		N II: MORE			TION	CORRECT	•			
461.	(A)	e centre-two elect B ₂ H ₆		Al ₂ (CH ₃) ₆	(C)	BeH ₂ (s)	(D)	BeCl ₂ (s)		
462.	Addin	dding electron to neutral gaseous atom usually leads to								
	(A)	Liberation of ener	gy		(B)	Formation of ion				
	(C)	Proton/electron ra	itio de	creases	(D)	Stabilizing the sp	ecies			
463.	Sodiu (A)	um nitrate decomp ${\sf N}_{_2}$		above ~ 800°C to O ₂	o give (C)	NO ₂	(D)	Na ₂ O		
464.	Select (A) (B) (C) (D)	ct correct statement(s): Borax is used as a buffer 1 M borax solution reacts with equal volumes of 2 M HCl solution Titration of borax can be made using methyl orange as the indicator Coloured bead obtained in borax-bead test contains metaborate								
465.	Selection (A) (B) (C) (D)	ct correct statement about B ₂ H ₆ Bridging groups are electron-deficient with 12 valence electrons It has 2c - 2e B–H bonds It has 3c - 2e B–H–B bonds All of above are correct statements								
466.	Whick (A) (C)	ch one of the following process(es) will produce temporary hard water? Addition of Na ₂ SO ₄ to water. (B) Saturation of water with CaCO ₃ Saturation of water with MgCO ₃ (D) Saturation of water with CaSO ₄								
467.	The re(A)	eagent(s) that can oxalic acid sodium citrate	t be us	sed to determine l	hardne (B) (D)	ss of water titrimetrically is/are : disodium salt of EDTA sodium thiosulphate				
468.		alkali. CO and H ₂ are fractionally separated using differences in their densities. CO is removed by absorption in aqueous Cu ₂ Cl ₂ solution.								
469.	Hydro (A) (C)	ogen peroxide is A stronger acid th An oxidising ager		ter	(B) (D)	A weaker acid that A reducing agent		er		

470.	Hydr	ogen can be obtained from water by									
	(A)	Reaction with metal oxides	(B)	Reaction with non-metal oxides							
	(C)	Reaction with metals	(D)	Reaction with metal hydrides							
471.	Whic	ch of the following is/are hard water(s)									
	(A)	Water containing some potash alum	(B)	Water containing a few drops of HCI							
	(C)	Water containing common salt	(D)	Water containing calcium nitrate							
472.	Pick	Pick the incorrect statement(s):									
	(A)										
	(B)										
	(C) (D)	Melting point of sodium borohydride is 5		C IS 10.03 g/IIIL							
473.	Hydr	ogen can be obtained from water, by the	action	of water on							
1101	(A)	Calcium carbide (B) Calcium hydride									
	()	, ,	` ,	, ,							
474.		What is true about ice									
	(A) (C)	Its density is more than water It is a thermal insulator	(B) (D)	It is a good conductor of heat Its density is less than water							
	(0)	it is a thermal modulor	(D)	ito denoity to least than water							
475.	Which of the following order is wrong:										
	(A)	NH ₃ < PH ₃ < AsH ₃ — Acidic	(B)	Li < Be < B < C - IE ₁							
	(C)	$Al_2O_3 < MgO < Na_2O < K_2O - Basic$	(D)	Li ⁺ < Na ⁺ < K ⁺ < Cs ⁺ — Ionic radius							
476.	True	statement(s) for periodic classification of	eleme	ents is							
	(A)	The properties of the elements are periodic function of their atomic numbers									
	(B)	No. of nonmetallic elements is less than the no. of metallic elements									
	(C)	First ionization energy of elements does not change continuously with increasing of atomic no. in a period .									
	(D)	(D) d-subshell is filled by directional electron with increasing atomic no. of transition elements.									
477.	W/hic	sh of the following is / are correct for group	14 ele	ements?							
	(A)	ich of the following is / are correct for group 14 elements? The stability of dihalides are in the order CX ₂ < SiX ₂ < GeX ₂ < SnX ₂ < PbX ₂									
	(B)	The ability to form $p\pi$ – $p\pi$ multiple bonds among themselves increases down the group.									
	(C) (D)										
478.	The i	ne incorrect statement(s) among the following is/are:									
	(A)	(A) The first ionisatioin potential of AI is less than the first ionisation potential of Mg									
	(B)	The second ionisation potential of Mg is greater than the second ionisation potential of Na									
	(C)	The first ionisation potential of Na is less than the first ionisation potential of Mg									

(D) The third ionisation potential of Mg is greater than the third ionisation potential of Al

	(A)	graphite is the most stable allotropes of carbon and having a two dimensional sheet like structure of hexagonal rings of carbon (sp²)						
	(B)	diamond is the hardest allotrope of carbon and having a three dimensional network structure of						
	(C)	$C(sp^3)$ fullerene (C_{60}) is recently discovered non-crystalline allotrope of carbon having a football-like structure.						
	(D)	Vander Waal's foother	orce of attracti	on acts be	tween t	the layers of g	graphite 6.	14 Å away from each
480.	The	hydrolytic constan	ts are expres	sed as K _{hyd}	_{ır} . At 25	5°C, pK _{hydr} of t	he followir	ng calions are as given:
	Catio							
	1.0	Mg ²⁺		Ca ²⁺		Al ³		Fe ²⁺
	pK_{hyd}		· · · ·	12.6		5.		9.5
	(A)	Smaller the valu				_		t hydrolysis
	(B)	Greater the pola	·			onger the nya	rolysis	
	(C)	pK _{hydr} for Fe ³⁺ is						
	(D)	pK _{hydr} for Ba ²⁺ is	expected to b	e greater t	nan 12	.6		
481.	certa at a (A) (C)	nin temperature, gi high temperature, (X) is B ₂ H ₆ (Z) having struct	ves a compou produces a ha ure similar to	und (Y) iso- ard substar graphite	-structunce (Z). (B) (D)	ral with benzo Then (Z) is known (Z) having st	ene. Comp as inorgar	= :
482.	(A) (B) (C) (D)	ch of the following banana bonds ar B ₂ H ₆ is also know the hybrid state of it cannot be prep	re longer but s wn as 3c–2e c of B in B ₂ H ₆ is	stronger that compound s sp ³ while	an norn that of	nal B–H bond: sp² in BH ₃		ether
483.		ect correct statements - $Ca_3(PO_4)_2$. CaF_2 is part of enamel in teeth						
	(A)	· · -) ₂ .CaF ₂	is part of ena	amel in tee	eth
	(B) (C)	Ca ²⁺ ions are implements and MgH ₂ and MgH ₂		_	eric whi	ile CaH SrF	l and BaH	Lare ionic
	(D)	BeH ₂ contain thr				Gar 1 ₂ , Gr		2 410 101110
484.	Whic	hich of the following cannot be used as primary standard base -						
	(A)	NaOH	(B) Ca(O	⊣) ₂	(C)	Na ₂ B ₄ O ₇ , 10	H ₂ O (D)	$Na_2C_2O_4$
485.	Whic (A) (B) (C) (D)	ich of the following is correct among the following? Increasing polarising power: Na ⁺ < Ca ⁺² < Mg ⁺² < Al ⁺³ Increasing covalent character: LiF < LiCl < LiBr < Lil Ionic character: MCl < MCl ₃ Increasing polarisibility: F ² < Cl ⁻² < Br ⁻² < I ⁻³						
486.	Whic (A)	ch of the following CaC ₂	g carbides are (B) Mg ₂ C		des? (C)	Al_4C_3	(D)	Be ₂ C

The correct statement(s) related to allotropes of carbon is/are

479.

487.	(A) Hydration energy of Sr ²⁺ is greater than that of Be ²⁺ (B) CaCO ₃ decomposes at a higher temperature than BaCO ₃ (C) Ba(OH) ₂ is stronger base than Mg(OH) ₂ (D) SrSO ₄ is less soluble in water than CaSO ₄								
488.		th of the following		of elements will	give	superoxides an	d peroxi	des respective	ly when
	(A)	К, Ва	(B)	Na,Rb	(C)	K,Rb	(D)	Na, Ba	
489.	Whice (A) (B) (C) (D)	The magnetic qualin silver atom, 23 Ag = 47)	onfigur antum B electi	atement (s) is (are ation of Cr is [Ar] number may hav rons have a spin o nitrogen in HN ₃ is	3d⁵ 4s e a ne of one f	¹.(Atomic No. of gative value	·		ic No. of
490.	In All (A) (C)	kali metal family o Used in photoelo Less electroposi	ectric	cells	(B) (D)	Lightest of all Soft and has		ing and boiling	points.
491.	Alkal (A) (C)	i metals are chara Good conductor High melting poi	of hea	sed by at and electricity	(B) (D)	high oxidation Solubility in li			
492.	Whic (A)	th of the following RbO ₂	supe (B)	roxides are orang CsO ₂	ge colo (C)	oured KO ₂	(D)	None of these	e
493.		ne following subs	tance	s react with wate	er, in v	which of the ca	ases san	ne gaseous pro	oduct is
	obtai (A)	ned? Na	(B)	Na_2O_2	(C)	KO ₂	(D)	NaH	
494.	Solut	ions of equal stren	gth of	XOH and QOH ar	e prep	ared. The Ionisa	ation Pote	ential of X and C	are 5.1
	and 1	3.0eV respectively	y, whe	reas their Electror	negativ	vity are 0.9 and	3.2 respe	ectively. Using t	he infor-
	matic	on, spot the correc	ct cond	clusion(s)					
	(A) Reaction of XOH and NH ₄ Cl will produce NH ₃								
	(B) Solution of QOH will give effervescence with NaHCO ₃								
	(C) Phenolphthalein will give pink colour with XOH solutions								
	(D)	The pH of QOH	solutio	n will be more tha	n 7				
495.	 Which of the following statement/s is/are correct? (A) The structure of carborundum is as same that of diamond (B) Carbogen is a mixture of O₂ and CO₂(5–10%) which is used for artificial respiration in pneumonia patients (C) SnCl₂ is a strong oxidizing agent. (D) PbO a yellow coloured powder is known as litharge. 						n in		

Answer Key

Qs.	Ans.	Qs.		
461	AB	511		
462	ABC	512		
463	ABD	513		
464	ABCD	514		
465	ВС	515		
466	ABC	516		
467	ACD	517		
468	BCD	518		
469	ACD	519		
470	CD	520		
471	ABC	521		
472	В	522		
473	BD	523		
474	CD	524		
475	ACD	525		
476	ABD	526		
477	ACD	527		
478	В	528		
479	AB	529		
480	ABCD	530		
481	ABC	531		
482	ABC	532		
483	ABCD	533		
484	ABD	534		
485	ABD	535		
486	CD	536		
487	CD	537		
488	CD	538		
489	ABC	539		
490	ACD	540		
491	ABD	541		
492	ВС	542		
493	AD	543		
494	ABC	544		