i.e. f(0) = 0).

Hence, (b) is the correct answer.

Theorems of Differentiability

Theorem 1 If
$$f(x)$$
 and $g(x)$ are both derivable at $x = a$, $f(x) \pm g(x)$, $f(x) \cdot g(x)$ and $\frac{f(x)}{g(x)}$ will also be derivable at $x = a \left\{ \text{only if } g(a) \neq 0 \text{ for } \frac{f(x)}{g(x)} \right\}$.

Theorem 2 If f(x) is derivable at x = a and g(x) is not differentiable at x = a, then $f(x) \pm g(x)$ will not be derivable at x = a.

e.g. $f(x) = \cos |x|$ is derivable at x = 0 and g(x) = |x| is not derivable at x = 0.

Then, $\cos |x| + |x|$ is not derivable at x = 0.

However, nothing can be said about the product function, as in this case

$$f(x) = x \text{ is derivable at } x = 0$$

$$g(x) = |x| \text{ is not derivable at } x = 0$$
But,
$$f(x) \cdot g(x) = \begin{cases} x^2, \text{ if } x \ge 0 \\ -x^2, \text{ if } x < 0 \end{cases}$$

which is derivable at x = 0.

Theorem 3 If both f(x) and g(x) are non-derivable, then nothing can be said about the sum/difference/product function.

e.g. $f(x) = \sin |x|$, not derivable at x = 0g(x) = |x|, not derivable at x = 0

Then, the function

- $F(x) = \sin |x| + |x|$, not derivable at x = 0
- $G(x) = \sin |x| |x|$, derivable at x = 0

Theorem 4 If f(x) is derivable at x = a and f(a) = 0 and g(x) is continuous at x = a.

Then, the product function $F(x) = f(x) \cdot g(x)$ will be derivable at x = a.

Proof
$$F'(a^+) = \lim_{h \to 0} \frac{f(a+h) \cdot g(a+h) - 0}{h} = f'(a) \cdot g(a)$$

 $F'(a^-) = \lim_{h \to 0} \frac{f(a-h) \cdot g(a-h) - 0}{-h} = f'(a) \cdot g(a)$

 \therefore Derivable at x = a.

Theorem 5 Derivative of a continuous function need not be a continuous function.

e.g.

 \Rightarrow

$$f(x) = \begin{cases} x^2 \cdot \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$$

Here, $f(0^+) = 0$ and $f(0^-) = 0$

 \therefore Continuous at x = 0.

and
$$f'(x) = \begin{cases} 2x \cdot \sin \frac{1}{x} - x^2 \cdot \cos \left(\frac{1}{x}\right) \cdot \frac{1}{x^2}, \ x \neq 0 \\ 0, & x = 0 \end{cases}$$

$$f'(x)$$
 is not continuous at $x = 0$.

$$\begin{bmatrix} as \lim_{x \to 0} f'(x) \text{ doesn't exist} \end{bmatrix}$$

Remark

One must remember the formula which we can write as

$$\max \{f(x), g(x)\} = \frac{f(x) + g(x)}{2} + \left| \frac{f(x) - g(x)}{2} \right|$$

$$\min \{f(x), g(x)\} = \frac{f(x) + g(x)}{2} - \left| \frac{f(x) - g(x)}{2} \right|$$

Example 46 Let $h(x) = \min\{x, x^2\}$ for every real

[IIT JEE 1998]

(a) h is not continuous for all x

- (b) h is differentiable for all x
- (c) h'(x) = 1 for all x

C

number of *x*. Then,

- (d) h is not differentiable at two values of x
- **Sol.** Here, $h(x) = \min \{x, x^2\}$ can be drawn on graph in two steps.
 - (a) Draw the graph of y = x and $y = x^2$ also find their point of intersection.

1

learly,
$$x = x^2 \implies x = 0$$

(b) To find h (x) = min {x, x²} neglecting the graph above the point of intersection, we get

Thus, from the above graph,

$$h(x) = \begin{cases} x , x \le 0 \text{ or } x \ge 1 \\ x^2, \ 0 \le x \le 1 \end{cases}$$

which shows h(x) is continuous for all x. But not differentiable at $x = \{0, 1\}$.

Thus, h(x) is not differentiable at two values of x.

Hence, (d) is the correct answer.

Example 47 Let $f: R \to R$ be a function defined by $f(x) = \max\{x, x^3\}$. The set of all points where f(x) is not differentiable, is

(a) {-1, 1}	(b) {-1, 0 }
(c) {0, 1}	(d) {-1, 0, 1}

Sol. $f(x) = \max \{x, x^3\}$. Consider the graph separately of $y = x^3$ and y = x and find their point of intersection;

Now, to find $f(x) = \max \{x, x^3\}$ neglecting the graph below the point of intersection, we get the required graph of $f(x) = \max \{x, x^3\}.$

Thus, from above graph, $f(x) = \begin{cases} x \text{, if } x \in (-\infty, -1] \cup [0,1] \\ x^3, \text{ if } x \in [-1,0] \cup [1,\infty) \end{cases}$

which shows f(x) is not differentiable at 3 points, i.e. $x = \{-1, 0, 1\}$. (Due to sharp edges) Hence, (d) is the correct answer.

Example 48 Let f(x) be a continuous function,

 $\forall x \in R, f(0) = 1$ and $f(x) \neq x$ for any $x \in R$, then show $f(f(x)) > x, \forall x \in R^+$.

Sol. Let
$$g(x) = f(x) - x$$

So, $g(x)$ is continuous and $g(0) = f(0) - 0$.
 $\Rightarrow g(0) = 1$
Now, it is given that $g(x) \neq 0$ for any $x \in R$
[as $f(x) \neq x$ for any $x \in R^{+}$
So, $g(x) > 0, \forall x \in R^{+}$
i.e. $f(x) > x, \forall x \in R^{+}$
 $\Rightarrow f(f(x)) > f(x) > x, \forall x \in R^{+}$
or $f(f(x)) > x, \forall x \in R^{+}$

Example 49 The total number of points of non-differentiability of

Since, $\sin^2 x$ and $\cos^2 x$ are periodic with period π and in $[0, \pi]$, there are four points of non-differentiability of f(x).

:. In [0, 10π], there are 40 points of non-differentiability. Hence, (a) is the correct answer.

Example 50 If $f(x) = |x + 1| \{|x| + |x - 1|\}$, then draw

the graph of f(x) in the interval [-2,2] and discuss the continuity and differentiability in [-2,2].

Sol. Here, $f(x) = |x + 1| \{ |x| + |x - 1| \}$

$$f(x) = \begin{cases} (x+1)(2x-1), & -2 \le x < -1 \\ -(x+1)(2x-1), & -1 \le x < 0 \\ (x+1), & 0 \le x < 1 \\ (x+1)(2x-1), & 1 \le x \le 2 \end{cases}$$

Thus, the graph of f(x) is

Clearly, continuous for $x \in R$ and has differentiability for $x \in R - \{-1, 0, 1\}$

Example 51 If the function $f(x) = \left\lceil \frac{(x-2)^3}{a} \right\rceil \sin(x-2) + a\cos(x-2),$

(where [] denotes the greatest integer function) is continuous and differentiable in (4,6), then

(a) $a \in [8, 64]$ (b) $a \in (0, 8]$ (c) $a \in [64, \infty)$ (d) None of these

Sol. We have, $x \in (4, 6) \Rightarrow 2 < x - 2 < 4$

$$\frac{8}{a} < \frac{(x-2)^3}{a} < \frac{64}{a} \qquad \qquad [\because a > 0]$$

For f(x) to be continuous and differentiable in (4, 6), $\left[\frac{(x-2)^3}{a}\right]$ must attain a constant value for $x \in (4, 6)$. Clearly, this is possible only when $a \ge 64$.

In that case, we have

 \Rightarrow

 $f(x) = a\cos(x - 2)$, which is continuous and differentiable $\therefore \qquad a \in [64, \infty)$

Hence, (c) is the correct answer.

Example 52 If $f(x) = x^2 - 2|x|$ and $g(x) = \begin{cases} \min \{f(t): -2 \le t \le x, -2 \le x \le 0\} \\ \max\{f(t): 0 \le t \le x, 0 \le x \le 3\} \end{cases}$

- (i) Draw the graph of f(x) and discuss its continuity and differentiability.
- (ii) Find and draw the graph of g(x). Also, discuss the continuity.

Sol. (i) Graph of
$$f(x) =\begin{cases} x^2 - 2x, & x \ge 0 \\ x^2 + 2x, & x < 0 \end{cases}$$
 is shown as

which shows f(x) is continuous for all $x \in R$ and differentiable for all $x \in R - \{0\}$.

(ii) We know that,

If f(x) is an increasing function on [a, b], then max $\{f(t); a \le t \le x, a \le x \le b\} = f(x)$ min $\{f(t); a \le t \le x, a \le x \le b\} = f(a)$ If f(x) is decreasing function on [a, b], then max $\{f(t); a \le t \le x, a \le x \le b\} = f(a)$ min $\{f(t); a \le t \le x, a \le x \le b\} = f(x)$

From graph of f(x), $g(x) = \begin{cases} f(x), & \text{for } -2 \le x < -1 \\ -1, & \text{for } -1 \le x < 0 \\ 0, & \text{for } 0 \le x < 1 \\ f(x), & \text{for } x \ge 1 \end{cases}$ $\Rightarrow g(x) = \begin{cases} x^2 + 2x, & \text{for } -2 \le x < -1 \\ -1, & \text{for } -1 \le x < 0 \\ 0, & \text{for } 0 \le x < 1 \\ x^2 - 2x, & \text{for } x \ge 1 \end{cases}$

From above figure, it is clear that g(x) is not continuous at x = 0, 1.

Example 53 Let $f(x) = \phi(x) + \psi(x)$ and $\phi'(a), \psi'(a)$

are finite and definite. Then,

- (a) f(x) is continuous at x = a
- (b) f(x) is differentiable at x = a
- (c) f'(x) is continuous at x = a
- (d) f'(x) is differentiable at x = a
- **Sol.** We know that the sum of two continuous (differentiable) functions is continuous (differentiable).

 \therefore f(x) is continuous and differentiable at x = a.

Hence, (a) and (b) are the correct answers.

Example 54 If $f(x) = x + \tan x$ and g(x) is the inverse of f(x), then g'(x) is equal to

(a)
$$\frac{1}{1 + (g(x) - x)^2}$$
 (b) $\frac{1}{2 + (g(x) + x)^2}$
(c) $\frac{1}{2 + (g(x) - x)^2}$ (d) None of these

Sol. We have, $f(x) = x + \tan x$

$$\Rightarrow \qquad f(f^{-1}(x)) = f^{-1}(x) + \tan(f^{-1}(x))$$

$$\Rightarrow \qquad x = g(x) + \tan(g(x)) \qquad \dots(i)$$

$$[\because g(x) = f^{-1}(x)]$$

$$1 = g'(x) + \sec^2(g(x)) \cdot g'(x)$$

$$\Rightarrow \qquad g'(x) = \frac{1}{1 + \sec^2(g(x))}$$

$$\Rightarrow \qquad g'(x) = \frac{1}{2 + \tan^2(g(x))}$$
$$\Rightarrow \qquad g'(x) = \frac{1}{2 + (x - g(x))^2} \qquad \text{[from Eq. (i)]}$$

Hence, (c) is the correct answer.

Example 55 If f(x) is differentiable function and

- $(f(x) \cdot g(x))$ is differentiable at x = a, then
 - (a) g(x) must be differentiable at x = a
 - (b) g(x) is discontinuous, then f(a) = 0
 - (c) $f(a) \neq 0$, then g(x) must be differentiable
 - (d) None of the above

Sol.
$$\left[\frac{d}{dx}(f(x)\cdot g(x))\right]_{x=a} = f'(a)g(a)$$

 $+\lim_{h\to 0}\frac{g(a+h)-g(a)}{h}\cdot f(a)$

If $f(a) \neq 0 \implies g'(a)$ must exist.

Also, if g(x) is discontinuous, f(a) must be 0 for $f(x) \cdot g(x)$ to be differentiable.

Hence, (b) and (c) are the correct answers.

Example 56 If $f(x) = [x^{-2} [x^2]]$, (where [·] denotes the greatest integer function) $x \neq 0$, then incorrect statement

- (a) f(x) is continuous everywhere
- (b) f(x) is discontinuous at $x = \sqrt{2}$
- (c) f(x) is non-differentiable at x = 1

(d) f(x) is discontinuous at infinitely many points *I*. Here, $0 \le \lfloor x^2 \rfloor \le x^2$

Sol. Here, ⇒

$$0 \le x^{-2}[x^2] \le 1 \implies [x^{-2}[x^2]] = 0 \text{ or } 1$$

f(x) is discontinuous at $x^2 = n, n \in N \implies x = \sqrt{n}$

 $\therefore f(x)$ is neither continuous nor differentiable at $x = \sqrt{n}, n \in N.$

Hence, (b), (c) and (d) are the correct answers.

Example 57 *If*
$$f(x) = \begin{cases} x^2(\text{sgn}[x]) + \{x\}, \ 0 \le x \le 2\\ \sin x + |x - 3|, \ 2 \le x \le 4 \end{cases}$$

where [] and {} represents greatest integer and fractional part function respectively, then

(a) f(x) is differentiable at x = 1

- (b) f(x) is continuous but non-differentiable at x = 2
- (c) f(x) is non-differentiable at x = 2
- (d) f(x) is discontinuous at x = 2

Sol. For continuity at x = 1

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} x^2 \operatorname{sgn}[x] + \{x\} = 1 + 0 = 1$$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x^{2} \operatorname{sgn}[x] + \{x\} = 0 + 1 = 1$$

Also,
$$f(1) = 1$$

 $\therefore f(x)$ is Continuous at $x = 1$
 $f(x) = \begin{cases} x, & 0 \le x < 1 \\ x^2 + x - 1, & 1 \le x < 2 \end{cases}$, non-differentiable at $x = 1$
 $\lim_{x \to 2^-} f(x) = \lim_{x \to 2^-} x^2 \operatorname{sgn}[x] + \{x\}$
 $= 4 \times 1 + 1 = 5$
 $\lim_{x \to 2^+} f(x) = \lim_{x \to 2^+} \sin x + |x - 3| = 1 + \sin 2$

Thus, f(x) is neither continuous nor differentiable at x = 2. Hence, (c) and (d) are the correct answers.

Example 58 A real valued function f(x) is given as

$$f(x) = \begin{cases} \int_0^x 2\{x\} dx, \ x + \{x\} \in I \\ x^2 - x + \frac{1}{2}, \ \frac{1}{2} < x < \frac{3}{2} \text{ and } x \neq I, \\ x^2 - x + \frac{1}{6}, \text{ otherwise} \end{cases}$$

Also f(1) = 1

where [] denotes greatest integer less than or equals to x and {} denotes fractional part function of x. Then,

(a) f(x) is continuous and differentiable in $x \in \left(-\frac{1}{2}, \frac{1}{2}\right)$ (b) f(x) is continuous and differentiable in $x \in \left[-\frac{1}{2}, \frac{1}{2}\right]$ (c) f(x) is continuous and differentiable in $x \in \left[\frac{1}{2}, \frac{3}{2}\right]$

(d) f(x) is continuous but not differentiable in $x \in (0, 1)$

Sol. Here,
$$x + \{x\} \in I \implies x + x - [x] \in I$$

 $\implies 2x - [x] \in I$, possible for $x = \frac{n}{2}, n \in I$
 $\therefore f\left(\frac{1}{2}\right) = \int_{0}^{1/2} 2\{x\} dx = \frac{1}{4}, f\left(\frac{3}{2}\right) = \int_{0}^{3/2} 2\{x\} dx = \frac{5}{4}$
and $f\left(\frac{-1}{2}\right) = \int_{0}^{-1/2} 2\{x\} dx = \frac{-3}{4}, f(1) = 1$
Then, $f(x) = \begin{cases} \frac{1}{4}, & x = \frac{1}{2}, \\ \frac{5}{4}, & x = \frac{3}{2}, \\ -\frac{3}{4}, & x = \frac{-1}{2}, \\ 1, & x = 1, \\ x^{2} - x + \frac{1}{2}, \frac{1}{2} < x < \frac{3}{2} \text{ and } x \neq 1, \\ x^{2} - x + \frac{1}{6}, \text{ otherwise} \end{cases}$

Clearly, continuous for $x \in (0, 1)$ but not differentiable. Hence, (d) is the correct answer.

Exercise for Session 7

1. If $f(x) = \sin(\pi (x - [x])), \forall x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, where $[\cdot]$ denotes the greatest integer function, then (b) f(x) is differentiable for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{0\}$ (a) f(x) is discontinuous at $x = \{-1, 0, 1\}$ (c) f(x) is differentiable for $x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) - \{-1, 0, 1\}$ (d) None of these 2. Let $f(x) = \begin{cases} x - 1, & -1 \le x < 0 \\ x^2, & 0 \le x \le 1 \end{cases}$, $g(x) = \sin x$ and h(x) = f(|g(x)|) + |f(g(x))|. Then, (a) h(x) is continuous for $x \in [-1, 1]$ (b) h(x) is differentiable for $x \in [-1, 1]$ (d) h(x) is differentiable for $x \in (-1, 1) - \{0\}$ (c) h(x) is differentiable for $x \in [-1, 1] - \{0\}$ 3. If $f(x) = \begin{cases} |1-4x^2|, & 0 \le x < 1 \\ [x^2-2x], & 1 \le x < 2 \end{cases}$, where [] denotes the greatest integer function, then (a) f(x) is continuous for all $x \in [0, 2)$ (b) f(x) is differentiable for all $x \in [0, 2) - \{1\}$ (c) f(x) is differentiable for all $x \in [0, 2) - \left\{\frac{1}{2}, 1\right\}$ (d) None of these **4.** Let $f(x) = \int_{0}^{1} |x - t| t dt$, then (a) f(x) is continuous but not differentiable for all $x \in R$ (b) f(x) is continuous and differentiable for all $x \in R$ (c) f(x) is continuous for $x \in R - \left\{\frac{1}{2}\right\}$ and f(x) is differentiable for $x \in R - \left\{\frac{1}{4}, \frac{1}{2}\right\}$ (d) None of these 5. Let f(x) be a function such that f(x + y) = f(x) + f(y) for all x and y and $f(x) = (2x^2 + 3x) \cdot g(x)$ for all x, where g(x) is continuous and g(0) = 3. Then, f'(x) is equal to (a) 6 (b) 9 (d) None of these (c) 8 6. If a function g(x) which has derivatives g'(x) for every real x and which satisfies the following equation $g(x + y) = e^y g(x) + e^x g(y)$ for all x and y and g'(0) = 2, then the value of $\{g'(x) - g(x)\}$ is equal to (b) $\frac{2}{3}e^{x}$ (a) e^x (c) $\frac{1}{2}e^{x}$ (d) 2e^x 7. Let $f: R \to R$ be a function satisfying $f\left(\frac{xy}{2}\right) = \frac{f(x) \cdot f(y)}{2}, \forall x, y \in R$ and $f(1) = f'(1) \neq 0$. Then, f(x) + f(1 - x) is (for all non-zero real values of x) (d) $\frac{1}{x}$ (a) constant (b) can't be discussed (c) x 8. Let f(x) be a derivable function at x = 0 and $f\left(\frac{x+y}{K}\right) = \frac{f(x) + f(y)}{K}$ ($K \in R, K \neq 0, 2$). Then, f(x) is (b) neither even nor odd function (a) even function (d) either zero or even function (c) either zero or odd function **9.** Let $f: R - (-\pi, \pi)$ be a differentiable function such that $f(x) + f(y) = f\left(\frac{x+y}{1-xy}\right)$ If $f(1) = \frac{\pi}{2}$ and $\lim_{x \to 0} \frac{f(x)}{x} = 2$. Then, f(x) is equal to (c) $\frac{\pi}{2} \tan^{-1} x$ (b) $\frac{1}{2}$ tan⁻¹ x (a) $2 \tan^{-1} x$ (d) $2\pi \tan^{-1} x$ **10.** Let $f(x) = \sin x$ and $g(x) = \begin{cases} \max \{f(t), 0 \le t \le x\}, & \text{for } 0 \le x \le \pi \\ \frac{1 - \cos x}{2}, & \text{for } x > \pi \end{cases}$. Then, g(x) is (b) differentiable for all $x \in R - \{\pi\}$ (a) differentiable for all $x \in R$ (c) differentiable for all $x \in (0, \infty)$ (d) differentiable for all $x \in (0, \infty) - \{\pi\}$

Answers

Exercise for Session 7

1. (c)2. (c)3. (c)4. (b)5. (b)6. (d)7. (a)8. (c)9. (a)10. (c)