

The substitution of chlorine atoms into a molecule of alkane results in a compound with anaesthetic properties *e.g.*, chloroform. Increasing the number of chlorine atoms in the compounds increases the depth of anaesthesia given but also increases toxicity. C–F bonds are very stable so their presence leads to non-flammable and unreactive properties. Organofluorine compounds find diverse applications from oil to water repellents to pharmaceuticals, refrigerants and reagents in catalysts.

HALOGEN DERIVATIVES

When C-X carbon is sp^3 hybridised.

Halogen Derivatives

When C-X carbon is sp^2 hybridised.

Alkyl

$$C_nH_{2n+1}X$$

e.g., $CH_3CH_2CH_2CI$

Benzylic

$$C_6H_5CH_2X$$
 CH_3 $e.g.$, $CHCI$

Vinylic

Aryl

Halogen is directly attached to the carbon atom of aromatic ring, e.g., C₆H₅Cl

Methods of Preparation

(i) Direct halogenation of alkanes:

Free radical mechanism: $R - H + X_2 \xrightarrow{hv} R - X + HX$ Reactivity order:

Allylic > 3° > 2° > 1° > CH_4

(ii) Addition of HX to alkenes:

$$CH_2 = CH_2 + HBr \longrightarrow CH_3CH_2Br$$

- Unsymmetrical alkenes follow Markovnikov's rule during electrophilic addition.
- If the addition occurs in presence of peroxide, the product will be opposite to Markovnikov's addition (free radical mechanism).

Reactivity order:

HI > HBr > HCl > HF

(iii) From alcohols:

$$3R$$
—OH + P X_3 \rightarrow $3R$ — X + H₃PO₃
 R —OH + H X — \rightarrow R — X + H₂O
 R —OH + SOCl₂ — \rightarrow
 R Cl + SO₂↑ + HCl↑
[Darzen's method]

(iv) Hunsdiecker reaction:

$$RCOOAg + Br_2 \xrightarrow{CCl_4} reflux$$

$$R$$
—Br + CO₂ + AgBr

(v) Finkelstein reaction:

(i) Dehydrohalogenation:

$$R$$
— X + NaI $\xrightarrow{\text{Dry acetone}} R$ —I + Na X

Elimination follows the Saytzeff's rule.

Uses of Some Commercially Important Halogen Derivatives

(i) Chloroform (CHCl₃):

- Earlier it was used as anaesthetic but due to its harmful effects it is no longer used for the purpose.
- Used for preparation of chloretone and chloropicrin.
- Used as a solvent for fats, waxes, rubber, resins, etc.

(ii) Iodoform (CHI₃):

- Used as disinfectant.
- Effective as chemical antiseptic.

(iii) Freons or chlorofluorocarbons:

- Used as refrigerants.
- Used as propellant in aerosols such as body spray, hair spray, cleansers, etc.

(iv) DDT:

- Used as a powerful insecticide.
- Effective against Anopheles mosquitoes which spread malaria.

(v) Teflon $(-CF_2-CF_2-)_n$:

- Used as non-stick coating for pans and other cookwares.
- Used in containers and pipework for corrosive chemicals.

(i) Reduction:

$$R - X + 2[H] \xrightarrow{\text{Ni or Pd}} R - H + HX$$

(ii) Wurtz reaction:

$$2R - X + 2Na \xrightarrow{\text{Dry ether}} R - R + 2NaX$$

(iii) Reaction with metals:

R—
$$X + Mg$$
 Dry ether \rightarrow R— MgX
(Powder) (Grignard reagent)
$$2R - X + 2Zn \xrightarrow{\text{Ether}} R_2Zn + ZnX_2$$

$$4C_2H_5Br + 4Pb/Na \xrightarrow{\text{Dry ether}} (C_2H_5)_4Pb$$
sod. lead alloy Tetraethyl lead $+4NaBr + 3Pb$

(iv) Corey-House reaction:

 R_2 CuLi + $R'X \longrightarrow R - R' + R - \text{Cu} + \text{Li}X$ (This reaction can be used to prepare unsymmetrical alkanes.)

(v) Oxidation:

$$R \longrightarrow CH_2X \xrightarrow{DMSO} R \longrightarrow C \longrightarrow H$$
1° Alkyl halide Aldehyde
$$X \qquad O \qquad | \qquad | \qquad |$$

$$R \longrightarrow CH \longrightarrow R \xrightarrow{DMSO} R \longrightarrow C \longrightarrow R$$
2° Alkyl halide Ketone

Chemical Properties

Elimination Reactions

Nucleophilic Substitution Reactions

Miscellaneous Reactions

$S_{ m N}$

- First order kinetics
- Reactivity: $3^{\circ} > 2^{\circ} > 1^{\circ} > CH_3X$

S 2

Reactivity: $CH_3X > 1^\circ > 2^\circ > 3^\circ$

Second order kinetics

(I) Hydrolysis with alkalies:

$$RX + AgOH \longrightarrow ROH + AgX$$
(moist)

$$R - X \xrightarrow{\text{aq.}} R - OH + KX$$

(ii) Williamson's synthesis:

$$R - X + \text{NaO}R' \xrightarrow{\text{Heat}} ROR' + \text{Na}X$$

(iii)
$$R - X + KCN \xrightarrow{\text{alc.}} KX + RCN \xrightarrow{\text{liv}} R - X + AgCN \xrightarrow{C_2H_5OH/H_2O} R - N \stackrel{\supseteq}{\Rightarrow} C$$

 $\begin{array}{c}
\text{Na/C}_2\text{H}_5\text{OH} \\
\text{or LiAlH}_4 \\
\text{SnCl}_2/\text{HCl}
\end{array}
\longrightarrow R - \text{CH}_2\text{NH}_2$ $R - \text{CH} = \text{NH} \cdot \text{HCl}$ $H_3\text{O}^+$

 $\frac{\text{H}_3\text{O}^+}{\text{conc. HCl}}$ \rightarrow $R\text{CONH}_2 \xrightarrow{\text{H}_3\text{O}^+} \text{conc. HCl}$

$$R$$
—CHO + NH₄Cl

Ease of dehydrohalogenation:
 Tertiary > Secondary > Primary

R— CH_2 — CH_2 —X—alc. KOH \rightarrow

(ii) Action of heat:

$$R$$
— $CH_2CH_2X \xrightarrow{573 \text{ K}} R$ — $CH=CH_2$