| | | N II: MORE | | | TION | CORRECT | • | | | | |------|------------------------------------|---|---------|---|----------------------|--|-------|-----------------------|--|--| | 461. | (A) | e centre-two elect
B ₂ H ₆ | | Al ₂ (CH ₃) ₆ | (C) | BeH ₂ (s) | (D) | BeCl ₂ (s) | | | | 462. | Addin | dding electron to neutral gaseous atom usually leads to | | | | | | | | | | | (A) | Liberation of ener | gy | | (B) | Formation of ion | | | | | | | (C) | Proton/electron ra | itio de | creases | (D) | Stabilizing the sp | ecies | | | | | 463. | Sodiu
(A) | um nitrate decomp ${\sf N}_{_2}$ | | above ~ 800°C to
O ₂ | o give
(C) | NO ₂ | (D) | Na ₂ O | | | | 464. | Select
(A)
(B)
(C)
(D) | ct correct statement(s): Borax is used as a buffer 1 M borax solution reacts with equal volumes of 2 M HCl solution Titration of borax can be made using methyl orange as the indicator Coloured bead obtained in borax-bead test contains metaborate | | | | | | | | | | 465. | Selection (A) (B) (C) (D) | ct correct statement about B ₂ H ₆ Bridging groups are electron-deficient with 12 valence electrons It has 2c - 2e B–H bonds It has 3c - 2e B–H–B bonds All of above are correct statements | | | | | | | | | | 466. | Whick
(A)
(C) | ch one of the following process(es) will produce temporary hard water? Addition of Na ₂ SO ₄ to water. (B) Saturation of water with CaCO ₃ Saturation of water with MgCO ₃ (D) Saturation of water with CaSO ₄ | | | | | | | | | | 467. | The re(A) | eagent(s) that can
oxalic acid
sodium citrate | t be us | sed to determine l | hardne
(B)
(D) | ss of water titrimetrically is/are :
disodium salt of EDTA
sodium thiosulphate | | | | | | 468. | | alkali. CO and H ₂ are fractionally separated using differences in their densities. CO is removed by absorption in aqueous Cu ₂ Cl ₂ solution. | | | | | | | | | | 469. | Hydro
(A)
(C) | ogen peroxide is
A stronger acid th
An oxidising ager | | ter | (B)
(D) | A weaker acid that
A reducing agent | | er | | | | 470. | Hydr | ogen can be obtained from water by | | | | | | | | | | |------|--|---|------------|---|--|--|--|--|--|--|--| | | (A) | Reaction with metal oxides | (B) | Reaction with non-metal oxides | | | | | | | | | | (C) | Reaction with metals | (D) | Reaction with metal hydrides | | | | | | | | | 471. | Whic | ch of the following is/are hard water(s) | | | | | | | | | | | | (A) | Water containing some potash alum | (B) | Water containing a few drops of HCI | | | | | | | | | | (C) | Water containing common salt | (D) | Water containing calcium nitrate | | | | | | | | | 472. | Pick | Pick the incorrect statement(s): | | | | | | | | | | | | (A) | | | | | | | | | | | | | (B) | | | | | | | | | | | | | (C)
(D) | Melting point of sodium borohydride is 5 | | C IS 10.03 g/IIIL | | | | | | | | | 473. | Hydr | ogen can be obtained from water, by the | action | of water on | | | | | | | | | 1101 | (A) | Calcium carbide (B) Calcium hydride | | | | | | | | | | | | () | , , | ` , | , , | | | | | | | | | 474. | | What is true about ice | | | | | | | | | | | | (A)
(C) | Its density is more than water It is a thermal insulator | (B)
(D) | It is a good conductor of heat Its density is less than water | | | | | | | | | | (0) | it is a thermal modulor | (D) | ito denoity to least than water | | | | | | | | | 475. | Which of the following order is wrong: | | | | | | | | | | | | | (A) | NH ₃ < PH ₃ < AsH ₃ — Acidic | (B) | Li < Be < B < C - IE ₁ | | | | | | | | | | (C) | $Al_2O_3 < MgO < Na_2O < K_2O - Basic$ | (D) | Li ⁺ < Na ⁺ < K ⁺ < Cs ⁺ — Ionic radius | | | | | | | | | 476. | True | statement(s) for periodic classification of | eleme | ents is | | | | | | | | | | (A) | The properties of the elements are periodic function of their atomic numbers | | | | | | | | | | | | (B) | No. of nonmetallic elements is less than the no. of metallic elements | | | | | | | | | | | | (C) | First ionization energy of elements does not change continuously with increasing of atomic no. in a period . | | | | | | | | | | | | (D) | (D) d-subshell is filled by directional electron with increasing atomic no. of transition elements. | | | | | | | | | | | 477. | W/hic | sh of the following is / are correct for group | 14 ele | ements? | | | | | | | | | | (A) | ich of the following is / are correct for group 14 elements? The stability of dihalides are in the order CX ₂ < SiX ₂ < GeX ₂ < SnX ₂ < PbX ₂ | | | | | | | | | | | | (B) | The ability to form $p\pi$ – $p\pi$ multiple bonds among themselves increases down the group. | | | | | | | | | | | | (C)
(D) | | | | | | | | | | | | 478. | The i | ne incorrect statement(s) among the following is/are: | | | | | | | | | | | | (A) | (A) The first ionisatioin potential of AI is less than the first ionisation potential of Mg | | | | | | | | | | | | (B) | The second ionisation potential of Mg is greater than the second ionisation potential of Na | | | | | | | | | | | | (C) | The first ionisation potential of Na is less than the first ionisation potential of Mg | | | | | | | | | | (D) The third ionisation potential of Mg is greater than the third ionisation potential of Al | | (A) | graphite is the most stable allotropes of carbon and having a two dimensional sheet like structure of hexagonal rings of carbon (sp²) | | | | | | | |------|----------------------------------|---|--|--|----------------------------------|---|-------------------------|--------------------------| | | (B) | diamond is the hardest allotrope of carbon and having a three dimensional network structure of | | | | | | | | | (C) | $C(sp^3)$ fullerene (C_{60}) is recently discovered non-crystalline allotrope of carbon having a football-like structure. | | | | | | | | | (D) | Vander Waal's foother | orce of attracti | on acts be | tween t | the layers of g | graphite 6. | 14 Å away from each | | 480. | The | hydrolytic constan | ts are expres | sed as K _{hyd} | _{ır} . At 25 | 5°C, pK _{hydr} of t | he followir | ng calions are as given: | | | Catio | | | | | | | | | | 1.0 | Mg ²⁺ | | Ca ²⁺ | | Al ³ | | Fe ²⁺ | | | pK_{hyd} | | · · · · | 12.6 | | 5. | | 9.5 | | | (A) | Smaller the valu | | | | _ | | t hydrolysis | | | (B) | Greater the pola | · | | | onger the nya | rolysis | | | | (C) | pK _{hydr} for Fe ³⁺ is | | | | | | | | | (D) | pK _{hydr} for Ba ²⁺ is | expected to b | e greater t | nan 12 | .6 | | | | 481. | certa
at a
(A)
(C) | nin temperature, gi
high temperature,
(X) is B ₂ H ₆
(Z) having struct | ves a compou
produces a ha
ure similar to | und (Y) iso-
ard substar
graphite | -structunce (Z). (B) (D) | ral with benzo
Then
(Z) is known
(Z) having st | ene. Comp
as inorgar | = : | | 482. | (A)
(B)
(C)
(D) | ch of the following banana bonds ar B ₂ H ₆ is also know the hybrid state of it cannot be prep | re longer but s
wn as 3c–2e c
of B in B ₂ H ₆ is | stronger that
compound
s sp ³ while | an norn
that of | nal B–H bond:
sp² in BH ₃ | | ether | | 483. | | ect correct statements - $Ca_3(PO_4)_2$. CaF_2 is part of enamel in teeth | | | | | | | | | (A) | · · - | | |) ₂ .CaF ₂ | is part of ena | amel in tee | eth | | | (B)
(C) | Ca ²⁺ ions are implements and MgH ₂ and MgH ₂ | | _ | eric whi | ile CaH SrF | l and BaH | Lare ionic | | | (D) | BeH ₂ contain thr | | | | Gar 1 ₂ , Gr | | 2 410 101110 | | 484. | Whic | hich of the following cannot be used as primary standard base - | | | | | | | | | (A) | NaOH | (B) Ca(O | ⊣) ₂ | (C) | Na ₂ B ₄ O ₇ , 10 | H ₂ O (D) | $Na_2C_2O_4$ | | 485. | Whic
(A)
(B)
(C)
(D) | ich of the following is correct among the following? Increasing polarising power: Na ⁺ < Ca ⁺² < Mg ⁺² < Al ⁺³ Increasing covalent character: LiF < LiCl < LiBr < Lil Ionic character: MCl < MCl ₃ Increasing polarisibility: F ² < Cl ⁻² < Br ⁻² < I ⁻³ | | | | | | | | 486. | Whic
(A) | ch of the following CaC ₂ | g carbides are
(B) Mg ₂ C | | des?
(C) | Al_4C_3 | (D) | Be ₂ C | The correct statement(s) related to allotropes of carbon is/are 479. | 487. | (A) Hydration energy of Sr ²⁺ is greater than that of Be ²⁺ (B) CaCO ₃ decomposes at a higher temperature than BaCO ₃ (C) Ba(OH) ₂ is stronger base than Mg(OH) ₂ (D) SrSO ₄ is less soluble in water than CaSO ₄ | | | | | | | | | |------|---|---|------------------------------|--|------------------------------|------------------------------------|------------|-------------------|-----------| | 488. | | th of the following | | of elements will | give | superoxides an | d peroxi | des respective | ly when | | | (A) | К, Ва | (B) | Na,Rb | (C) | K,Rb | (D) | Na, Ba | | | 489. | Whice (A) (B) (C) (D) | The magnetic qualin silver atom, 23 Ag = 47) | onfigur
antum
B electi | atement (s) is (are
ation of Cr is [Ar]
number may hav
rons have a spin o
nitrogen in HN ₃ is | 3d⁵ 4s
e a ne
of one f | ¹.(Atomic No. of
gative value | · | | ic No. of | | 490. | In All
(A)
(C) | kali metal family o
Used in photoelo
Less electroposi | ectric | cells | (B)
(D) | Lightest of all
Soft and has | | ing and boiling | points. | | 491. | Alkal
(A)
(C) | i metals are chara
Good conductor
High melting poi | of hea | sed by
at and electricity | (B)
(D) | high oxidation
Solubility in li | | | | | 492. | Whic
(A) | th of the following RbO ₂ | supe
(B) | roxides are orang
CsO ₂ | ge colo
(C) | oured
KO ₂ | (D) | None of these | e | | 493. | | ne following subs | tance | s react with wate | er, in v | which of the ca | ases san | ne gaseous pro | oduct is | | | obtai
(A) | ned?
Na | (B) | Na_2O_2 | (C) | KO ₂ | (D) | NaH | | | 494. | Solut | ions of equal stren | gth of | XOH and QOH ar | e prep | ared. The Ionisa | ation Pote | ential of X and C | are 5.1 | | | and 1 | 3.0eV respectively | y, whe | reas their Electror | negativ | vity are 0.9 and | 3.2 respe | ectively. Using t | he infor- | | | matic | on, spot the correc | ct cond | clusion(s) | | | | | | | | (A) Reaction of XOH and NH ₄ Cl will produce NH ₃ | | | | | | | | | | | (B) Solution of QOH will give effervescence with NaHCO ₃ | | | | | | | | | | | (C) Phenolphthalein will give pink colour with XOH solutions | | | | | | | | | | | (D) | The pH of QOH | solutio | n will be more tha | n 7 | | | | | | 495. | Which of the following statement/s is/are correct? (A) The structure of carborundum is as same that of diamond (B) Carbogen is a mixture of O₂ and CO₂(5–10%) which is used for artificial respiration in pneumonia patients (C) SnCl₂ is a strong oxidizing agent. (D) PbO a yellow coloured powder is known as litharge. | | | | | | n in | | | ## **Answer Key** | Qs. | Ans. | Qs. | | | |-----|------|-----|--|--| | 461 | AB | 511 | | | | 462 | ABC | 512 | | | | 463 | ABD | 513 | | | | 464 | ABCD | 514 | | | | 465 | ВС | 515 | | | | 466 | ABC | 516 | | | | 467 | ACD | 517 | | | | 468 | BCD | 518 | | | | 469 | ACD | 519 | | | | 470 | CD | 520 | | | | 471 | ABC | 521 | | | | 472 | В | 522 | | | | 473 | BD | 523 | | | | 474 | CD | 524 | | | | 475 | ACD | 525 | | | | 476 | ABD | 526 | | | | 477 | ACD | 527 | | | | 478 | В | 528 | | | | 479 | AB | 529 | | | | 480 | ABCD | 530 | | | | 481 | ABC | 531 | | | | 482 | ABC | 532 | | | | 483 | ABCD | 533 | | | | 484 | ABD | 534 | | | | 485 | ABD | 535 | | | | 486 | CD | 536 | | | | 487 | CD | 537 | | | | 488 | CD | 538 | | | | 489 | ABC | 539 | | | | 490 | ACD | 540 | | | | 491 | ABD | 541 | | | | 492 | ВС | 542 | | | | 493 | AD | 543 | | | | 494 | ABC | 544 | | | | | | | | |