
CHAPTER ELEVEN

THE DERIVATIVE AS A RATE OF 
CHANGE

In case of a linear function y = mx + b the graph is a straight 
line and the slope m measures the steepness of the line by 
giving the rate of climb of the line, the rate of change of y
with respect to x.

As x changes from x0 to x1, y changes m times as much:

y1 – y0 = m(x1 – x0)

Thus the slope m = (y1 – y0)/(x1 – x0) gives the change in 
y per unit change in x.

In more general case of a differentiable function y = f (x), 
the difference quotient

f x h f x

x h x

( ) ( )+ -
+ -

 = f x h f x

h

( ) ( )+ - , h π 0

gives the average rate of change of y (or f ) with respect to 
x. The limit as h approaches zero is the derivative dy/dx = 
f ¢(x), which can be interpreted as the instantaneous rate of 
change of y with respect to x. Since the graph is a curve, the 
rate of change of y can vary from point to point.

Illustration 1

Find the rate of change of volume of a sphere with respect to 
its radius when r = 4 cm

V =
4

3
3pr  

dV

dr
r= 4 2p

when r = 4, 
dV

dr
= 64p

Illustration 2

A point is in motion along a curve 12y = x3. Which of its 
coordinate change faster? 

Differentiating both the coordinates with respect to t
we have

12
dy

dt
 = 3 2x

dx

dt

fi 
y

x
t

t

¢

¢
 =

x2

4

Hence, if

(i) –2 < x < 2, then 
y

x
t

t

¢

¢
 < 1, i.e. the rate of change of the 

ordinate is less than that of the abscissa.

(ii) For x > 2 or x < –2, 
y

x
t

t

¢

¢
 > 1 i.e. the rate of change of 

the ordinate is greater than that of the abscissa.
(iii) For x = ± 2, the rate of change of ordinate is equal to 

that of the abscissa.

Velocity and Acceleration

Suppose that an object is moving along a straight line and 
that, for each time t during a certain time interval, the object 
has (coordinate) x(t). Then at time t + h, the position of the 
object is x(t + h), and x(t + h) – x(t) is the change in position 
that the object experienced during the time period t to t + 
h. The ratio

x t h x t

t h t

( ) ( )+ -
+ -

 = x t h x t

h

( ) ( )+ -

gives the average velocity of the object during this time 
period. If

lim
( ) ( )

h

x t h x t

hÆ

+ -
0

 = x¢(t)

exists, then x ¢(t) gives the (instantaneous) rate of change of 
position with respect to time. This rate of change of position 
is called the velocity of the object. If the velocity function 
is itself differentiable, then its rate of change with respect t
time is called the acceleration, in symbols

a(t) = v ¢(t) = x≤(t)
the speed is by definition the absolute value of the velocity:

speed at time t = |v(t)|
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 If the velocity and acceleration have the same sign then 
the object is speeding up, but if the velocity and acceleration 
have opposite signs then the object is slowing down.
 A sudden change in acceleration is called a jerk. Thus, 
Jerk is the derivative of acceleration. If a body’s position at 
the time t is x(t), the body’s jerk at time t is

 j = 
da

d t
 = 

d x

dt

3

3

Illustration 3

A point moves in a straight line so that its distance from the 

start in t sec is equal to s = 
1

4
4 164 3 2t t t- + . What will be 

acceleration and at what times is its velocity equal to zero?

 v = 
ds

dt
t t t= - +3 212 32

 a = 
d s

dt
t t

2

2
23 24 32= - +

 v = 0 fi t3 – 12t2 + 32t = 0

    fi t(t2 – 12t + 32) = 0

    fi t(t – 4) (t – 8) = 0
at t = 0, t = 4, t = 8 the velocity will be zero and the cor-
responding acceleration will be 32, – 16, 32 respectively.

Illustration 4

A body whose mass is 3 kg performs rectilinear motion ac-
cording to the formula s = 1 + t + t2, where s is measured in 

cm and t in secs. Determine the kinetic energy 
mv2

2

Ê
ËÁ

ˆ
¯̃  of 

the body in 5s after the start.

 
ds

dt
 = 1 2

5

+ =
=

t v
ds

dt t

,  = 11 cm /s

 K.E. = mv2

2

3000 121

2
= ¥  = 181500 gm cm2/s2

= 181.5 ¥ 103 erg.

Differentials Let y = f (x) be a differentiable function. Let 
h π 0. The di fference f (x + h) – f(x) is called the increment 
of f from x to x + h, and is denoted by Df.

 Df = f (x + h) – f(x)

 The product f ¢(x) h is called the differential of f at x with 
increment h, and is denoted by df

 df = f ¢(x) h

The change in f from x to x + h can be approximated by 
f ¢(x) h;
 f (x + h) – f(x) �  f ¢(x) h.

Illustration 5

Find the increment and differential of the function

 y = 3x3 + x – 1 at x = 1, Dx = 0.1.

 dy = (9x2 + 1) Dx

 At x = 1, Dx = 0.1, dy = (9 +1) (0.1)

 = 1

 Dy = [3(x + Dx)3 +(x + Dx) – 1] – (3x3 + x – 1)

 = 9x2 Dx + 9x Dx2 + 3Dx3 + Dx

 Dy – dy = 9x Dx2 + 3Dx3

 At x = 1, Dx = 0.1

 Dy – dy = 0.09 + 0.003 = 0.093.

TANGENT AND NORMAL
Let y = f (x) be the equation of a curve, and let P (x0, y0) be 
a point on it. Let PT be the tangent, PN the normal and PM 
the perpendicular to the x-axis (Fig. 11.1).

Y

O T M N X

P x y( , )0 0

Fig. 11.1

The slope of the tangent to the curve y = f (x) at P is given 
by f ¢ (x0) Thus the equation of the tangent to the curve y = 
f (x) at (x0, y0) is

 y – y0 = f ¢(x0) (x – x0)

Since PN is perpendicular to PT, it follows that, if f ¢ (x0) π 
0, the slope of PN is –1/ f ¢ (x0). Hence the equation of the 
normal to the curve y = f (x) at (x0, y0) is

 f ¢ (x0) (y – y0) + (x – x0) = 0

An equation of the normal parallel to the x-axis is y = y0. 
The length of the tangent at (x0, y0) is PT, and it is equal to

 y
f x

0
0

2
1

1+
¢( ( ))

.

The length of the normal is PN and it is equal to 

  y f x0 0
21 + ¢( ( )) .

TM is called subtangent and the length of the subtangent 
is equal to 
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1

0
0¢f x

y
( )

MN is called subnormal and the length of the subnormal is 
equal to |y0 f ¢(x0)|.

Illustration 6

Derive the equation of tangent and normal at (x0, y0) of the 
curve y = log x.

 
dy

dx
 = 

1 1

0 0x

dy

dx xx x

fi =
=

Hence equation of tangent at (x0, y0) is

 y – log x0 = 1

0
0x

X x-( )

Equation of normal is
 Y – log x0 = –x0(X – x0)

Length of tangent = log x x0 0
21+

Length of normal = log x
x

0
0
2

1
1+

Length of subtangent = x x0 0log

Length of subnormal = y x0 0

ANGLE BETWEEN TWO CURVES
An angle of intersection of two curves is defined as the 
angle between the tangents to the two curves at their point 
of intersection. Let y = f (x) and y = g(x) be two curves, and 
let P(x0, y0) be their point of intersection. Also, let y and j 
be the angles of inclination of the two tangents at P with the 
x-axis, and let q be the angle between the two tangents. Then

 ± = -
+

=
¢ - ¢

+ ¢ ¢
tan

tan tan

tan tan

( ) ( )

( ) ( )
q j y

j y1 1
0 0

0 0

g x f x

f x g x

Orthogonal Curves

If the angle of intersection between two curves is a right angle 
then the two curves are said to be intersecting orthogonally. 
Two curves y = f (x) and y = g(x) cut orthogonally if f ¢(x) 
g ¢(x) = – 1.

THE ROLLE’S AND LAGRANGE’S 
THEOREMS

Rolle’s theorem Let f (x) be a function defined on a closed 
inter val [a, b], such that (i) f (x) is continuous on [a, b], (ii) 
f (x) is derivable on ]a, b[, and (iii) f (a) = f (b). Then there 
exists a c Œ ]a, b[ such that f  ¢(c) = 0.
Rolle’s theorem for polynomials If f (x) is any polynomial, 
then between any pair of roots of f (x) = 0 lies a root of  
f ¢(x) = 0.

 If a polynomial equation P (x) = 0 has at least n real roots, 
then P¢ (x) = 0 has at least (n–1) real roots, P"(x) = 0 has at 
least (n–2) real roots and so on.
Lagrange’s Mean Value theorem Let f (x) be a function 
defined on [a, b], such that (i) f (x) is continuous on [a, 
b], and (ii) f (x) is derivable on ]a, b[. Then there exists a 
c Œ]a, b[ such that

 f  ¢(c) = 
f b f a

b a

( ) ( )-
-

Illustration 7

Check the validity of Rolle's  theorem for y = 4sin x in the 
interval [0, p].
 Being exponential function, y is a continuous function x 

and y¢ = (4 sin x) (log 4) cos x. Also y(0) = 4° = 1 and y(p) = 

4 sin p = 4° = 1. Hence all the hypothesis of Rolle's theorem 
are satisfied. For conclusion,
 y¢ (p /2) = 0  and p/2 Œ [0, p]

Illustration 8

Show that the equation x3 – 3x + C = 0 cannot have two dif-
ferent roots in (0, 1).
 Consider f(x) = x3 – 3x + C. Suppose f has two distinct  
roots say x1 and x2 in (0,1). f is a polynomial so continuous  
on [x1, x2] and differentiable in (x1, x2) and f(x1) = f(x2) = 0 

so by Rolle's theorem there is a Œ (x1, x2) Ã (0, 1)  such that 

 f ¢(a) = 0  fi 3a 2 – 3 π 0  fi a = ± | œ (0, 1).

So x3 – 3x + c = 0 cannot have two different roots in (0, 1).

MONOTONICITY
A function f (x) defined on a set D is said to be non-decreas-
ing, increasing, non-increasing and decreasing respectively, 
if for any x1, x2 Œ D and x1 < x2, we have f (x1) £ f (x2), f (x1) 
< f (x2), f (x1) ≥ f (x2) and f (x1) > f (x2), respectively (Figs 11.2 
and 11.3). The function f (x) is said to be monotonic if it pos-
sesses any of these properties.

O x1 x2

f x( )1

f x( )2

Y

X

y f x= ( )

An increasing function

Fig. 11.2
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O x1 x2

f x( )1

f x( )2

Y

X

A decreasing function

Fig. 11.3

 As an immediate consequence of Lagrange’s Mean theo-
rem, we have
 Testing monotonicity Let f (x) be continuous on [a, b] 
and differ entiable on ]a, b[. Then
 (i) for f (x) to be non-decreasing (non-increasing) on 

[a, b] it is necessary and sufficient that f ¢ (x) ≥ 0 
( f ¢(x) £ 0) for all x Œ ]a, b[. 

 (ii) for f (x) to be increasing (decreasing) on [a, b] it 
is necessary and sufficient that f¢ (x) > 0 ( f¢(x) < 0) 
for all x Œ]a, b[.

Illustration 9

Show that the function y = 2 2x x-  increases in the inter-
val (0, 1) and decreases in (1, 2)

 y¢(x) = 
1

2

2 2

2

1

2
0 2

2

-

-
= -

-
πx

x x

x

x x
x

( )
, .

y¢ is not defined at x = 0, x = 2.

 y¢(x) > 0 if 1 – x > 0 so y increases on (0, 1) and y¢(x) < 0 

for x Œ (1, 2), so y decreases on (1, 2).

Illustration 10

Find the interval of monotonicity of y = 
1

1

2

2

- +
+ +

x x

x x

 y¢(x) = 
( )( ) ( )( )

( )

1 1 2 1 1 2

1

2 2

2 2

+ + - + - - + +
+ +

x x x x x x

x x

 = 
- +
+ +

= -
+ +

2 2

1

2 1

1

2

2 2

2

2 2

x

x x

x

x x( )

( )

( )

 Since the denominator is always positive so the sign of 
y¢(x) according to the sign of x2 –1.

Thus y¢(x) > 0 ¤ x2 – 1 > 0 ¤ x > 1 or x < –1

Hence y increases on (1, •) » (– •, –1) and decreases on 
(–1, 1).

MAXIMA AND MINIMA
A function has a local maximum at the point x0 if the value of 
the function f (x) at that point is greater than its values at all 
points other than x0 of a certain interval containing the point 
x0. In other words, a function f(x) has a maximum at x0 if it 
is possible to find an interval (a, b) containing x0, i.e., with  
a < x0 < b, such that for all points different from x0 in (a, 
b), we have f (x) < f (x0).
 A function f (x) has a local minimum at x0 if there exists 
an interval (a, b) containing x0 such that f (x) > f (x0) for x Œ 
(a, b) and x π x0.
 One should not confuse the local maximum and local 
minimum of a function with its largest and smallest values 
over a given interval. The local maxi mum of a function is 
the largest value only in comparison to the values it has at 
all points sufficiently close to the point of local maximum. 
Similarly, the local minimum is the smallest value only in 
comparison to the values of the function at all points suffi-
ciently close to the local minimum point.
 The general term for the maximum and minimum of a 
function is extremum, or the extreme values of the function. 
A necessary condition for the existence of an extremum at the 
point x0 of the function f (x) is that where f¢(x0) = 0, or f¢ (x0) 
does not exist. The points at which f ¢ (x) = 0, or where f¢(x) 
does not exist, are called critical points of the function f.
First derivative test
 (i) If f¢(x) changes sign from positive to negative at x0, 

i.e., f¢(x) > 0 for x < x0, and f¢(x) < 0 for x > x0, 
then the function attains a local maximum at x0.

 (ii) If f¢(x) changes sign from negative to positive at x0, 
i.e., f¢(x) < 0 for x < x0, and f¢(x) > 0 for x > x0, 
then the function attains a local minimum at x0.

 (iii) If the derivative does not change sign in moving 
through the point x0, there is no extremum at that 
point.

Second derivative test Let f be twice differentiable, and let 
c be a root of the equation f¢(x) = 0. Then
 (i) c is a local maximum point if f¢¢ (c) < 0
 (ii) c is a local minimum point if f¢¢ (c) > 0.
 However, if f¢¢(c) = 0, then the following result is applica-
ble. Let f¢(c) = f¢¢ (c) = º = f (n – 1) (c) = 0 (where f r denotes 
the r th derivative), but f (n)(c) π 0.
 (i) If n is even and f (n) (c) < 0, there is a local maxi-

mum at c, while if f (n) (c) > 0, there is a local 
minimum at c.

 (ii) If n is odd, there is no extremum at the point c.
 The greatest (least) value of continuous function f (x) on 
the interval [a, b] is attained either at the critical points or 
at the end-points of the interval. To find the greatest (least) 
value of the function, we have to compute its values at all 
the critical points on the interval ]a, b[, and the values f (a), 
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f (b) of the function at the end-points of the interval, and 
choose the greatest (least) out of the numbers so obtained.

Illustration 11

Find the extrema of y = 2x3 – 3x2. y is differentiable function 
and y¢ = 6x2 – 6x = 6x(x – 1).
 So, points extremum are 0 and 1 y¢¢ = 6 (2x – 1) y¢¢(1) = 
6 > 0, y¢¢(0) = – 6 < 0.
Hence ymax = y(0) = 0

and ymin = y(1) = 2 – 3 = –1

Illustration 12

Find the greatest and least value of y = x3 – 3x2 + 6x – 2 on 
[–1, 1]. y is a differentiable function of x and y¢(x) = 3x2 – 6x 
+ 6 = 3(x2 – 2x + 2) = 3((x – 1)2 + 1) > 0.
Hence y increases on [–1, 1]. Thus the greatest value = y(1) 
= 1 – 3 + 6 – 2 = 2, least value = y(–1) = –1 – 3 – 6 –2 = –12.
Point of Inflection
A point x = c is said to be point of inflection for a curve y = 
f (x) if f ≤ (c) = 0 or is not defined and f ≤¢(c) π 0

 Example 1: The approximate value of cos 31° is
 (a) 0.52 (b) 0.851
 (c) 0.641 (d) 0.681

Ans. (b)

 Solution:  Known value near to cos 31° is cos 30° 

= cos
p
6

3

2
=

Let y = cos x y¢(x) = – sin x

 cos 31 = cos
p p
6 180

+Ê
ËÁ

ˆ
¯̃ . So putting x = 

p
6

 and Dx = 
p

180
, 

we have y¢ p
6

Ê
Ë

ˆ
¯  = -sin

p
6

 = –
1

2

cos (x + Dx) � cos x + f ¢(x) Dx. Putting x = 
p
6

 and Dx =
p

180
,

we have

 cos 31 � 
3

2

1

2 180

1 732

2

1

2

3 14

180
- = - ¥p . .

 = 0.851

 Example 2: The tangent line at (2, 4) to the curve y = 

x3 – 3x + 2 meets the x-axis at

 (a) (2, 0) (b) 
7

2
0,Ê

ËÁ
ˆ
¯̃

 (c) 
11

9
0,Ê

ËÁ
ˆ
¯̃  (d) 

14

9
0,Ê

ËÁ
ˆ
¯̃

Ans. (d)

 Solution: 
dy

dx
x x= - = -3 3 3 12 2( )

 
dy

dx x=2

 = 3(4 – 1) = 9

Equation of tangent at (2, 4) is
 Y – 4 = 9(X – 2)

This meets x-axis if Y = 0

fi 
-4

9
 = X – 2  fi  X = 2

4

9

14

9
- = .

 Example 3: The slope of the tangent to the curve

 x = t2 + 3t – 8

 y = 2t2 – 2t – 5

at the point (2, –1) is
 (a) 2/3 (b) 6/7
 (c) 4/5 (d) 3/2
Ans. (b)

 Solution: We need to determine the value of t corre-
sponding to the given point, so

 
2 3 8

1 2 2 5

3 10 0

2 0

2 5

2

2

2

2

2

= + -

- = - -

˘

˚
˙
fi + - =

fi - - =

˘

˚
˙
fi = -
fi =

t t

t t

t t

t t

t

t

,

, --1

Hence common value is 2

 y x¢ =2  = 

dy

dt
dx

dt t

Ê

Ë

Á
Á
Á

ˆ

¯

˜
˜
˜

=2

 = 
4 2

2 3

6

72

t

t t

-
+

Ê
ËÁ

ˆ
¯̃ =

=
.

 Example 4: The interval in which y = 
1

4 9 63 2x x x- +
 

is increasing is

 (a) (– •, •) (b) (0, 1/2)
 (c) (1/2, 1) (d) (1, •)
Ans. (c)

 Solution:  y¢(x) = –
12 18 6

4 9 6

2

3 2 2

x x

x x x

- +
- +( )

 = - - -
- +

6 2 1 1

4 9 63 2 2

( )( )

( )

x x

x x x

SOLVED EXAMPLES
Concept-based

Straight Objective Type Questions
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 y¢(x) > 0 ¤ (2x – 1) (x – 1) < 0
 ¤  (i)  2x – 1 > 0, x – 1 < 0
   (ii) 2x – 1 < 0, x – 1 > 0
(i) fi x Œ (1/2, 1) case (ii) is not possible. Hence y increases 
on (1/2, 1)

 Example 5: Let y = x – log(1 + x), the minimum value 
of y is
 (a) 1 (b) 0

 (c) –1 (d) 
1

2
Ans. (b)

 Solution: y¢(x) = 1
1

1 1
-

+
=

+x

x

x
.  The domain y is 

x > –1. so y¢(x) = 0 fi x = 0

 y¢¢(x) = 
1

1
0

2+( )
>

x
. Hence y is min at x = 0 and ymin = 

0 – log 1 = 0

 Example 6: A covered box of volume 72 cm3 and the 
base sides in a ratio of 1:2 is to be made. The length all sides 
so that the total surface area is the least possible is
 (a) 2, 4, 9 (b) 8, 3, 3
 (c) 6, 6, 2 (d) 6, 3, 4
Ans. (d)

 Solution: Let l, b, h be the dimensions l = 2b, so  
V = l b h = 2 b2h

fi 72 = 2b2h  fi h = 
36

2b
The surface area S = 2(lb + bh + lh)

 = 2 2
3

2
362

2
b

b

b
b

b
+ + ¥Ê

ËÁ
ˆ
¯̃

 = 2 2
1082b

b
+Ê

ËÁ
ˆ
¯̃

 = 4
542b
b

+Ê
ËÁ

ˆ
¯̃

 
dS

db
 = 4 2

54
2

b
b

-Ê
ËÁ

ˆ
¯̃ , 

dS

db
 is zero if b = 3 and 

d S

db

2

2
 = 4 2

108
0

3
+Ê

ËÁ
ˆ
¯̃ >

b

 Hence S is minimum when b = 3. So the dimensions are 

6, 3, 
36

9
 = 6, 3, 4

 Example 7: A point on the curve y = x3 – 3x + 5 at which 
the tangent line is parallel to y = –2x is

 (a) (1, 3) (b) (0, 5)

 (c) 
1

3
5

8 3
9

, -
Ê
ËÁ

ˆ
¯̃  (d) 

1

2
0,Ê

ËÁ
ˆ
¯̃

Ans. (c)

 Solution: Since y¢(x) = 3x2 – 3, so by the condition of 
parallelism

 3x2 – 3 = –2

 x = ± 1

3

If x = 
1

3
, then y = 

1

3 3

3

3
5- +

 = 5
8

3 3
5

8 3

9
- = - .

 Example 8: The greatest value of y = sin 2x – x on 

-È
ÎÍ

˘
˚̇

p p
2 2

,  is

 (a) p
2

 (b) 1

 (c) 2 (d) - p
2

Ans. (a)

 Solution y¢ = 2 cos 2 x – 1  fi y¢(x) = 0 ¤ cos2x = 1

2
So, y¢(x) = 0 if x = 

p
6

. Thus the critical points of y in 

-È
ÎÍ

˘
˚̇

p p
2 2

,  are - p p p
2 6 2

, , . Now y y-Ê
ËÁ

ˆ
¯̃ = Ê

ËÁ
ˆ
¯̃ = -p p p p

2 2 2 2
,  

and y
p p
6

3

2 2
Ê
ËÁ

ˆ
¯̃ = - . The greatest value is p

2
.

 Example 9: The point of inflection of y = x3 – 5 x2 + 
3x – 5 is

 (a) 1

2
 (b) 3

4

 (c) 7

4
 (d) 5

4
Ans. (d)

 Solution: Since y is twice differentiable function so for 
inflection points y¢¢(x) = 0, y¢¢¢(x) π 0

 y¢(x) = 3x2 – 10x + 3

 y¢¢ = 6x – 10. So, y¢¢(x) = 0 if x = 
5

4

 y¢¢¢(x) = 6 π 0. So, x = 
5

4
 is a point of inflection.

 Example 10: The minimal rate of change of the function 

f(x) = 3x5 – 5x3 + 5x –7 is 

 (a) 3

4
 (b) 5

4

 (c) 2

3
 (d) 3

2
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Ans. (b)

 Solution Rate of change of f(x) is f ¢(x)

 = 15 15 5 15
1

3
4 2 4 2x x x x- + = - +Ê

ËÁ
ˆ
¯̃

 = 15
1

2

1

12

15

12

5

4
2

2

x -Ê
ËÁ

ˆ
¯̃ +

Ê

ËÁ
ˆ

¯̃
≥ =

The minimum vale of f ¢ is attained at x = + 1

2
 and equals 

5

4
.

 Example 11: A spherical balloon is expanding. If the 
radius is increasing at the rate of 5 inch per minute, the rate 
at which the volume increases (in cubic inches per minute) 
when the radius is 10 inch is
 (a) 100 p (b) 1000 p
 (c) 2000 p (d) 500 p
Ans. (c)

 Solution: The volume V = 
4

3
 pr3, r being the radius. 

It is given that 
dr

dt
 = 5 inch/min and we have to find 

dV

dt
 

when r = 5 inches.

 
dV

dt
 = 4pr2 

dr

dt

fi 
dV

dt r =10
 = 4p (100)5 = 2000 p.

 Example 12: An object is moving in the clockwise 
direction around the unit circle x2 + y2 = 1. As it passes 
through the point (1/2, 3 /2), its y-coordinate is decreasing 
at the rate of 3 units per second. The rate at which the 
x-coordinate changes at this point is (in units per second)

 (a) 2 (b) 3 3

 (c) 3  (d) 2 3
Ans. (b)

 Solution: We find 
d x

dt
 when x = 1

2
 and y = 3

2
 given 

that 
d y

dt
 = – 3 units/s and x2 + y2 = 1.

Differentiating x2 + y2 = 1, we have

 2x 
d x

dt
 + 2y 

d y

dt
 = 0.

Putting x = 1/2, y = 3 2/  and dy/dt = – 3, we have

 
1

2

3

2

d x

dt
+  (– 3) = 0 fi 

d x

dt
 = 3 3 .

LEVEL 1

Straight Objective Type Questions

 Example 13: An approximate value of cos 40° is
 (a) 0.7688 (b) 0.7071
 (c) 0.7117 (d) 0.7
Ans. (a)

 Solution: 
 Let f (x) = cos x. 40° = 45° – 5°

 = p p
4 180

5- ¥  = p p
4 36

-  radians

 We use a differential to estimate the change in cos x when 
x decreases from p/4 to p/4 – (p/36)
 f ¢(x) = – sin x and df = f ¢(x) h = – h sin x
With x = p/4 and h = – p/36, df is given by

 df = – f ¢(x)h = - -Ê
ËÁ

ˆ
¯̃

p
36

 sin 
p
4

Ê
ËÁ

ˆ
¯̃

 = p
36

2

2
◊  = p 2

72
= 0.0617

 cos 40 @ cos 45 + 0.0617 @ 0.7071 + 0.0617
 = 0.7688.

 Example 14: The values of x for which the tangents to 
the curves y = x cos x, y = (sin x)/x are parallel to the axis of 
x are roots of (respectively)
 (a) sin x = x, tan x = x (b) cot x = x, sec x = x
 (c) cot x = x, tan x = x (d) tan x = x, cot x = x
Ans. (c)

 Solution: Let y = f (x) = x cos x and y = g (x) = 
(sin x)/x. Now f ¢(x) = – x sin x + cos x and g ¢ (x) = 
(x cos x – sin x)/x2. Since the tangents are parallel to x-axis 
so f ¢ (x) = 0 and g ¢(x) = 0, which is turn give cot x = x and 
tan x = x respectively.

 Example 15: The length of the subtangent to the ellipse 
x = a cos t, y = b sin t at t = p/4 is
 (a) a (b) b

 (c) b/ 2  (d) a / 2

Ans. (d)
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 Solution: d

d

x

t
 = – a sin t and d

d

y

t
 = b cos t, therefore 

d

d

y

x t=p / 4

 = - b

a
 cot (p/4) = - b

a
. The length of the subtan-

gent = | | sin
/

y
x

y
b

a

bt
0

4 4

d

d =
= ¥ -

p

p
 = a

2
.

 Example 16: Tangent of the angle at which the curve 
y = ax and y = bx (a π b > 0) intersect is given by

 (a) 
log

log

ab

ab1+
 (b) 

log /

(log ) (log )

a b

a b1+

 (c) 
log

(log ) (log )

ab

a b1 +
 (d) none of these

Ans. (b)

 Solution: Intersection of the two curves is given by ax 
= bx which implies x = 0. If a is the angle at which the two 
curves inter sect then

 tan a = 
m m

m m

a a b b

a b a b

x x

x x
x

1 2

1 2 0
1 1

-
+

= -
+ =

log log

(log ) (log )

 =  (log / )

(log )(log )

a b

a b1+
. (Putting x = 0)

 Example 17: For the parabola y2 = 16x, the ratio of the 
length of the subtangent to the abscissa is
 (a) 2 : 1 (b) 1 : 1
 (c) x : y (d) x2 : y
Ans. (a)

 Solution: Differentiating, 2y
d

d

y

x
 = 16 so 

d

d

y

x y
= 8

. Thus 

the length of the subtangent is y
x

y

y x
x.

d

d
= = =

2

8

16

8
2 . 

Hence length of the subtangent: abscissa = 2x : x = 2 : 1.

 Example 18: If the tangent to the curve x3 – y2 = 0 at 

(m2, – m3) is parallel to y = - 1

m
x – 2m3, then the value of m2 is

 (a) 1/3 (b) 1/6
 (c) 2/3 (d) – 2/3
Ans. (c)

 Solution: Differentiating x3–y2= 0, we have

 
d

d

d

d

y

x

x

y

y

x m m

= fi
-

3

2

2

2 3( )

 = – 3

2

4

3

m

m
 = - 3

2

m .

According to the given condition, - = -3

2

1
m

m

fi m2 2

3
=

 Example 19 If the function f (x) = 
cx d

x x

+
- -( )( )1 4

 has a 

turning point at the point (2, – 1) then

 (a) c = 2, d = 0 (b) c = 1, d = 0
 (c) c = 1, d = – 1 (d) c = 1, d = 1
Ans. (b)

 Solution: ¢ = - - - + -
- -

f x
c x x cx d x

x x
( )

( )( ) ( )( )

( ) ( )

1 4 2 5

1 42 2

So  0 2
2 2

4 4
0= ¢ = - + + = fi =f

c c d d
d( )

( )

Also  - = = +
-

= - fi =1 2
2

2
1f

c d
c c( ) .

 Example 20: The distance between the origin and the 
normal to the curve y = e2x + x2 at the point whose abscissa 
is 0 is

 (a) 1/ 5  (b) 2/ 5

 (c) 3/ 5  (d)  2/ 3
Ans. (b)

 Solution: The point on the curve corresponding to x = 
0 is (0,1)

 d

d

y

x
 = 2 2 22

0

e x
y

x
x

x

+ fi =
=

d

d

Hence the equation of the normal at the point (0, 1) is

 y – 1 = (– 1/2) (x–0)  fi   2y + x – 2 = 0

Therefore, the distance of the point (0, 0) from this line is 

2 5/ .

 Example 21: The function f (x) = 1 + x (sin x) [cos x], 
0 < x £ p/2 
 (a) is continuous on (0, p/2)
 (b) is strictly decreasing in (0, p/2)
 (c) is strictly increasing in (0, p /2)
 (d) has global maximum value 2.
Ans. (a)

 Solution: For 0 < x £ p/2, [cos x] = 0. Hence f (x) = 1 for 
all x Œ(0, p/2]. Trivially f (x) is continuous on (0, p/2). This 
function is neither strictly increasing nor strictly decreasing 
and its global maximum is 1.

 Example 22: Let f be an increasing function on [a, b] 
and g a decreasing function from [a, b] to [a, b], then 
 (a) f o g is a decreasing function
 (b) g o f is an increasing function
 (c) f o g is an increasing function
 (d) none of these
Ans. (a)

 Solution: For x1 < x2, x1, x2 Œ [a, b], since g is decreas-
ing so g(x1) > g (x2) fi f (g(x1)) > f (g (x2)) i.e. f o g is de-
creasing function on [a, b]. Similarly g o f is also decreasing 
function.

 Example 23: If a < 0 and f (x) = eax + e – ax. Suppose that 
S = {x : f (x) is monotonically decreasing} then
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 (a) S = {x : x > 0} (b) S = {x : x < 0}
 (c) S = {x : x > 1} (d) S = {x : x < 1}
Ans. (b)

 Solution: f ¢(x) = a(eax - e– ax). So f is monotonically 
decreasing if and only if eax -e– ax > 0, i.e. e2ax > 1 which is 
true if and only if 2ax > 0. Since a < 0, we must have x < 0.

 Example 24: The equation of the horizontal tangent to 
the graph of the function y = ex + e – x is 
 (a) y = – 2  (b) y = – 1
 (c) y = 2 (d) none
Ans. (c) 

 Solution: The slope of the horizontal tangent is 0, so 
0 = dy/dx = ex- e–x fi e2x = 1 fi x = 0. If x = 0 then y = 
2. Hence the equation of horizontal tangent at (0, 2) is y = 2. 

 Example 25: Let f(x) and g(x) be defined and 
differentiable for x ≥ x0 and f (x0) = g(x0), f ¢(x) > g¢(x) for 
x > x0 then 
 (a) f (x) < g (x) for some x > x0 
 (b) f (x) = g (x) for some x > x0

 (c) f (x) > g (x) for all x > x0

 (d) none of these
Ans. (c)

 Solution: Consider the function f (x) = f (x) – g(x) on 
the interval [x0, x]. By Lagrange’s theorem we have f (x) 
– f (x0) = f ¢(z) (x – x0) for some z Œ(x0, x). Since f (x0) 
= 0, f ¢ (z) = f ¢ (z) – g ¢ (z) > 0. So f (x) – f (x0) = f (x) 
= (f ¢(z) – g ¢ (z)) (x – x0) > 0 fi f (x) > 0 

Thus  f (x) > g(x) for all x > x0.

 Example 26: If y = 2x + cot – 1 x + log 1 2+ -( )x x , 
then y 
 (a) decreases on (– •, •)
 (b) decreases on [0, •)
 (c) neither decreases nor increases on [0, •)
 (d) increases on (– •, •)
Ans. (d)

 Solution: 

 y¢(x) = 2
1

1

1

1
1

2 2

2-
+

+
+ -

+ -( )
x x x

d

d x
x x

 = 2 - 
1

1

1

1 1
1

2 2 2+
+

+ -
¥

+
-

Ê

Ë
Á

ˆ

¯
˜

x x x

x

x
 

 = 2 - 
1

1

1

1
2 2+

-
+x x

 ≥ 0 

since 1/(1+x2) and 1/ 1 2+ x  are less than or equal to 1 for 

all x. So f (x) increases on (- •, •).

 Example 27 The equation x4 – 7x + 2 = 0 has

 (a) exactly two real and distinct solutions
 (b) has four real roots
 (c) no real root
 (d) all the four roots lie between 0 and 2
Ans. (a)

 Solution: Let f (x) = x4 – 7x + 2. Since f (0) = 2, f (1) 
= - 4 and f (2) = 4 

so by Intermediate value theorem there is x1 Œ (0, 1) and x2 

Œ (1, 2) such that f (x1) = f (x2) = 0. Also f ¢(x) = 4x3 - 7, so 

f (x) decreases for x < (7/4)1/3 and increases for x > (7/4)1/3 

and 1< (7/4)1/3 < 2. Thus f (x) cannot be zero at any other 

point. 

 Example 28: The maximum value of x1/x is
 (a) (1/e)e (b) e1/e

 (c) e (d) 1/e
Ans. (b)

 Solution: Let f (x) = x1/x fi log f (x) = (1/x) log x. Dif-

ferentiating both the sides, we have f ¢(x) = f (x) 1
2

-È
ÎÍ

˘
˚̇

log
.

x

x
 

So f ¢(x) = 0 ¤ x = e. Also f ¢ (x) > 0 for 0 < x < e and 
f ¢(x) < 0 for e < x < •. Thus, f (x) has a maximum at x = e 
and max f (x) = e1/e

 Example 29: Let P (x) = a0 + a1 x
2
 + a2 x

4 + … + an x
2n 

be a poly nomial in a real variable x with 0 < a0 < a1…< an. 
The function P(x) has
 (a) neither a maximum nor a minimum
 (b) only one maximum
 (c) only one minimum
 (d) none of these
Ans. (c)

 Solution: Since P(x) is a polynomial, it is differenti-
able, and its extremum values are given by P¢(x) = 0 
fi  2a1x + 4a2x

3 + º + 2nan x
2n - 1 = 0 

fi  2x (a1 + 2a2x
2 + º + nan x

2n - 2) = 0
But , a1 > 0 and other terms of 2a2 x

2 + º + n an x
2n - 2 are 

non negative so we have x = 0. Also P≤(x) = 2a1 + 12a2 x
2 + 

º + 2n (2n - 1) an x
2n - 2 so that P≤(0) = 2a1 > 0. Therefore, 

P(x) has only one minimum at x = 0.

 Example 30: If f (x) = x

xsin
 and g (x) = 

x

xtan
, where 0 

< x £ 1, then in this interval
 (a) f (x) and g (x) are increasing functions
 (b) both f (x) and g (x) are decreasing functions
 (c) f (x) is an increasing function
 (d) g (x) is an increasing function
Ans. (c)

 Solution: Let f (x) = 
x

xsin
 fi f ¢(x) = 

sin cos

sin

x x x

x

-
2  
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Let u(x) = sin x - x cos x so u¢(x) = cos x - cos x + x sin x = 
x sin x > 0 for 0 < x £ 1. Hence u is an increasing so u(x) > 
u(0) = 0. Thus f ¢(x) > 0 for 0 < x £ 1. i.e. f is an increasing 
func tion. Now

 g¢(x) = 
tan sec

tan

x x x

x

- 2

2
.

Let v(x) = tan x - x sec2x. Since v¢(x) = sec2x - sec2x - 2x 
sec2x tan x = - 2x sec2x tan x < 0 for 0 < x £ 1. Hence v(x) 
< v(0) = 0 so g¢(x) < 0 for 0 < x £ 1. Thus g is a decreas ing 
function.

 Example 31: If f (x) = x2/3 then
 (a) (0, 0) is a point of maximum
 (b) (0, 0) is not a point of minimum
 (c) (0, 0) is a critical point
 (d) There is no critical point
Ans. (c)

 Solution: dy

dx
x= -2

3
1 3/ . This derivative is never zero, 

but there is no derivative for x = 0. So (0, 0) is a critical 

point. If x < 0 then d

d

y

x
 < 0 and if x > 0 then d

d

y

x
 > 0. Thus 

(0, 0) is a point of minimum.

 Example 32: Let f (x) = (ax + b)/(cx + d ) (da – cb π 0, c π 0) 
then f (x) has
 (a) a critical point (b) no point of inflection
 (c) a maximum (d) a minimum
Ans. (b)

 Solution: f ¢(x) = 
da cb

cx d

-
+

π
( )2

0  for any x Œ R so f has 

no critical point in particular no minimum and no maximum. 
Now 

f ≤(x) = 
- -

+
π2

0
3

( )

( )

da cb c

cx d
 for any (x, f (x)). Hence f  has no 

point of inflection.

 Example 33: Let f (x) = (x – a)m (x – b)n, where m, n Œ I 
and m, n > 1. Then
 (a) (a, 0), (b, 0) are the only critical points of f
 (b) there are m + n critical points of f
 (c) there are exactly three critical points of f
 (d) none of these
Ans. (c)

 Solution: f ¢(x) = m (x – a)m – 1 (x – b)n + n (x – a)m 
(x – b)n – 1

= (x – a)m – 1 (x – b)n – 1 [(m + n)x – (mb + na)]. Thus f ¢(x) = 

0 fi x = a, x = b, x = +
+

mb na

m n
. So f has exactly three criti-

cal points.

 Example 34: A ball is dropped from a platform 19.6 m 
high. Its position function is

 (a) x = – 4.9t2 + 19.6 (0 £ t £ 1)
 (b) x = – 4.9t2 + 19.6 (0 £ t £ 2)
 (c) x = – 9.8t2 + 19.6 (0 £ t £ 2)
 (d) x = – 4.9t + 19.6 (0 £ t £ 2)
Ans. (b)

 Solution: We have a = 
d x

dt

2

2
 = – 9.8. The initial condi-

tions are x (0) = 19.6 and v (0) = 0.

So v = 
dx

dt
 = – 9.8t + v(0) = – 9.8t

\ x = – 4.9t2 + x (0) = – 4.9t2 + 19.6
Now, the domain of the function is restricted since the ball 
hits the ground after a certain time. To find this time we set 
x = 0 and solve for t.
 0 = – 4.9t2 + 19.6  fi  t = 2

Thus x = – 4.9t2 + 19.6        (0 £ t £ 2)

 Example 35: Let f (n) = 20n – n2 (n = 1, 2, 3…), then
 (a) f (n) Æ • as n Æ •
 (b) f (n) has no maximum
 (c) The maximum value of f (n) is greater than 200.
 (d) None of these
Ans. (d)

 Solution: Consider f(x) = 20x – x2, defined for all real 
number x. f ¢ (x) = 20 – 2x and f ≤(x) = – 2. Hence x = 10 is 
a point of maximum. Thus the maximum value of f (n) is 
200 – 100 = 100.

 Example 36: The point of the curve y = x2 that is closest 
to (4, – 1/2) is
 (a) (1, 1) (b) (2, 4)
 (c) (2/3, 4/9) (d) (4/3, 16/9)
Ans. (a)

 Solution: Let the required point be (x, y) on the curve so 

d = ( ) /x y- + +( )4 1 22 2  should be minimum. It is enough 
to consider
 D = (x – 4)2 + (y + 1/2)2 = (x – 4)2 + (x2 + 1/2)2.
 D¢ = 4x3 + 4x – 8. Now for critical points
 D¢ = 0 so x3 + x – 2 = 0 fi x = 1. Clearly D≤ 
at x = 1 is 16 > 0. Thus D is minimum when x = 1. So the 
required point is (1, 1)

 Example 37: The smallest value of M such that | x2 – 3x 
+ 2| £ M for all x in the interval [1, 5/2] is
 (a) 1/4 (b) 3/4
 (c) 5/4 (d) 5/16
Ans. (b)

 Solution: Consider f (x) = x2 – 3x + 2 on [1, 5/2]. Now f ¢(x) 
= 2x – 3 so the only critical point is 3/2. Since f (1) = 0, f (3/2) 
= – 5/4 and f (5/2) = 3/4. min {f (x): xŒ[1,5/2]} = 0, hence the 
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max {| f (x)|: x Œ [1, 5/2]} = max { f (x): x Œ [1, 5/2]} = 3/4. Thus  
M = 3/4.

 Example 38: The number of solutions of the equation 
a f(x) + g(x) = 0, where a > 0, g (x) π 0 and g (x) has minimum 
value 1/2, is 
 (a) one  (b) two 
 (c) infinitely many (d) zero
Ans. (d)

 Solution: a f(x) = – g(x) £ – 1/2, since g (x) ≥ 1/2 for 
all x. But this is not possible as a f (x) > 0 for all x. Thus the 
number of solution is zero.

 Example 39: The minimum value of  f (x) = | 3 – x | + 
| 2 + x | + | 5 – x | is 
 (a) 0 (b) 7
 (c) 8 (d) 10

 Solution: 

 f (x)  = 

6 3 2

10 2 3

4 3 5

3 6 5

- < -
- - £ <
+ £ <
- ≥

Ï

Ì
ÔÔ

Ó
Ô
Ô

x x

x x

x x

x x

,

,

,

,

The function f is decreasing for x Œ (- •, 3) and increases on 
(3, •). Hence x = 3 is a point of minimum and min f (x) = 7.

 Example 40: If f (x) = x (x – 2) (x – 4), 1 £ x £ 4, then a 
number satisfy ing the conclusion of the mean value theorem is
 (a) 1 (b) 2
 (c) 5/2 (d) 7/2
Ans. (a)

 Solution: f ¢(x) = (x - 2) (x - 4) + x(x - 4) + x (x - 2) = 

3x2 – 12x + 8. Also f (4) = 0 and f (1) = 3. Thus 
f f( ) ( )4 1

4 1

-
-

 
= - 1. We must have - 1 = f ¢(x) 

fi 3x2 - 12x + 9 = 0

fi x2 - 4x + 3 = 0

fi x = 1 or x = 3.

 Example 41: The sum of the intercepts of a tangent to 

x y a+ = , a > 0 upon the coordinate axes is 

 (a) 2a (b) a

 (c) a/2 (d) a
Ans. (b)

 Solution: 
1

2

1

2x y

y

x
+ d

d
 = 0 fi 

d

d

y

x
 = - y

x
. 

Equation of tangent at any point (x, y) of the curve is Y - y 

= - y

x
 (X - x). So intercepts of X-axis and Y-axis are x + 

x y  and y + xy .

Therefore, the sum of intercepts = x + y + 2 x y  = 

x y+( )2
 = a.

 Example 42: Let x and y be two real numbers such that  
x > 0 and xy = 1. The minimum value of x + y is
 (a) 1 (b) 1/2
 (c) 2 (d) 1/4
Ans. (c)

 Solution: If xy = 1 then S = x + y = x + 1/x and S¢(x) = 
1 - 1/x2 fi S¢(x) = 0 ¤ x = 1 (as x > 0). Also S¢¢(x) = 2/x3 > 
0 for x = 1. Hence minimum value of x + y is 2.

Alternatively S = x
x

x
x

+ = -Ê
ËÁ

ˆ
¯̃

1 1 2

 + 2 ≥ 2 and S = 2 for 

x = 1. Hence the minimum value of S is 2.

 Example 43: The function 
sin

sin

x

x

+( )
+( )

a
b

 has no maximum 

or minimum if (k an integer)
 (a) b – a = k p (b) b – a π k p
 (c) b – a = 2k p (d) none of the above
Ans. (b)

 Solution: Let f (x) = 
sin

sin

x

x

+( )
+( )

a
b

, so that 

 f ¢(x) =  
sin cos cos sin

sin

x x x x

x

+( ) +( ) - +( ) +( )
+( )

b a b a
b2

 = 
sin

sin

a b
b

-( )
+( )2 x

Thus, f (x) has no maximum or minimum if f¢ (x) π 0. i.e. if 
sin (b – a) π 0 equivalently b – a π kp, k Œ I.

 Example 44: The tangent to the curve y = x3 – 6x2 + 9x + 
4, 0 £ x £ 5 has maximum slope at x which is equal to 
 (a) 2 (b) 3 
 (c) 4 (d) none of these 
Ans. (d)

 Solution: u = d

d

y

x
 = 3x2 – 12x + 9. For u to be maximum 

or minimum d

d

u

x
 = 0 which is true if and only if 6x – 12 = 

0 ¤ x = 2. Now u (0) = 9, u (2) = – 3 and u (5) = 24. Thus 
the maximum of u (x), 0 £ x £ 5 is u (5) so x = 5.

 Example 45: The set of all values of the parameters a 

for which the points of minimum of the function y = 1 + a2x 

– x3 satisfy the inequality 
x x

x x

2

2

2

5 6

+ +
+ +

 £ 0 is 

 (a) an empty set 

 (b) - -( )3 3 2 3,

 (c) 2 3 3 3,( )
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 (d) - -( )3 3 2 3,  » 2 3 3 3,( )
Ans. (c)

 Solution: 
d

d

y

x
 = a2 - 3x2 = 0 ¤ x = ± a/ 3 . Since 

d

d

2 y

x2  

= - 6x so y is minimum for x = - a/ 3 .

Since x2 + x + 2 > 0 for all x so for 
x x

x x

2

2

2

5 6

+ +
+ +

 £ 0, we must 

have x2 + 5x + 6 < 0. If x = - a/ 3 , we have a2/3 - 5a/ 3  

+ 6 < 0 i.e. a2 - 5 3  a + 18 < 0 ¤ (a - 2 3 ) (a - 3 3 ) 

< 0 i.e. a Œ ( 2 3 3 3, ).

 Example 46: The point of intersection of the tangents 
drawn to the curve x2y = 1 – y at the points where it is met by 
the curve xy = 1 – y is given by 
 (a) (0, – 1) (b) (1, 1)
 (c) (0, 1) (d) none of these
Ans. (c)

 Solution: The intersection of x2y = 1 - y and xy = 1 - y 
are given by x2 y = xy. Since y π 0 on any of two curves so we 
must have x = 0, 1. Thus the curves intersects at (0, 1); (1, 1/2).

 Now, differentiating x2 y = 1 - y, we have 
d

d

y

x
 = -

+
2

1 2

x y

x
.  

Thus 
d

d

y

x 0 1,( )
 = 0 and 

d

d

y

x 1 1 2, /( )
 = - 

1

2
. Equations of tan-

gents are Y = 1 and Y - 1/2 = (-1/2) (X - 1). Their intersec-
tion is given by (0, 1).

 Example 47: The equation of the tangent to the curve  

y = (2x – 1) e2(1 – x) at the point of its maximum is 
 (a) y = 1 (b) x = 1
 (c) x + y = 1 (d) x – y = – 1
Ans. (a)

 Solution: y¢(x) = - 2 (2x - 1) e2(1 – x) + 2e2(1 – x) = 2e2(1 – x) 
(- 2x + 2) 
 Thus y ¢(x) = 0 fi x = 1. Since, y¢¢(1) < 0 so (1, 1) is 
the point of maximum and an equation of tangent to the 
curve is y - 1 = 0 (x - 1), i.e. y = 1. 

 Example 48: If the function f (x) = x2 + a /x has a local 
minimum at x = 2, then the value of a is 
 (a) 8 (b) 18
 (c) 16 (d) none of these
Ans. (c)

 Solution: f ¢(x) = 2x – a/x2, so f ¢ (x) = 0 ¤ 2x =  a/x2 

¤ x = (a /2)1/3. Clearly for x = (a/2)1/3, we have f ≤ (x) > 0. 

So 2 = (a/2)1/3 fi a = 16.

 Example 49: Three normals are drawn to the parabola 

y2 = 4x from the point (c, 0). These normals are real and 
distinct when 
 (a) c = 0  (b) c = 1 
 (c) c = 2  (d) c = 3
Ans. (d)

 Solution: Any point on y2 = 4x is (t2, 2t). Since 
d

d

y

x
 = 

2

y
 

so 
d

d

y

x t t2 2,( )
 = 

2

2 t
 = 1

t
. Hence equation of normal at (t2, 2t) is 

 Y - 2t = - t (X - t2) 

This passes through (c, 0) if  - 2t = - t (c - t2)

fi t = 0, t2 = c - 2 
Thus the roots are real and distinct if c > 2 so c = 3 is the 
correct choice.

 Example 50: The function f (x) = (log (x – 1))2 (x – 1)2 has 
 (a) local extremum at x = 1 
 (b) point of inflection at x = 1 
 (c) local extremum at x = 2 
 (d) point of inflection at x = 2
Ans. (c)

 Solution:  f ¢(x) = (x - 1)2 2 log (x - 1) . 1/(x-1) + 
2(log (x -1))2(x - 1) 
 = 2 (x – 1) [log (x - 1)] [1 + log (x - 1)]
 f ¢(x) = 0 fi x = 2 or 1 + e-1,  since the domain of f is 

{x : x > 1}.

 f ≤(x) =  2 log (x - 1) (1 + log (x - 1)) + 2 (x - 1) ¥ 

1

1

2

1
1

x x
x

-
+

-
-È

ÎÍ
˘
˚̇

log( )

 f ≤(2) = 2 > 0. Hence x = 2 is a point of extremum.

 Example 51: If f(x) = log x satisfies Lagrange's theorem 
on [1, e] then value of c Œ (1, e) such that the tangent at c is 
parallel to line joining (1, f (1)) and (e, f(e)) is

 (a) e - 3

2
 (b) 

1

2

+ e

 (c) e – 1 (d) e - 1

2
Ans. (c)

 Solution:  f ¢(c) = 
1

c

So 
f e f

e

( ) ( )-
-

1

1
 = f c

c
¢ =( )

1

fi 
log loge

e

-
-

1

1
 = 

1

c

fi 
1

1e -
 = 

1

c
  fi c = e – 1
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 Example 52: The value of c for which the conclusion 
of Lagrange's theorem holds for the function f(x) = 

a x a2 2 1- >,  on the interval [1, a] is

 (a) 
a a( )+ 1

2
 (b) 

1

2

+ a

 (c) 
a a( )+ 1

2
 (d) 

a a( )-1

2
Ans. (c)

 Solution:  
f a f

a

( ) ( )-
-

1

1
 = f c

c

a c
¢ = -

-
( )

2 2

 
a a a

a

2 2 2 1

1

- - -
-

 = 
-

-

c

a c2 2

fi - +
-

a

a

1

1
 = -

-

c

a c2 2

fi 
a

a

+
-

1

1
 = 

c

a c

2

2 2-
fi (a + 1) (a2 – c2 ) = c2 (a – 1)
fi c2(–a – 1 + 1 – a) = –(a + 1)a2

fi c2 (2a) = (a + 1)a2

fi c2 = ( )a a+ 1

2

Since c Œ (1, a) so c = ( )a a+ 1

2

 Example 53: Let f(x) = 
x a x

x x x

- + £

+ + >
Ï
Ì
Ó

2 2

4 3 1 22

,

,

if

if
If f(x) has a local minimum at x = 2, then 
 (a) a > 21 (b) a £ 21
 (c) a > 30 (d) a > 24
Ans. (b)

 Solution: Since f has a local minimum at x = 2

So f(2) £ f(x) for x in an open interval around 2.

fi f(2) £ lim ( )f x
xÆ +2

Thus, a = f(2) £  lim
x

x x
Æ

+ + =
2

24 3 1 21

 Example 54 If y = mx + 2 is parallel to a tangent to 

curve e4y = 1 + 16x2 then
 (a) ˙ṁ  £ 1 (b) ˙ ṁ  < 1
 (c) ˙ ṁ  > 1 (d) ˙ṁ  ≥ 1
Ans. (a)

 Solution Differentiating, we have

 4 4e
dy

dx
y  = 32 x

fi 
dy

dx
 = 

8

1 16 2

x

x+

According to the given condition

 m = 
8

1 16 2

x

x+

 ˙ ṁ  = 
8

1 16
1

2

x

x+
£  (since 16x2 – 8 ˙ ẋ  + 1

 = (4 ˙ ẋ  – 1)2  0)

 Example 55: Given the function f (x) = x2 e–2x, x > 0. 
Then f (x) has the maximum value equal to 
 (a) e–2  (b) (2e)–1

 (c) e–1 (d) none of these.
Ans. (a)

 Solution: f ¢(x) = 2xe–2x - 2x2e–2x = 2(1- x)x e–2x . Now,  
f ¢(x) = 0
¤ x = 1, 0. Also f ≤(x) = 2 (1 - x)e-2x - 2xe-2x 
- 4(1 - x)xe-2x, so f ≤(1) 
= - 2e–2 < 0 and f ≤(0) > 0. Thus max f (x) = f (1) = e–2.

 Example 56: Let f (x) = (x – 4) (x – 5) (x – 6) (x – 7) then 
 (a) f ¢(x) = 0 has four real roots
 (b) three roots of f ¢(x) = 0 lie in (4, 5) » (5, 6) » (6, 7)
 (c) the equation f ¢(x) = has only two roots 
 (d) three roots of f ¢(x) = 0 lie in (3, 4) » (4, 5) » (5, 6)
Ans. (b)

 Solution: Since f (4) = f (5) = f (6) =  f (7) = 0, so by 
Rolle’s theorem applied to the intervals [4, 5], [5, 6], [6, 7] 
there exist x1 Œ (4, 5), x2 Œ (5, 6), x3 Œ (6,7) such that f ¢(x1) 
= f ¢(x2) = f ¢(x3) = 0. Since f ¢ is a polynomial of degree 3 so 
cannot have four roots.

 Example 57: If f (x) = 
x

x

2

2

1

1

-
+

 for every real number x, 

then the minimum value of f
 (a) does not exist because f is unbounded
 (b) is not attained even though f is bounded
 (c) is equal to 1
 (d) is equal to – 1
Ans. (d)

 Solution: We have f (x) = 
x

x x

2

2 2

1

1
1

2

1

-
+

= -
+

f (x) will attain its minimum value when 2/(x2 + 1) is maxi-
mum i.e. when x2+ 1 is minimum i.e. at x = 0. Thus min f (x) 
= f (0) = – 1. Since –1 £ f(x) < 1 so f is bounded.

 Example 58: For all x Œ (0, 1)
 (a) ex < 1 + x (b) loge (1 + x) < x
 (c) sin x > x (d) loge x > x
Ans. (b)

 Solution: Since ex = 
x

n

n

n !=

•

Â
0

 > 1 + x for x > 0 so (a) is not 

true. Also log x is an increasing function so x > log (1 + x).  
Again ex > x for x > 0 so x > loge x. We know that 
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sin x = x
x x

x
x x- + º = - - +º

Ê
ËÁ

ˆ
¯̃

3 5 3 5

3 5 3 5! ! ! !
 The terms in-

side the brackets are positive since x Œ (0, 1) so sin x < x.

 Example 59: Let f be a differentiable function on R and 
h (x) = f (x) – (f (x))2 + (f (x))3 for all x Œ R. Then
 (a) h increases whenever f decreases
 (b) h decreases whenever f increases
 (c)  h increases or decreases accordingly as 

f increases or decreas es
 (d) nothing can be claimed in general
Ans. (c)

 Solution: h¢ (x) = f¢ (x) – 2f (x) f ¢(x) + 3(f (x))2 f ¢(x)

 = f ¢(x) [1 – 2f (x) + 3(f (x))2]

Since 1 – 2f (x) + 3(f (x))2 = 3
1

3

2

9
0

2

f x( ) -Ê
ËÁ

ˆ
¯̃ +

È

Î
Í

˘

˚
˙ >  for all x 

so h ¢ (x) > 0 or < 0 accordingly as f ¢(x) > 0 or < 0. Hence h 
increases or decreases according as f increases or de creases.

 Example 60: Let f(x) = ax3 + bx2 + cx + d, b2 – 3ac > 0, 
a > 0, c < 0. Then f(x) has
 (a) local maximum at some x Œ R+ 
 (b) a local maximum at some x ŒR–

 (c) a local minima at x = 0
 (d)  local minima at some x Œ R–, 

R+ = (0, •). R– = (– •, 0)
Ans. (b)

 Solution: f ¢(x) = 3ax2 + 2bx + C. The discriminant D = 
4b2 – 12ac = 4(b2 – 3ac) > 0

So f ¢(x) = 0 has exactly two real roots say a, b so f ¢(x) = 

3a(x – a) (x – b). But c

a
 < 0 fi ab < 0. So we have a < 0, 

b > 0 or a > 0, b > 0. If a < 0, b > 0, for x < a, f ¢(x) > 0 and 
for x > a but near to a, f ¢(x) > 0. Also for x < b, but close to 
b, f ¢(x) < 0 and for x > b, f ¢(x) > 0. Thus f has local maxima 
at x = a which is R– and f has local minima at x = b Œ R+

In case a > 0, b < 0, our conclusion is same i.e., local min-
ima at x = a and local maxima at x = b.

 Example 61: If f(x) = 
3 2

14 48 2

2- £

+ - - >

Ï
Ì
Ô

ÓÔ

x x

a x x

,

,
 and 

f(x) has a local maxima at x = 2, then
 (a) a cannot be determined
  (b) least value of a is 2011
 (c) greatest value of a is 2011
  (d) a ≥ 3010
Ans. (c)

 Solution: Since f has local maxima at x = 2, so 
lim
h Æ 0

 f(2 + h) £ f(2)

Since   lim
h Æ -0

f(2 + h) = lim
h Æ -0

 3 – (2 + h)2 = f(2)

So we must have lim
h Æ +0

 f(2 + h) £ f(2)

fi  lim
h

a h
Æ +

+ - + -
0

14 2 48 £ – 1

fi      a + 14  £46 – 1 = 45
fi        a £ 2011.
The greatest value of a is 2011.

 Example 62: The total number of local maxima and 
local minima of the function

 f(x) = 
2 3 1

2

3

2 3

+( ) - < £ -

- < <

Ï
Ì
Ô

ÓÔ

x x

x x

,

,/

 (a) 0  (b) 1
 (c) 2  (d) 3
Ans. (c)

 Solution: Since lim
x Æ - -1

 f(x) = lim
x Æ - +1

 f(x) = 1

So, f is continuous on (– 3, 2). Also

 f ¢(x) = 
3 2 3 1

2 3 1 0 0 2

2

1 3

x x

x x x

+( ) - < < -

( ) - < < < <

Ï
Ì
Ô

ÓÔ -

,

/ , ,/

f  ¢(0) does not exist

 L f  ¢(–1) = lim
x Æ - -1

f x f

x

( ) - ( )
+

1

1
 = lim

x

x

xÆ - -

+( ) -
+1

32 1

1

 = lim
x

x x x

xÆ- -

+( ) +( ) + +( ) +ÈÎ ˘̊

+1

21 2 2 1

1
 = 3.

 Rf ¢(– 1) = lim
/

x

x

xÆ- +

-
+1

2 3 1

1

 = lim
/ /

/ / /x

x x

x x xÆ +

-( ) +( )
+( ) + +( )1

1 3 1 3

1 3 2 3 1 3

1 1

1 1
 =  – 2

So f is not differentiable at x = – 1
For x π 0, – 1, f ¢(x) π 0. Critical points of f are – 1, 0. At 
x = – 1, f  has a local maximum and at x = 0, f  has a local 
minimum.

 Example 63: Let g : R Æ (– p/2, p/2) be given by g(u) 
= 2 tan–1(eu) – p/2, then g is
 (a) even and is strictly increasing in (0, •)
 (b) odd and is strictly decreasing in (– •, •)
 (c) odd and is strictly increasing in (– •, •)
 (d)  neither even nor odd, but is strictly increasing in 

(– •, •).
Ans. (c) 

 Solution: g(– u) = 2 tan– 1 
1

2
eu

Ê
ËÁ

ˆ
¯̃ - p /

 = 2 cot– 1 eu – p/2
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 = 2 2 21p p/ tan /-ÈÎ ˘̊ -- eu

 = p / tan2 1- = - ( )- e g uu

Also,  g¢(u) = 
2

1 2

e

e

u

u+
 > 0 " u Œ R

Thus g is an odd function which is strictly increasing on R.

 Example 64: Let f(x) = 
x x x

x

a log ,

,

if

if

>
=

Ï
Ì
Ó

0

0 0

If Rolle’s theorem can be applied to f on [0, 1] then value 
of a can be
 (a) – 1  (b) – 1/2
 (c) 0  (d) 1/2
Ans. (d)

 Solution: For the Rolle’s theorem to be applicable on 
[0, 1], we must have that f is continuous on [0, 1] and in 
particular at x = 0 from the right.

So  lim log
x

x x
Æ +0

a  = f(0) = 0

fi  lim
log

x

x

xÆ + -0 a
 = 0

fi  lim
/

x

x

xÆ + - -
( )

-( )0 1

1

a a  = 0 fi lim
x

x
Æ +

=
0

0
a

a–

This is possible only if a > 0.

 Example 65: Suppose that f(x) = x3 – px + q has three 
distinct real roots where p, q > 0. Then which one of the 
following hold?

 (a) f(x) has minima at 
p

3
 and maxima at –

p

3
.

 (b) f(x) has minima at –
p

3
 and maxima at 

p

3
.

 (c) f (x) has minima at both 
p

3
 and –

p

3
.

 (d) f (x) has maxima at both 
p

3
 and –

p

3
.

Ans. (a)

 Solution: As f(x) = 0 has three real and distinct zero so 
f¢(x) = 3x2 – p = 0 has two real and distinct zeros by Rolle’s 
Theorem.

So  x = ± p

3
.

f ¢ (x) > 0 if  x < –
p

3
; f ¢(x) < 0 if –

p

3
 < x < 

p

3
; 

f ¢(x) > 0 if  x  >
p

3
.

Thus f(x) has a local maximum at x = –
p

3
 and a local 

minimum at x = 
p

3
.

 Example 66: Given P(x) = x4 + ax3 + bx2 + cx + d such 
that x = 0 is the only real root of P¢(x) = 0.
If P(– 1) < P(1), then in the interval [– 1, 1]
 (a)  P(– 1) is the minimum but P(1) is not the maximum 

of P
 (b)  neither P(– 1) is the minimum nor P(1) is the 

maximum of P
 (c)  P(– 1) is the minimum and P(1) is the maximum 

of P
 (d)  P(– 1) is not minimum but P(1) is the maximum 

of P
Ans. (d)

 Solution: P¢(x) = 4x3 + 3ax2 + 2 bx + c
As  P¢(0) = 0 so c = 0
\  P¢(x) = x(4x2 + 3ax + 2b)
As x = 0 is the only real root of P¢(x) = 0, roots of 4x2 + 3ax 
+ 2b must have imaginary roots, 
therefore 4x2 + 3ax + 2 b > 0 " x Œ �
Thus  P¢(x) < 0 for x < 0
 > 0 for x > 0
Therefore, x = 0 is a point of local minimum at x = 0 As 
P(– 1) < P(1), we get P(1) is maximum but P(– 1) is not 
minimum of P on [– 1, 1].

 Example 67: Let f : R Æ R  be defined by

 f(x) =  
k x x

x x

- £ -
+ > -

Ï
Ì
Ó

2 1

2 3 1

,

,

if

if

If f has a local minimum at x = – 1, then a possible value 
of k is
 (a) –1/2  (b) – 1
 (c) 1  (d) 0
Ans. (b)

 Solution: If f has a local minimum at x = – 1 then 
lim
h

f h f k
Æ

- +( ) ≥ -( ) = +
0

1 1 2

fi  lim
h

f h
Æ +

- +( )
0

1  ≥ k + 2

fi  lim
h

h
Æ +

- +( ) +
0

2 1 3  ≥ k + 2 

fi 1 ≥  k + 2 fi k £ –1.

 Example 68: The value of a in order that f(x) = sin x – 
cosx – ax + b decreases for all real values of x is given by

 (a) a ≥ 2  (b) a < 2

 (c) a ≥ 1 (d) a < 1
Ans. (a)
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 Solution: f ¢(x) = cos x + sin x – a

 = 2 4sin /x a+( ) -p
 f ¢(x) £ 0 for all x if

 a ≥  max sin /
x

x
Œ

+( ) =
R

2 4 2p

 Example 69: The curve that passes through the point  
(2, 3), and has the property that the segment of any tangent to 
it lying between the coordinate axes is bisected by the point 
of contact, is given by :

 (a) 2y – 3x = 0 (b) y
x

= 6

 (c) x2 + y2 = 13 (d) x y

2 3
2

2 2Ê
ËÁ

ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃ =

Ans. (b)

 Solution: The equation of tangent at (x, y) to the curve 
y = f(x) is given by

 Y – y = 
dy

dx
X x-( )

This tangent meets the axes at A x y
dx

dy
-Ê

ËÁ
ˆ
¯̃

,0  and 

B y x
dy

dx
0, -Ê

ËÁ
ˆ
¯̃ . We are given mid point of AB as (x, y) so,

  
1

2
x y

dx

dy
x-Ê

ËÁ
ˆ
¯̃

=  and 1

2
y

xdy

dx
y-Ê

ËÁ
ˆ
¯̃ =

fi  dx

x

dy

y
+ = 0   fi  log xy C=

 fi  xy = ± e c = A
As it passes through (2, 3) so A = 6
 \ xy = 6 or y = 6/x

 Example 70: A spherical balloon is filled with 4500 p 
cubic meters of helium gas. If a leak in the balloon causes 
the gas to escape at the rate of 72 p cubic meters per minute, 
then the rate (in meters per minute) at which the radius of 
the balloon decreases 49 minutes after the leakage began is :
 (a) 7/9 (b) 2/9
 (c) 9/2 (d) 9/7
Ans. (b)

 Solution: Let r be the radius of the balloon and V be its 
volume. It is given that 

  
dV

dt
= - 72p

  d

dt
r

4

3
723p pÊ

ËÁ
ˆ
¯̃ = -  fi 

4

3
723p pr t C= - +

When t = 0, 
4

3
45003p pr V= =

\  
4

3
4500 723p p pr t= -

When t = 49, 
4

3
3p r  = 4500 p – (72 p) (49) = 972 p

fi r3 = 729 so r = 9

Also, 
d

dt
r

4

3
723p pÊ

ËÁ
ˆ
¯̃ = -   fi 4 p r2 

dr

dt
 = –72 p

fi  
dr

dt r r
= - = -72

4

18
2 2

p
p

. So 
dr

dt r=
= -

9

2

9
.

Assertion-Reason Type Questions

 Example 71: Let f(x) = 2 x  and g(x) = 3 1– x , x > 1
Statement-1: f (x) > g(x) (x > 1)
Statement-2: f (x) – g(x) increases on (1, •)
Ans. (a)

 Solution: f ¢(x) – g¢(x) = 
x

x

3 2

2

1–
 > 0 for x > 1

Hence f (x) – g(x) > f(1) – g(1) = 0, x > 1
Therefore f (x) > g(x), x > 1.

 Example 72: Let f(x) = x4 – 2x2 + 5 be defined on [– 2, 2]
Statement-1: The range of f(x) is [2, 13]
Statement-2: The greatest value of f is attained at x = 2
Ans. (d)

 Solution: f ¢(x) = 4x3 – 4x = 4x(x – 1) (x + 1). The criti-
cal points of f are 0, – 1, 1 But f (0) = 5, f (1) = 4, f(– 1) = 

4, f(2) = 13. So the range of f is [4, 13] and grea, test value 
of f is at x = 2.

 Example 73: Let f(x) = 2x3 + 3x2 – 12x + 1
Statement-1: f decreases on (– 2, 1)
Statement-2: The solution set of x2 + x – 2 < 0 is (– 2, 1).
Ans. (a)

 Solution: f ¢(x) = 6x2 + 6x – 12 = 6(x – 1) (x + 2)

So f ¢ (x) < 0 if and only if x Œ (– 2, 1).

 Example 74: Let y = x
a

x
+

2

 (a > 0) 

Statement-1: ymax = – 2a (local mix)

Statement-2: ymin = 2a (local min)
Ans. (b)
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 Solution: y ¢(x) = 1
2

2 2
–

–a

x

x a x a

x
= ( ) +( )

fi  y ¢ (x) > 0 for x Œ (a, •) » (– •,– a) and y ¢ (x) < 0 for 
x Œ (– a, a). Therefore y is local maximum at x = – a 
and loval minimum at x = a.

 Example 75: Let f(x) = (x – 1) (x – 2) (x – 3) (x – 4)

Statement-1: f ¢ (x) = 0 has three roots lying in (1, 2) » 
(2, 3) » (3, 4)
Statement-2: Rolle’s theorem is valid for f on [1, 4]
Ans. (b)

 Solution: Applying Rolle’s theorem on [1, 2], [2, 3], 
[3, 4], we get three roots of f ¢(x) = 0 on (1, 2) (2, 3), (3, 4).

 Example 76: Let f be a function defined by 

 f(x) = 
tan

,

,

x

x
x

x

if

if

π

=

Ï
Ì
Ô

ÓÔ

0

1 0

Statement-1: x = 0 is point of maxima of f
Statement-2: f ¢ (0) = 0
Ans (b)

 Solution: Let g(x) = tan x – x, –p/2 <x < x/2

fi g ¢(x) = see2x – 1 = tan2 x > 0 for –p/2 < x < p/2

fi g increases on (–p/2, p/2)
fi tan x < x for –p/2 < x < p/2

Thus f(x) = 
tan x

x
 < 1 for –p/2 < x < p/2, x π 0

and f(1) = 1, \ x = 0 in point of maxima.

Also lim
( ) ( )

lim
tan

x x

f x f

x

x x

xÆ Æ

-
-

= -
0 0 2

0

0

  = lim
sec

lim
tan

x

x

x

x

xÆ

- = =
0

2 21

2

1

2
0

Hence f ¢(0) = 0
Thus, both the statements are true. However statement: 2 in 
not a correct explanation of statement: 1.

 Example 77: Let a, b Œ R be such that the function f 
given by f(x) = log |x| + bx2 + ax, x π 0 has extreme values at 
x = –1 and x = 2
Statement-1: f has local maximum at x = –1 and at x = 2
Statement-2: a = 1/2 and b = –1/4.
Ans. (a)

 Solution: f ¢(x) = 
1

2 0
x

bx a x+ + π,

As x = –1 and x = 2 are extreme value of f, f ¢(–1) = 0 and 
f ¢(2) = 0

fi –1 –2b + a = 0 and 
1

2
4 0+ + =b a

Solving these equations, we get a = 1/2, b = –1/4

Thus f ¢(x) = 
1 1

2

1

2

1

2
1 2

x
x

x
x x- + = - + -( )( ).

We have f ¢(x) > 0, if x < –1; f ¢(x) < 0, if –1 < x < 0; f ¢(x)  
> 0, if 0 < x < 2 and f ¢(x) <0, if x > 2.
Therefore, f(x) has a local maximum at x = –1 and x = 2. 
Thus statement-1 and statement-2 are True and statement-2 
is a correct explanation for statement :1.

 Example 78: Statement 1: xy > yx, e < x < y

Statement 2: f(x) = 
log x

x
 is a decreasing function for x > e.

Ans. (a)

 Solution: Let f(x) = log x

x

 f ¢(x) = 1
2

- log x

x

Thus f ¢(x) > 0 if 1 – log x > 0 i.e. log x < 1 i.e. x < e and 
f ¢(x) < 0 if x > e.

So f increases on (0, e) and decreases on (e, •)

 e < x < y fi f(x) > f(y) fi 
log logx

x

y

y
>

fi y log x > x log y fi xy > yx.

 Example 79: Let f(x) = | x – 7| + | x – 10| + | x – 12|
Statement 1: f(x) has a minimum at x = 12
Statement 2: f is not differentiable at x = 12
Ans. (d)

 Solution: f (x) = 

29 3 7

15 7 10

5 10 12

3 29 12

- <
- £ <

- £ <
- ≥

Ï

Ì
ÔÔ

Ó
Ô
Ô

x x

x x

x x

x x

,

,

,

,

Since f ¢(x) changes sign around x = 10 from negative to 
positive f has minimum at x = 10.
 f is clearly not differentiable at x = 12.

 Example 80: Let b, c be two non-zero real numbers 
such that b2 £ 3c

Let f (x) = x3 + bx2 + cx + d, x Œ R.

Statement 1: f is 1–1 function
Statement 2: f is strictly function
Ans. (c)

 Solution: f ¢(x) = 3x2 + 2 bx + c

The discriminant of f ¢ is 4b2 – 12c = 4(b2 – 3c) < 0.
So, f ¢(x) > 0.  Hence f is an increasing function. 
If there exists x1, x2 s.t. x1 π x2 (say x1 < x2) and f (x1) = f (x2) 

then by Rolle's theorem there is c Œ (x1, x2) such that f ¢(c) 

= 0 but f ¢(x) > 0 for all x. So f is 1 – 1.
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LEVEL 2

Straight Objective Type Questions

 Example 81: The point M (x, y) of the graph of the 
function y = e–|x| so that area bounded by the tangent at M 
and the coordinate axes is greatest is
 (a) (1, e–1) (b) (2, e–2)
 (c) (– 2, e2 ) (d) (0, 1)
Ans. (a)

 Solution: For x ≥ 0, y = e–x. The equation of tangent is 
Y – y = – e–x (X – x). This will intersect coordinate axes at 
(x + yex, 0) and (0, y + xe–x ). Hence the area of the required 

triangle A is 
1

2
 (y + xe–x) (x + yex)

   = 
1

2
 (1 + x)2 e–x  [∵ y = e–x ]

Now 
d

d

A

x
  = 

1

2
 [– (1 + x)2 e–x + 2(1 + x)e–x]

   = 
1

2
 (1 + x)e–x (1– x)

Note that 
d

d

A

x
x= fi = -0 1 1,

Also, dA

dx
 > 0, if 0 £ x < 1 and d

d

A

x
 < 0 if x < 1. Hence A is 

maximum when x = 1 so y = e–1. Since y is even function 
other possibility of M is (–1, e–1).

 Example 82: The abscissa of the point on the curve 9y2 
= x3, the normal at which cuts off equal intercepts on the 
coordinate axes is
 (a) 2 (b) 4
 (c) – 4 (d) – 2
Ans. (b)

 Solution: Differentiating 9y2 = x3 we have 
d

d

y

x

x

y
=

2

6
. 

Any point on the curve is of the form (t2, t3/3) and so 
d

d

y

x
 at 

this point is t/2. Thus an equation of normal is 
 y – t3/3 = (– 2/t) (X – t2)
This will intersect coordinate axes at (0, 2t + t3/3) and 

t
t

4
2

6
0+

Ê
ËÁ

ˆ
¯̃

, . Hence we must have

 2t + 
t3

3
 = t

t t
t

t2
4 2 3

6
2

3 6
+ fi + = +

Clearly t = 2 satisfies, the last equation. Hence the abscissa 
of the required point is 4. (For t = 0, the normal meets both 
the axes only at origin.)

 Example 83: A curve passes through the point (2, 0) 
and the slope of the tangent at any point (x, y) is x2 – 2x for 
all value of x. The point of maximum ordinate on the curve is
 (a) (0, 4/3) (b) (0, 2/3)
 (c) (1, 2/3) (d) (2, 4/3)
Ans. (a) 

 Solution: 
d

d

y

x
x x

d

dx

x
x c= - = - +

Ê
ËÁ

ˆ
¯̃

2
3

22
3

 y = x
x c

3
2

3
- +

Since the curve passes through (2, 0), we get 0 = 8/3 – 4  
+ c, i.e., c = 4/3
Hence the equation of the curve is

 y = 
x

x
3

2

3

4

3
- +

Now, from dy/dx = 0, we get x = 0 or 2. Also

 
d

d

2

2

y

x
 = 2 2 2 2

2

2
0

2

2
2

x
y

x
and

y

xx x

- fi = - =
= =

d

d

d

d

Hence at x = 0, y has a maximum. Thus the required point 
is (0, 4/3).

 Example 84: If the tangent to the curve 2y3 = ax2 + x3 at 
the point (a, a) cuts off intercepts a and b on the coordinate 
axes, where a 2 + b 2 = 61 then the value of |a| is
 (a) 16 (b) 28
 (c) 30 (d) 31
Ans. (c)

 Solution: The slope of the tangent is

 d

d

y

x
 = 

2 3

6

2

2

ax x

y

+

and the value of this slope at (a, a) is 5/6. Therefore, the 
equation
 y – a = 

5

6 5 6
1( )

/ /
,x a

x

a

y

a
- fi

-
+ =

represents the tangent. Thus the x-intercept a is – a /5, and 
the y-intercept b is a/6. From a 2 + b 2 = 61, we now get

 
a a2 2

25 36
+  = 61 fi  a2 = 25 × 36 fi |a| = 30.

 Example 85: The coordinates of the point on the 
parabola y2 = 8x, which is at minimum distance from the 
circle x2 + (y + 6)2 = 1 are 
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 (a) (2, – 4) (b) (18, – 12)
 (c) (2, 4) (d) none of these
Ans. (a)

 Solution: A point on the parabola is at a minimum dis-
tance from the circle if and only if it is at a minimum dis-
tance from the centre of the circle. Any point on the parabola 
y2 = 8x is of the form P(2t2, 4t). The centre of the circle 
x2 + (y + 6)2 = 1 is O (0, - 6)
 OP2 = 4t4 + (- 6 - 4t)2 = 4 (t4 + 4t2 + 12t + 9) 
Let A = t4 + 4t2 + 12t + 9 

 
d

d

A

t
 = 4t3 + 8t + 12 = 4 (t3 + 2t + 3)

 = 4(t + 1) (t2 - t + 3) 

So 
d

d

A

t
 =  0 if t = - 1. Moreover, 

 
d

d

2

2
1

A

t t = -

= 4 (3 (- 1)2 + 2) > 0.

Hence required point is P(2, - 4).

 Example 86: The equation ex – 8 + 2x – 17 = 0 has
 (a) two real roots (b) one real root
 (c) eight real roots (d) four real roots
Ans. (b)

 Solution: Clearly x = 8 satisfies the given equation. As-
sume that f (x) = ex – 8 + 2x - 17 = 0 has a real root a other 
than x = 8. We may suppose that a > 8 (the case for a < 8 
is exactly similar). Applying Rolle’s theorem on [8, a], we 
get b Œ (8, a), such that f ¢(b) = 0. But f ¢(b) = e b – 8 + 2, so 
that e b – 8 = -2 which is not possible. Hence there is no real 
root other than 8.

 Example 87: The maximum and minimum value of f(x) 

= ab sin x + b a1 2-  cos x + c lie in the interval ( assuming 
| a | < 1, b > 0 )
 (a) [b – c, b + c] (b) (b – c, b + c)
 (c) [c – b, b + c] (d) none of these
Ans. (c)

 Solution: f ¢(x) = ab cos x - b a1 2-  sin x = b cos  
(x + f) where f = cos –1 a. So f ¢(x) = 0 fi x = (2m + 1) 
(p/2 - f) 
Also f ≤(x) = - b sin (x + f). Thus f ≤(p/2 - f) = - b < 0 and 
f ≤ (3p/2 - f) = b > 0. Hence f has maximum at p/2 - f and 
minimum at 3p/2 - f. Moreover, max f = ab sin (p/2 - f) 

+ b a1 2-  cos (p/2 - f) + c = a2b + b(1 - a2) + c = b + c 
and min f = c - b.

Alternatively f (x) = b sin (x + f) + c, f = cos–1 a so 
max f (x) = b.1 + c and min f(x) = – b + c = c – b

 Example 88: The maximum area of the rectangle whose 
sides pass through the angular points of a given the rectangle 
is of sides a and b is 

 (a) (1/2) (ab)2  (b) (1/2) (a + b)
 (c) (1/2) (a + b)2  (d) none of these
Ans. (c)

 Solution: Let ABCD be the given rectangle of sides a 
and b and EFGH be any rectangle, whose sides pass through 
A, B, C, D.
 A = Area EFGH = (b sin q + a cos q) (a sin q + b cos q)
 = ab + (a2 + b2) sin q cos q.

H

D

G

F

B

C

E

a

ab

A q

Fig. 11.4

 dA/dq = (a2 + b2) cos 2q so dA/dq = 0 fi q = p/4

fi 
d

d

2

2

A

q
 = - 2 (a2 + b2) sin 2q, so 

d

d

2

2
4

A

q q p= /

 < 0 

 Hence Amax = (1/2) (a + b)2.

 Example 89: The image of the interval [– 1, 3] under 
f (x) = 4x3 – 12x is 
 (a) [– 2, 0] (b) [– 8, 72]
 (c) [– 8, 0] (d) [8, 72]
Ans. (b)

 Solution: To find the image of the given interval, we 
must find the set of values of f (x) for x Œ [- 1, 3]. By virtue 
of the continuity of f (x), the image is the interval 

 min ,max
, ,

f x f x
x x

( ) ( )È
ÎÍ

˘
˚̇Œ -[ ] Œ -[ ]1 3 1 3

The critical points of f (x) are given by f ¢(x) = 12x2 - 12 = 
12 (x2 - 1) = 0. That is, x = ± 1, so that f (1) = - 8, f (- 1) = 
8 and f (3) = 72.

\ max
,x Œ -[ ]1 3

 f (x) = f (3) = 72 and min
,x Œ -[ ]1 3

 f (x) = f (1) = - 8

Hence the image of [- 1, 3] under the mapping f (x) is [- 8, 72].

 Example 90: The difference between the greatest and 
least values of the function f (x) = cos x + (1/2) cos 2x – (1/3)
cos 3x is 
 (a) 3/8 (b) 2/3
 (c) 8/7 (d) 9/4
Ans. (d)
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 Solution: The given function is periodic, with period 
2p. So the difference between the greatest and least values 
of the function is the difference between these values on the 
interval [0, 2p]. We have 
 f ¢(x) = - (sin x + sin 2x - sin 3x)
 = - 4 sin x sin (3x/2) sin (x/2). 
Hence x = 0, 2p/3, p and 2p are the critical points.
Also , f (0) = 1 + 1/2 - 1/3 = 7/6, f (2p/3) = - 13/12, f (p) 
= - 1/6 and f (2p) = 7/6. Hence the greatest value is 7/6 and 
the least value is - 13/12. Thus the difference is 

 7/6 – (–13/12) = 27/12 = 9/4.

 Example 91: The longest distance of the point (a, 0) 
from the curve 2x2 + y2 – 2x = 0 is

 (a) 1 2 2 2- +a a  (b) 1 2 2- +a a

 (c) 1 2 2 2+ +a a  (d) 1 2+ +a a
Ans. (a)

 Solution Let (x, y) be any point on the curve 2x2 + y2 - 
2x = 0. Its distance S from the point (a, 0) is given by

 T = S2 = (x - a)2 + y2 = (x - a)2 + (2x - 2x2) 

 = - x2 + 2x (1 - a) + a2 (1)

For S to be maximum, we have dT/dx = 0 
fi - 2x + 2 (1 – a) = 0 fi x = 1 - a. Since d2T/dx2 < 0, 
so S2 is maximum when x = 1 - a and this maximum value 
is given by - (1 - a)2 + 2(1 - a)2 + a2 = 1 - 2a + 2a2. Hence  
Smax = (1 - 2a + 2a2)1/2.

 Example 92: The sides of the rectangle of the greatest 
area, that can be inscribed in the ellipse x2 + 2y2 = 8, are 
given by

 (a) 4 2 , 4 (b) 4, 2 2

 (c) 2, 2  (d) 2 2 , 2
Ans. (b)

 Solution: Any point on the ellipse 
x y2 2

8 4
+  = 1 is 

( 2 2  cos q, 2 sin q). [see Fig. 11.5]

(2 2 cos , 2 sin )q q

y

x
0

Fig. 11.5

 A = Area of the inscribed rectangle

  = 4 ( 2 2  cos q) (2 sin q) 

 = 8 2  sin 2q

  
d

d

A

q
 = 16 2  cos 2q = 0 fi q = p/4

 Also 
d

d

2

2

A

q
 = - 32 2  sin 2q < 0 for q = p/4.

 Hence, the inscribed rectangle is of largest area if the 

sides are 4 2 cos p/4 and 4 sin  (p/4) i.e. 4 and 2 2 .

 Example 93: An equation of the circle that is tangent to 
y = x3 at (1, 1) and has the same second derivative there is
 (a) x2 + y2 + 24x – 28y + 2 = 0
 (b) 2(x2 + y2) + 12x – 8y – 8 = 0
 (c) 3(x2 + y2) – 24x + 10y + 8 = 0
 (d) none of these
Ans. (d)

 Solution: 
d

d

y

x
 = 3x2 so 

d

d
and

d

d

y

x

y

x( , ) ( , )11

2

2
1 1

3 6= =

Let the required circle be x2 + y2 + 2gx + 2fy + c = 0.
Since this should pass through (1, 1) so we have

  2 + 2g + 2f + c = 0 (1)

Also 2x + 2y
d

d

y

x
 + 2g + 2f

d

d

y

x
 = 0

Putting x = 1, y = 1 and d

d

y

x
 = 3, we have

 1 + 3 + g + 3f = 0
Again differentiating (1), we have

 1 + 
d

d

d

d

d

d

y

x
y

y

x
f

y

x
Ê
ËÁ

ˆ
¯̃ + + =

2 2

2

2

2
0

Putting y = 1, d

d

y

x
 = 3 and 

d

d

2

2

y

x
 = 6, we have

 16 + 6f = 0   fi   f = – 8/3
so g = 4 and c = – 14/3. Thus required circle is 

  3 (x2 + y2) + 24x – 16y – 14 = 0.

 Example 94: Let f (x) = 6x4/3 – 3x1/3, x Œ [– 1, 1]. Then
 (a) The maximum value of f (x) on [– 1, 1] is 3
 (b) The maximum value of f (x) on [– 1, 1] is 9
 (c) The minimum value of f (x) on [– 1, 1] is 0
 (d) none of these
Ans. (b)

 Solution: f ¢ (x) = 
8 1

2 3

x

x

-
/

.  Thus f ¢ (x) = 0 when x = 1/8 

and f ¢ (x) does not exist when x = 0. Now f (– 1) = 9, f (0)  
= 0, f (1/8) = – 9/8 and  f (1) = 3.
The maximum value of f (x) is 9 and the minimum value 
is – 9/8 on [–1, 1].
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 Example 95: Let g (x) = (log (1 + x)) – 1 – x – 1, x > 0 then 
 (a) 1 < g (x) < 2 (b) – 1 < g (x) < 0
 (c) 0 < g (x) < 1  (d) none of these
Ans. (c)

 Solution: For x > 0, consider the function f (x) = 
log (1 + x) on the interval [0, x]. Since the function is dif-
ferentiable on (0, x), by Lagrange’s theorem, there is a 
x Œ (0, x) such that 

  
log log1 1 0

0

+( ) - +( )
-

x

x
 = f ¢(x) = 

1

1 + x

fi  log 1 +( )x

x
 = 

1

1 + x
 < 1

fi  log (1 + x) < x  fi g(x) > 0 

Also  x Œ (0, x) fi x < x fi 
1

1 + x
 > 

1

1 + x

fi  log 1 +( )x

x
 > 

1

1 + x

fi  log (1 + x) > 
x

x1 +
 fi g(x) < 1.

 Example 96: The maximum value of 
x x

x x

2

2

1

1

- +
+ +

 for all 
real values of x is 
 (a) 1/2 (b) 1
 (c) 2 (d) 3
Ans. (d)

 Solution: Let S = 
x x

x x

2

2

1

1

- +
+ +

 = 1 - 
2

12

x

x x+ +

 S ¢(x) = - 2 
x x x x

x x

2

2 2

1 2 1

1

+ +( ) - +( )

+ +( )

 = - 2 
- +

+ +( )
x

x x

2

2 2

1

1

S¢(x) = 0 ¤ x = ± 1. Since S¢(x) > 0 for x < - 1 and S¢(x) < 
0 for - 1< x <1, also S¢ (x) > 0 for x > 1. So S is maximum 
when x = - 1. Hence Smax = 1 + 2/1 = 3. 

 Example 97: If the tangent at (1, 1) on y2 = x (2 – x)2 
meets the curve again at P, then P is 
 (a) (4, 4) (b) (– 1, 2)
 (c) (9/4, 3/8) (d) none of these
Ans. (c)

 Solution: 2y
d

d

y

x
 = (2 - x)2 - 2x (2 - x)

  = 3x2 - 8x + 4. So 
d

d

y

x 1 1,( )
 = - 1/2.

An equation of tangent at (1, 1) is Y - 1 = (-1/2) (X - 1) 

i.e. Y = (-1/2) x + 3/2. The intersection of this line with the 
given curve is given by (- x/2 + 3/2)2 = x (2 - x)2 

fi  x2 - 6x + 9 = 16x + 4x3 - 16x2. So, 

  4x3 - 17x2 + 22x - 9 = 0

fi  (x - 1) (4x - 9) (x + 1) = 0.

Thus x = 1, 9/4, - 1. But x = -1 cannot lie on the given curve 
so required point is (9/4, 3/8).

 Example 98: If the curves y2 = 6x, 9x2 + by2 = 16, cut 
each other at right angles then the value of b is 
 (a) 2 (b) 4
 (c) 9/2 (d) none of these
Ans. (c)

 Solution: The intersection of the two curves is given by
  9x2 + 6bx – x = x  (i)

Differentiating y2 = 6x, we have 
d

d

y

x y
= 3

.

Differentiating 9x2 + 6y2 = 16, we have 
d

d

y

x

x

by
= - 9

.

For curves to intersect at right angles, we must have at the 

points of intersection 
3 9

y

x

by

-Ê
ËÁ

ˆ
¯̃

 = –1 fi 27x = by2. Thus 

we must have 
 9x2 + 9y2 = 16 fi 9x2 + 27x – 16 = 0 (ii)
(i) and (ii) must be identical so 27 = 6b fi b = 9/2.

 Example 99: The distance of that point on y = x4 + 3x2 
+ 2x which is nearest to the line y = 2x – 1 is 

 (a) 4/ 5  (b) 3/ 5

 (c) 2/ 5  (d) 1/ 5
Ans. (d)

 Solution: Distance of any point (x, y) from y = 2x - 1 is:
y x- +2 1

5
. If (x, y) is on y = x4 + 3x2 + 2x then this distance 

is S = 
x x4 23 1

5

+ +

  
d

d

d

d

S

x

x x S

x
x= + fi = fi =4 3 6

5
0 0.

Also, S ¢(x) < 0 for x < 0 and S¢(x) > 0 for x > 0.
Thus S is minimum when x = 0, and min. S is 1/ 5 .

 Example 100: A given right circular cone has a volume 
p, and the largest right circular cylinder that can be inscribed 
in the cone has a volume q. Then p : q is 
 (a) 9 : 4  (b) 8 : 3 
 (c) 7 : 2  (d) none of these
Ans. (a)
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 Solution: Let H be the height 
of the cone and a be its semi verti-
cal angle. Suppose that x is the ra-
dius of the inscribed cylinder and h 
be its height h = QL = OL - OQ = 
H - x cot a 
 V = volume of the cylinder 

 = px2 (H - x cot a)

Also p = 
1

3
 p (H tan a)2 H  (i)

 
d

d

V

x
 = p (2Hx - 3x2 cot a) 

so 
d

d

V

x
 = 0 ¤ x = 0,

 x = 
2

3
 H tan a, 

d

d

2

2 2

3

V

x x H= tana

 = - 2pH < 0. so 

V is maximum when x = 
2

3
 H tan a and q = Vmax = p 

4

9
 H2 

tan2 a 1

3
H = 

4

9
 p. [using (i)]

Hence p : q = 9 : 4.

 Example 101: The set of all values of a for which f (x) = 
(a2 – 3a + 2) (cos2 (x/4) – sin2 (x/4)) + (a – 1)x + sin 1 doesn’t 
possess critical points is
 (a) [1, •)  (b) (– 2, 4)
 (c) (1, 3) » (3, 5) (d) (0, 1) » (1, 4)
Ans. (d)

 Solution: The given function can be written as 

 f (x) = (a - 1) (a - 2) cos (x/2) + (a - 1) x + sin 1.
It is clearly differentiable, so its critical points are given by 

 f ¢(x) = (–1/2) (a - 1) (a - 2) sin (x/2) + (a - 1) = 0 
If a = 1, f ¢(x) = 0 for all x, while for values of a other than 
1,  f ¢(x) will be zero if 

 (a - 2) sin (x/2) = 2
In order not to have critical point, a must therefore satisfy 

a π 1 and 
2

2a -
 >1 which is the same as saying a Œ (0, 

1) » (1, 4).

 Example 102: Let x, p Œ R, x + 1 > 0,  p π 0, 1. Then
 (a) (1 + x) p > 1 + px for p > 0

 (b) (1 + x) p > 1 + px for p Œ (– •, 0) » (1, •)

 (c) (1 + x) p > 1 + px for 0 < p < 1

 (d) (1 + x)p < 1 + px for p < 1

Ans. (b)

 Solution: Let f(x) = (1 + x)p– (1+ px) so f(0) = 0. Now 
f ¢(x) = p (1 + x)p – 1 – p and f ≤ (x) = p (p – 1) (1 + x)p – 2. Let 
p Œ (– • , 0) » (1, •) then f ≤(x) > 0 so f ¢ is increasing. This 
implies f ¢ < 0 on (– 1, 0) and f ¢ > 0 on (0, •) as f ¢ (0) = 0. 
Therefore f decreases on (– 1, 0) and increases on (0, •) but  
f (0) = 0 so f (x) > 0 if x > – 1 (x π 0). Thus (1 + x )p > 1 
+ px for p Œ (– •, 0) » (1, •). Similarly it follows that 
(1 + x) p < 1 + px, if 0 < p < 1.

 Example 103: If f (x) = 
a x b x

c x d x

sin cos

sin cos

+
+

 decreases for 

all x if
 (a) ad – bc < 0 (b) ad – bc > 0
 (c) ab – cd > 0 (d) ab – cd < 0

Ans. (a)

 Solution: f ¢ (x) = 

( cos sin ) ( sin cos )

( sin cos ) ( cos sin )

( sin

a x b x c x d x

a x b x c x d x

c

- + -
+ -

xx d x+ cos )2

 = 
ad x x bc x x

c x d x

(cos sin ) (cos sin )

( sin cos )

2 2 2 2

2

+ - +
+

 = 
ad bc

c x d x

-
+( sin cos )2

f decreases for all x if and only if f ¢(x) < 0 for all x  i.e. 
ad – bc < 0.

 Example 104: On the interval [0, 1] the function 

x25 (1 – x)75 takes its maximum value at the point
 (a) 0 (b) 1/3
 (c) 1/2 (d) 1/4
Ans. (d)

 Solution: Let f (x) = x25 (1 – x)75. The critical points of 
f are given by f ¢(x) = 0. But
 f ¢ (x) = x24 (1 – x)74 [25 – 25x – 75x]
  = 25x24 (1 – x)74 (1 – 4x)
Thus the critical points are 0, 1, 1/4
Since f (0) = 0, f (1) = 0 and f (1/4) = (1/4)25 (3/4)75

so f takes its maximum value at x = 1/4.

 Example 105: For a >0, the value of a for which the 
equation ax2 = log x possess a single root is
 (a) 1/2 (b) 1/2e
 (c) 1/e (d) 2e–1

Ans. (b)

 Solution: For a > 0, the curves y1 = ax2 and y2 = log x 
can have only one point in common if they touch each other. 

At the point of tangency y¢1(x) = y¢2 (x) fi 2ax = 1/x fi x = 

1/ 2a  (clearly x cannot be negative). Putting this value in 

ax2 = log x, we have (1/2) = log (2a)–1/2 fi log 2a = – 1 fi 
a = 1/2e.

a

L

Q

M P

O

x

Fig. 11.6
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EXERCISE
Concept-based

Straight Objective Type Questions

 1. The length of the tangent to the curve x = a sin3 t,  
y = a cos3 t (a > 0) at an arbitrary is

 (a) a cos2t (b) a sin2 t

 (c) 
a t

t

sin

cos

2

 (d) 
a t

t

cos

sin

2

 2. Equation of normal to x = 2et, y = e–t at t = 0 is

 (a) x + y – 4 = 0
 (b) x + 2y – 4 = 0
 (c) 2x – y – 3 = 0
 (d) x – 2y – 3 = 0

 3. A point moves according s = 
2

9 2 0sin
p

t s+ . The ac-

celeration at the end of first second is

 (a) - p
18

 (b) - p 2

18

 (c) 
p
18

 (d) 
p 2

18

 4. Let f(x) = x log x – x + 1 then the set {x : f (x) > 0} 
is equal to

 (a) (1, •) (b) (1/e, •)
 (c) [e, •) (d) (0, 1) » (1, •)

 5. On the curve y = x3, the point at which the tangent  
line in parallel to the chord through the point (–1, –1) 
and (2, 8) is

 (a) (1, 1) (b) 1

2

1

8
,Ê

ËÁ
ˆ
¯̃

 (c) 
1

3

1

27
,Ê

ËÁ
ˆ
¯̃  (d) - -Ê

ËÁ
ˆ
¯̃

1

2

1

8
,

 6. Let f (x) = 2x2 – log x, then
 (a) f increases on (0, •)

 (b) f decrease on 
1

2
,•Ê

ËÁ
ˆ
¯̃

 (c) f increases on 
1

2
,•Ê

ËÁ
ˆ
¯̃

 (d) f decreases on (0, 1)

 7. Let f(x) = 3

4
9 74 3 2x x x- - + , then the number of 

critical points in [– 1, 4] is
 (a) 4 (b) 3
 (c) 2 (d) 1

 8. On the curve x3 = 12y, the values of x for which the 
abscissa changes at a faster rate than the ordinate is

 (a) (–2, 2) ~ {0} (b) (–3, 3) ~ {0}
 (c) (1, 4) (d) (2, 4)

 9. The value of k > 0 for which the curves 
x

k

y2

2

2

4
1+ =  

and y2 = 16x cut each other orthogonally is

 (a) 1 (b) 
2 3

3

 (c) 3 3  (d) 5 5

 10. The least value of g(t) = 8t – t4 on [–2, 1] is
 (a) –16 (b) –20
 (c) –32 (d) 7

LEVEL 1

Straight Objective Type Questions

 11. Let f (x) = tan–1 x and g (x) = 
x

x
x

1
0

2+
>,  then

 (a) f (x) < g (x), on (0, •)
 (b) f (x) £ g (x) on [1, •)
 (c) g (x) < f (x) on (0, •)
 (d) none of these

 12. Let f (x) = (x – 2) (x – 3) (x – 4) (x – 5) (x – 6) then
 (a) f ¢(x) = 0 has five real roots
 (b) four roots of f ¢(x) = 0 lie in (2, 3) » (3, 4) »  

(4, 5) » (5, 6)

 (c) the equation f ¢ (x) has only three roots
 (d) four roots of f ¢(x) = 0 lie in (1, 2) » (2, 3) » (3, 4) 

» (4, 5)

 13. Let f (x) = (x – 3)5 (x + 1)4 then
 (a) x = – 1 is point of minima
 (b) x = –1 is point of maxima
 (c) x = 7/9 is a point of maxima
 (d) x = – 1 is neither a point of maxima and minima.
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 14. The normal to the curve represented parametrically by 
x = a (cos q + q sin q) and y = a (sin q – q cos q) 
at any point q, is such that it

 (a) makes a constant angle with the x-axis
 (b) is at a constant distance from the origin
 (c) does not touch a fixed circle
 (d) passes through the origin.
 15. The value of a for which the equation x3 – 3x + a = 0 

has two distinct roots in [0, 1], is given by
 (a) – 1 (b) 1
 (c) 3 (d) none of these

 16. If the sum of the squares of the intercepts on the 
axes cut off by the tangent to the curve x1/3 + y1/3 =  
a1/3 (a > 0) at (a/8, a/8) is 2, then a has the value

 (a) 1 (b) 2
 (c) 4 (d) 8
 17. The value of m for which the area of the triangle in-

cluded between the axes and any tangent to the curve 
xm y = bm is con stant, is

 (a)  1/2 (b) 1
 (c) 3/2 (d) 2
 18. If the tangent at any point on the curve x4 + y4 = a4 

cuts off intercepts p and q on the coordinate axes, the 

value of p–4/3 + q–4/3 is
 (a) a–4/3 (b) a–1/2

 (c) a1/2 (d) none of these

 19. The interval of increase of the function y = 
x – 2 sin x if 0 £ x £ 2p, is

 (a) (0, p) (b) (0, p)
 (c) (p/2, p) (d)  (p/3, 5p/3)

 20. The greatest value of y = (x + 1)1/3 – (x – 1)1/3 on [0, 1] 
is

 (a) 1 (b) 2
 (c) 3 (d) 21/3

 21. Let f be a function defined by f (x) = 2x2 – log |x|,  
x π 0 then

 (a) f increase on [– 1/2, 0] » [1/2, •)
 (b) f decreases on (– •, 0)
 (c) f increases on (– •, – 1/2)
 (d) f decreases on [1/2, • ]
 22. The shortest distance of (0, 0) from the curve y = 

e ex x+ -

2
 is

 (a) 1/2 (b) 1/3
 (c) 2 (d) none of these

 23. The normal to the circle x2 + y2 – 2x – 2y = 0 passing 
through (2, 2) is

 (a) x = y (b) 2x + y – 6 = 0
 (c) x + 2y – 6 = 0 (d) x + y – 4 = 0

 24. If f (0) = 0 and f ¢¢(x) exists and > 0, for all x > 0 
then f (x)/x

 (a) decreases on (0, •)
 (b) increases on (0, •)
 (c) decreases on (1, •)
 (d) neither increases nor decreases on (0, •)

 25. The value of k so that the equation x3 – 12x + k = 0 
has distinct roots in [0, 2] is

 (a) 4 (b) 2
 (c) –2 (d) none of these

 26. Let f (x) = 6x4/3 – 3x1/3 defined on [– 1, 1] then
 (a) maximum value of f is 7
 (b) maximum value of f is 5
 (c) maximum value of f is 9
 (d) minimum value of f is – 3/2

 27. An equation of tangent line at an inflection point of 
f (x) = x4 – 6x3 + 12x2 – 8x + 3 is

 (a) y = 3x + 4 (b) y = 4
 (c) y = 3x + 2 (d) none of these

 28. The number of real roots of the equation 2x3 – 3x2 + 
6x + 6 = 0 is

 (a) 1 (b) 2
 (c) 3 (d) none of these

 29. Let f (x) = (x – 2) (x4 – 4x3 + 6x2 – 4x + 1) then 
value of local minimum of f is

 (a) – 2/3 (b) – (4/5)4

 (c) – 44/55 (d) – (4/5)5

 30. Let f (x) = x2 – 2|x| + 2, x Œ [– 1/2, 3/2] then
 (a) min f (x) = 1/2 (b) min f (x) = 1
  x Œ [– 1/2, 3/2]  x Œ [– 1/2, 3/2]
 (c) max f (x) = 3/2 (d) none of these
  x Œ [– 1/2, 3/2]

 31. A critical point of the function f (x) = 
x

x

-1
2  is

 (a) – 1 (b) 3
 (c) 2 (d) 1/2

 32. The function f (x) = xx decreases on the interval
 (a) (0, e) (b) (0, 1)
 (c) (0, 1/e) (d) none of these

 33. The interval of increase of the function y = x – ex + 
tan (p/7) is

 (a) (– •, 1) (b) (0, •)
 (c) (– •, 0) (d) (1, •)

 34. Let f (x) = x2 + px + q. The value of (p, q) so that 
f (1) = 3 is an extreme value of f on [0, 2] is

 (a) (– 2, 2) (b) (1, 4)
 (c) (– 2, 4) (d) (– 2, 3)

 35. The number of inflection points of a function given 
by a third degree polynomial is exactly
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 (a) 2 (b) 1
 (c) 3 (d) 0

 36. Let f (x) = 2 tan–1 x + sin–1 
2

1 2

x

x+
 then

 (a) max f (x) = p/2 (b) min f (x) = p/4
 (c) max f (x) = p (d) none of these

 37. If the normal to the curve x3 = y2 at the point (m2, – m3) 
is y = mx –2m3, then the value of m2 is

 (a) 1 (b) 1/2
 (c) 1/3 (d) 2/3

 38. Let f (x) = 2 sin x + cos 2x (0 £ x £ 2p) and g (x) = 
x + cos x then

 (a) g is a decreasing function
 (b) f increases on (0, p/2)

 (c) f increases on (0, p/6) » (p/2, 5p/6)

 (d) f decreases on (0, p/2)

 39. The minimum value of the function f (x) = tan x + cot x 
in the interval (0, p/2) is

 (a) 1 (b) 0
 (c) 2 (d) 1/2

 40. The number of points of extremum of the function  
f (x) = 3x4 – 4x3 + 6x2 + b for any value of b is

 (a) 4 (b) 3
 (c) 1 (d) 2
 41. The shortest distance of the line y – x – 1 = 0 from 

x = y2 is

 (a) 3/8 (b) 3 2 /4

 (c) 3/4 (d) 3 2 /8

 42. The value of a for which the extremum of the function 
f (x) = x3 – 3ax2 + 3(a2 – 1)x + 1 lie in the interval 
(– 2, 4) lie in

 (a) (–1, 0) (b) (–2, 4)
 (c) (– 1, 5) (d) (– 1, 3)

 43. If A > 0, B > 0 and A + B = p/3 then the maximum 
value of tan A tan B is

 (a) 1/3 (b) 1/2

 (c) 1/ 2  (d) 3 /2

 44. The maximum value of |x log x| for 0 < x £ 1 is
 (a) 0 (b) 1/e
 (c) 2e–1 (d) none of these

 45. The greatest value of the function logx 1/9 – log3 x2 
(x > 1) is

 (a) 2 (b) 0
 (c) – 4 (d) – 2

 46. Let f be differentiable for all x. If f (1) = –2 and  
f ¢(x) ≥ 2 for x Œ [1, 6] then

 (a) f (6) < 8 (b) f (6) ≥ 8

 (c) f (6) ≥ 10 (d) f (6) £ 5

 47. An extremum value of the function 

 f (x) = (sin–1 x)3 + (cos–1 x)3 (–1 < x < 1) is

 (a) 7p3/8 (b) p3/8

 (c) p3/32 (d) p3/16

 48. Let f (x) = x log x + 3x. Then

 (a) f increases on (e–4, •)
 (b) f increases on (0, •)
 (c) f decreases on (0, •)
 (d) f decreases on (0, e–2)

 49. Let f (x) = x2 e–x then

 (a) max f (x) = e–1 (b) max f (x) = 4e–2

 (c) min f (x) = e–1 (d) min f (x) > 0

 50. The minimum value of f (x) = |3 – x| + |2 + x| +  
|5 – x| is

 (a) 0 (b) 7
 (c) 8 (d) 10

 51. Let f (x) = 2 + 2x – 3x2/3 on [– 1, 10/3].
  Then f has
 (a) Absolute maximum at an end point 
 (b) Absolute minimum at an interior point
 (c) Absolute minimum is f (10/3) 
 (d) Absolute minimum is f(– 1)

 52. If f and g are defined on [0, •) by

 f (x) = lim
n

n

n

x

xÆ •

-
+

1

1
 and g(x) = f t dt

x ( )Ú0
.

  Then
 (a) g has local maximum at x = 1
 (b) g has local minimum at x = 1
 (c) g is an increasing function on (0, •)
 (d) g is a decreasing function on (0, •).

 53. Let f(x) = sin x + cos x then
 (a) x = 17p/4 is a point of minima
  (b) x = 13p/4 is a point of maxima
 (c) x = 21p/4 is a point of minima 
 (d) x = 29p/4 is a point of maxima

 54. If f(x) = x ex(1 – x), then f(x) is

 (a) increasing on [–1/2, 1]
 (b) decreasing on R
 (c) increasing on R 
 (d) decreasing on [–1/2, 1]

 55. The tangent to the curve y = ex drawn at the point (c, 
ec) intersects the line joining the points (c – 1, ec – 1) 
and (c + 1, ec + 1)

 (a) on the left of x = c (b) on the right of x = c
 (c) at no point  (d) at all points
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Assertion-Reason Type Questions

 56. Statement-1: ep > p e

  Statement-2: The function x1/x (x > 0) has local 
maximum at x = e.

 57. Statement-1: |cot x – cot y | £ |x – y | for all x, y 
Œ (– p/2, p/2)

  Statement-2: If f is differentiable on an open 
interval and | f ¢(x) | £ M then | f (x) – f (y) | £ M  
| x – y |.

 58. Statement-1: The function f (x) = 2 sin x + cos 2x 
(0 £ x £ 2p) has minimum at x = p /3 and maximum 
at 5p /3.

  Statement-2: The function f (x) above decreases on 
(0, p /3), increases on (p /3, 5p /3) and decreases on 
(5p /2, 2p)

 59. Let f (x) = tan- -
+

1 1

1

x

x

  Statement-1: The difference between the greatest 
and smallest value of f (x) on [0, 1] is p /4

  Statement-2: If a function g decreases on [a, b] 
then the greatest value of g = g(a) and least value 
of g is g(b).

 60. Let f (x) = 
x

xlog
  Statement-1: The minimum value of f (x) is e
  Statement-2: log x > 1 for x > e and < 1 for  

x < e.

LEVEL 2

Straight Objective Type Questions

 61. The critical points of the function f (x) = (x – 2)2/3 
(2x + 1) are

 (a) – 1 and 2 (b) 1
 (c) 1 and – 1/2 (d) 1 and 1/2
 62. The function f (x) = (1/4)x3 – sin px + 3 on [– 2, 2] 

takes the value
 (a) 1 (b) 16/3
 (c) 6 (d) 8

 63. The greatest value of f(x) = tan–1 x – 
1

2
 log x on  

[ / , ]1 3 3  is
 (a) p/2 + (1/2) log 3 (b) p/6 + (1/4) log 3
 (c) p/6 + (1/2) log 3 (d) p/4 – (1/4) log 3
 64. Equations of those tangents to 4x2–9y2=36 which are 

perpendicular to the straight line 2y + 5x = 10; are

 (a) 5(y – 3) = x -( )117 4/

 (b) 5(y – 2) = 2(x – 18 )

 (c) 5(y + 2) = 2(x – 18 )
 (d) none of these
 65. If a,b,c, Œ R, then 

 f(x) =  

x a ab ac

ab x b bc

ac bc x c

+

+

+

2

2

2

 decrease on

 (a) (– (2/3) (a2 + b2 + c2), 0)
 (b) (0, (2/3) (a2 + b2 + c2))

 (c) ((1/3) (a2 + b2 + c2), 0)
 (d) none of these
 66. A channel 27 m wide falls at a right angle into another 

channel 64 m wide. The greatest length of the log that 
can be floated along this system of channels is

 (a) 120 (b) 125
 (c) 100 (d) 110
 67. For a Œ [p, 2p], the function

  f (x) = 
1

3
 sin a tan3 x + (sin a – 1) tan x + 

a

a

-
-

2

8
 

has
 (a) x = np (n Œ I ) as critical points
 (b) no critical points
 (c) x = 2n p (n Œ I ) as critical points
 (d) x = (2n + 1) p (n Œ I ) as critical points.
 68. The value of a for which the function
   f (x) =  (4a – 3) (x + log 5) + 2(a – 7) cot (x/2) 

sin2 (x/2) does not possess critical point is
 (a) (– •, – 4/3] (b) (– •, – 1)
 (c) [1, •) (d) (0, • )
 69. The interval to which b may belong so that the func-

tion

 f (x) = 1
21 4

1
5 6

2
3- - -

+

Ê

Ë
Á

ˆ

¯
˜ + +b b

b
x x

  is increasing at every point of its domain is
 (a) [– 7, 0] (b) [– 6, 0]
 (c) [1, 4] (d) [2, 3]
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 70. A tangent is drawn at a variable point on an ellipse 
x2/a2 + y2/b2 = 1, then minimum area of the triangle 
formed by the tangent and the coordinate axes is

 (a) a b (b) (a2 + b2)/2
 (c) (a + b)2/4 (d) 2 ab

 71. The set of all x for which log (1 + x) £ x is
 (a) (1, •) (b) (0, •)
 (c) (– 1, •) (d) none of these

 72. The minimum value of 2
2 33( )x -  + 27 is

 (a) 227 (b) 2
 (c) 1 (d) none of these

 73. Let f (x) = 
x x

x

for

for

0 2

1 0

< £
=

Ï
Ì
Ó

| |

  Then at x = 0,  f has 
 (a) a local maximum (b) no local maximum
 (c) a local minimum (d) no extremum

 74. If f(x) = xe x(1 – x), then f(x) is
 (a) increasing on [–1/2, 1]
 (b) decreasing on R
 (c) increasing on R
 (d) decreasing on [–1/2, 1]

 75. Let f(x) = 
x x x

x

a log if

if

>
=

Ï
Ì
Ó

0

0 0

  Rolle's theorem can be applied to f on [0, 1] then 
value of a can be

 (a) –1 (b) –1/2
 (c) 0 (d) 1/2

 76. A cone is made from a circular sheet of radius 3  
by cutting out a sector and gluing the cut edges of 
the remaining piece together. The maximum volume 
attainable for the cone is

 (a) p/3 (b) p/6

 (c) 2p/3 (d) 3 3p
 77. The dimensions of the rectangle of maximum area 

that can be inscribed in the ellipse (x/4)2 + (y/3)2 
= 1 are

 (a) 8 2,  (b) 4, 3

 (c) 2 8 3 2,  (d) none of these

 78. The condition for y = ax4 + bx3 + cx2 + dx + e to 
have points of inflection is

 (a) b2 – 4ac > 0 (b) 3b2 – 8ac = 0
 (c) 3b2 – 8ac > 0 (d) 3b2 – 8ac < 0

 79. The largest value of m such that |x2 – 3x + 2| ≥ m 
for all x in the interval [3/2, 7/4] is

 (a) 3/4 (b) 3/8
 (c) 3/16 (d) 7/4

 80. The point in the interval [0, p] for which the curve y 
= (1/2)x and y = sin x are farthest apart is

 (a) p/2 (b) p/4
 (c) p/6 (d) p
 81. The points at which the tangents to the curve ax2 + 

2hxy + by2 = 1 is parallel to y-axis is
 (a) (0, 0)
 (b) where hx + by = 0 meets it
 (c) where ax + hy meets it
 (d) none of these

 82. If the point on y = x tan a – 
ax

u

2

2 22 cos a
 (0 < a < 

p/2) where the tangent is parallel to y = x has an 
ordinate u2/4a then the value of a is

 (a) p/2 (b) p/6
 (c) p/3 (d) none of these

 83. Let f (x) = 
x a x

x x

- + £
+ >

Ï
Ì
Ó

1 1

2 3 1

,

,

  If f (x) has local minimum at x = 1 and a ≥ 5 then 
the value of a is

 (a) 5 (b) 6
 (c) 11/2 (d) 15/2

 84. Let g (x) = f t t
x

( ) d
0Ú  and f (x) satisfies the equation 

f (x+y) = f (x) + f (y) +2xy – 1 for all x, y Œ R and 
f ¢(0) = 2 then

 (a) g increases on (0, •) and decreases on (– •, – 0)
 (b) g increases on (0, •)
 (c) g decreases on (0,• ) and increases (– •, 0)
 (d) g decreases on (– •, • )

 85. The area of the triangle formed by the positive x-axis 
and the normal and the tangent to the circle x2 + y2 
= 4 at (1, 3 ) is

 (a) 2 3  (b) 3

 (c) 4 3  (d) 3

 86. The interval into which the function y = 
x

x x

-
- +

1

2 32
 

transforms the entire real line is
 (a) [1/3, 2] (b) [– 1/3, 2]
 (c) [–1/3, 1] (d) none of these

 87. The angle at which x2 + y2 = 16 can be seen from 
the point (8, 0) is

 (a) p/6 (b) p/4
 (c) p/2 (d) p/3

 88. The critical points of the function
  f (x) = (x + 2)2/3 (2x – 1) are

 (a) – 1 and 2 (b) 1
 (c) 1 and – 1/2 (d) –1 and –2
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 89. The function f (x) = 
log ( )

log ( )

p +
+

x

e x
 is

 (a) increasing on [0, •)
 (b) decreasing on [0, •)
 (c) increasing on [0, p/e) and decreasing on [p/e, •)
 (d) decreasing on [0, p/e) and increasing on [p/e, •)

 90. A rectangle with perimeter 32 cm has greatest area if 
its length is

 (a) 12 (b) 10
 (c) 8 (d) 14

 91. The greatest value of the function 

  f (x) = cot–1 x + (1/2) log x on [ , ]1 3  is

 (a) (p/6) + 0.25 log 3 (b) (p/3) – 0.25 log 3

 (c) p/4 (d) tan–1 e – 1/2

 92. A particle is moving along the parabola y2 = 4(x + 2). 
As it passes through the point (7, 6) its  y-coordinate 
is increasing at the rate of 3 units per second. The 
rate at which x-coordinate change at this instant is (in 
units/sec)

 (a) 4 (b) 6
 (c) 8 (d) 9

 93. The perimeter of a rectangle is fixed at 24 cm. If the 
length l of the rectangle is increasing at the rate of 1 
cm per second, the value of l for which the area of 
rectangle start to decrease is

 (a) 2 cm (b) 6 cm
 (c) 4 cm (d) 8 cm

 94. The rate at which fluid level inside vertical cylindrical 
tank of radius r drop if we pump fluid out at the rate 
of 3cm3 l/min is

 (a) - 1
2p r

 (b) 
3

2p r

 (c) 
2

2p r
 (d) 4

p r

 95. The length l of a rectangle is decreasing at the rate 
of 2 cm/sec while the widths w is increasing at the 
rate of 2 cm/sec. When l = 12 and w = 5, the rate of 
change of area is (in cm2/sec)

 (a) 14 (b) 12
 (c) 8 (d) 4

 96. Let f be twice differentiable function such that f(x) = 
x2, x = 1, 2, 3. Then

 (a) f  ¢¢(x) = 2 " x Œ (1, 3)
 (b) f ¢¢(x) = 2 for some x Œ (1, 3)
 (c) f ¢¢(x) = 3 " x Œ (2, 3)
 (d) f ¢¢(x) = f ¢(x) for some x Œ (2, 3)

 97. A tangent drawn to the curve y = f(x) at P(x, y) cuts 
the x-axis and y-axis at A and B respectively such that 
BP : AP = 3 : 1, given that f(1) = 1 then

 (a) equation of the curve is x
dy

dx
 – 3y = 0.

 (b) normal at (1, 1) is x + 3y = 4.
 (c) curve passes through (2, 1/8)

 (d) equation of the curve is x
dy

dx
 + 4y = 0.

 98. If 0 < b2 < c then f(x) = x3 + bx2 + cx + d

 (a) has no local minima
 (b) has no local maxima
 (c) is strictly increasing on R
 (d) is strictly decreasing on R

 1. If 2a + 3b + 6c = 0(a, b, c Œ R) then the quadratic 
equation ax2 + bx + c = 0 has 

 (a) at least one root in [0, 1]
 (b) at least one root in [2, 3]
 (c) at least one root.
 (d) none of these [2002, 2004]

 2. The maximum distance from origin of a point on the 

curve x = a sin t – b sin 
at

b
Ê
ËÁ

ˆ
¯̃ , y = a cos t – b cos 

at

b
Ê
ËÁ

ˆ
¯̃ , both a, b > 0 is

 (a) a – b (b) a + b

 (c) a b2 2+  (d) a b2 2-  [2002]

 3. If the function f(x) = 2x3 – 9ax2 + 12a2x + 1 where 
a > 0, attains its maximum and minimum at p and q 
respectively such that p2 = q, then a equals

 (a) 1 (b) 2
 (c) 1/2 (d) 3 [2003]

 4. If u = a b2 2 2 2cos sinq q+  + 

a b2 2 2 2sin cosq q+

Previous Years' AIEEE/JEE Main Questions
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  then the difference between the maximum and mini-
mum values of u2 is given by

 (a) (a + b)2 (b) 2 a b2 2+

 (c) 2(a2 + b2) (d) (a – b)2 [2004]

 5. A function y = f(a) has a second order derivative 
f ¢¢(x) = 6(x – 1). If its graph passes through the point 
(2, 1) and at that point the tangent to the graph is 
y = 3x – 5, then the function is

 (a) (x + 1)3 (b) (x – 1)3

 (c) (x – 1)2 (d) (x + 1)2 [2004]

 6. The normal to the curve x = a(1 + cos q), y = a sin q 
at q always passes through the fixed point

 (a) (0, 0) (b) (0, a)
 (c) (a, 0) (d) (a, a) [2004]

 7. A function is matched below against an interval where 
it is supported to be increasing which is of the fol-
lowing pairs in incorrectly matched?

  Interval Function
 (a) (–•, 1/3)  3x2 – 2x + 1
 (b) (–•, –4)  x3 + 6x2 + 6
 (c) (–•, •)  x3 – 3x2 + 3x + 3
 (d) (2, •)  2x3 – 3x2 – 12x + 6
 [2005]

 8. The normal to the curve x = a (cos q + q sin q), 
y = a(sin q – q cos q) at any point Q is such that 

 (a) it passes through 
a

a
p
2

, -Ê
ËÁ

ˆ
¯̃

 (b) it is at constant distance from origin
 (c) it passes through origin

 (d) it makes angle 
p
2

 + q with the x-axis [2005]

 9. Let f be differentiable for all x. If f(1) = -2 and f ¢(x) 
≥ 2 for x Œ [1, 6] then

 (a) f(6) < 5 (b) f(6) = 5
 (c) f(6) ≥ 8 (d) f(6) < 8 [2005]

 10. A spherical iron ball 10 cm in radius is coated with a 
layer of ice of uniform thickness that melts at a rate of 
50 cm3/min. When the thickness of ice is 5 cm, then 
the rate at which the thickness of ice decreases, is

 (a) 1/54p  cm/min (b) 5/6p  cm/min
 (c) 1/36p  cm/min (d) 1/8p cm/min [2005]

 11. The function f(x) = 
x

x2

2+  has a local minimum at

 (a) x = 1 (b) x = 2
 (c) x = – 2 (d) x = 0 [2006]

 12. A value of c for which the conclusion of mean value 
theorem holds for the function f(x) = log x on the 
interval [1, 3] is

 (a) 2 log3 e (b) (1/2)log 3
 (c) log3 c (d) log 3. [2007]

 13. The function  f (x) = tan–1 (sin x + cos x) is an in-
creasing function is

 (a) (p/4, p/2) (b) (–p/2, p/4)
 (c) (0, p/2) (d) (–p/2, p/2) [2007]

 14. Suppose the cube x3 – px + q has three distinct real 
roots where p > 0 and q > 0. Then which one of the 
following holds?

 (a) The cubic has minima at 
p

3
 and maxima at –

p

3

 (b) The cubic has minima at –
p

3
 and maxima at 

p

3

 (c) The cubic has minima at both 
p

3
 and –

p

3

 (d) The cubic has maxima at both 
p

3
 and –

p

3

[2008]

 15. Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 
is the only real root of P¢(x) = 0.

  If P(– 1) < P(1), then in the interval [– 1, 1]
 (a) P(– 1) is the minimum but P(1) is not the maxi-

mum of P
 (b) neither P(– 1) is the minimum nor P(1) is the maxi-

mum of P
 (c) P(– 1) is the minimum and P(1) is the maximum of 

P
 (d) P(– 1) is not minimum but P(1) is the maximum 

of P.  [2009]

 16. Let f : R Æ R be defined by

 f(x) = 
k x x

x x

- £ -
+ > -

Ï
Ì
Ó

2 1

2 3 1

,

,

if

if

  If f has a local minimum at x = – 1, then a possible 
value of k is

 (a) –1/2  (b) – 1 
 (c) 1  (d) 0 [2010]

 17. The curve that passes through the point (2, 3), and 
has the property that the segment of any tangent to it 
lying between the coordinate axes is bisected by the 
point of contact, is given by:

 (a) 2y – 3x = 0 (b) y = 6/x

 (c) x2 + y2 = 13 (d) x y

2 3
2

2 2Ê
ËÁ

ˆ
¯̃ + Ê

ËÁ
ˆ
¯̃ =

[2011]
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 18. Let f be a function defined by

 f(x) = 
tan

,

,

x

x
x

x

π

=

Ï
Ì
Ô

ÓÔ

0

1 0

  Statment-1: x = 0 is point of maxima of f

 [2011]
  Statement-2: f     ¢(0) = 0.

 19. Let a, b Œ R be such that the function f given by f(x) 
= log |x| + bx2 + ax, x π 0 has extreme values at x = 
–1 and x = 2

  Statement-1: f has local maximum at x = –1 and at 
x = 2

  Statement-2: a = 1/2 and b = –1/4.  [2012]

 20. A spherical balloon is filled with 4500 p cubic meters 
of helium gas. If a leak in the balloon causes the gas 
to escape at the rate of 72 p cubic meters per minute, 
then the rate (in meters per minute) at which the radius 
of the balloon decreases 49 minutes after the leakage 
began is

 (a) 7/9 (b) 2/9
 (c) 9/2 (d) 9/7 [2012]

 21. The cost of running a bus from A to B is Rs. av
b

v
+Ê

ËÁ
ˆ
¯̃ ,  

where v km/h is the average speed of bus. When 
the bus travels at 30 km/h, the cost comes out to be  
Rs. 75 while at 40 km/h, it is Rs. 65. Then the most 
economical speed in km/h of the bus is

 (a) 45 (b) 50
 (c) 60 (d) 40 [2013, online]

 22. If the surface area of a sphere of radius r is increas-
ing uniformly at the rate of 8 cm2/s then the rate of 
change of its volume is

 (a) constant (b) proportional to r
 (c) proportional to r2 (d) proportional to r
 [2013, online]

 23. The real number k for which the equation 2x3 + 3x + 
k = 0 has two distinct real roots in [0, 1]

 (a) lies between 2 and 3
 (b) lies between –1 and 0
 (c) does not exist
 (d) lies between 1 and 2 [2013]

 24. The maximum area of a right angled triangle with 
hypotenuse h is

 (d) 
h2

2 2
 (b) 

h2

2

 (c) 
h2

2
 (d) 

h2

4
 [2013, online]

 25. Statement-1: The equation x log x = 2 – x is satisfied 
by at least one value of x lying between 1 and 2

  Statement-2: The function f(x) = x log x is an increas-
ing function in [1, 2] and g(x) = 2 – x is a decreasing 
function in [1, 2] and the graphs represented by these 
functions intersect at a point in [1, 2]. [2013, online]

 26. Statement-1: The function x2(ex + e–x) is increasing 
for all x > 0

  Statement 2: The function x2 ex and x2 e–x are increas-
ing for all x > 0 and sum of two increasing functions 
in any interval (a, b) is an increasing function in  
(a, b) [2013, online]

 27. If f and g are differentiable function in [0, 1] satisfy-
ing f(0) = 2 = g(1), g(0) = 0 and f (1) = 6 then for 
some c Œ (0, 1)

 (a) 2 f ¢(c) = g¢(c) (b) 2 f ¢(c) = 3 g¢(c)
 (c) f ¢(c) = g¢(c) (d) f ¢(c) = 2 g¢(c) [2014]

 28. If x = –1 and x = 2 are extreme points of f(x) =  
a log | x | + bx2 + x then:

 (a) a = –6, b = 1

2
 (b) a = –6, b = - 1

2

 (c) a = 2, b = - 1

2
 (d) a = 2, b = 1

2
 [2014]

 29. If the volume of a spherical ball is increasing at the 
rate of 4p cc/sec, then the rate of increase of its radius  
(in cm/sec), when the volume is 288p cc is

 (a) 1

9
 (b) 

1

6

 (c) 1

36
 (d) 

1

24
 [2014, online]

 30. If non-zero real number b and c are such that  
min f(x) > max g(x) where f(x) = x2 + 2bx + 2c2 and 

g(x) = –x2 – 2cx + b2 (x Œ R) then 
c

b
 lies in the 

interval:

 (a) 
1

2
2,È

ÎÍ
˘
˚̇

 (b) 0
1

2
,È

ÎÍ
˘
˚̇

 (c) 
1

2

1

2
,È

ÎÍ
˘
˚̇

 (d) 2,•ÈÎ ˘̊  [2014, online]

 31. Let f and g be two differentiable functions on R such 
that f ¢(x) > 0 and g¢(x) < 0 for all x Œ R. Then for 
all x

 (a) g( f(x)) > g( f(x – 1))
 (b) f(g(x)) > f(g(x + 1)
 (c) f( g(x)) > f(g(x – 1))
 (d) g( f(x)) < g ( f(x + 1)) [2014 online]
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 32.  If Rolle’s theorem holds for the function f(x) = 2x3 + 

ax2 + bx in the interval [–1, 1] for the point c = 
1

2
, 

then the value of 2a + b is

 (a) 1 (b) – 1
 (c) 2 (d) – 2
 [2014, 2015 online]

 33. Let f(x) be a polynomial of degree four having extreme 

value at x = 1 and x = 2. If lim
( )

x

f x
xÆ

+È
ÎÍ

˘
˚̇0

2
1  = 3, then 

f(2) is equal to
 (a) –8 (b) – 4
 (c) 0 (d) 4 [2015]

 34. The equation of a normal to the curve sin y = 

x ysin
p
3

+Ê
ËÁ

ˆ
¯̃

at x = 0 is

 (a) 2x + 3y  = 0 (b) 2y – 3x  = 0

 (c) 2y + 3x  = 0 (d) 2x – 3y  = 0

 [2015, online]

 35. Let k and K be the minimum and maximum values 

of the function f(x) = 
( )

.

.

1

1

0 6

0 6

+
+

x
x

 in [0, 1] respectively, 

then the order pair (k, K) is equal to
 (a) (1, 20.6) (b) (2–0.4, 20.6)
 (c) (2–0.6, 1) (d) (2–0.4, 1)  [2015, online]

 36. From the top of a 64 metres high tower, a stone is 
thrown upward vertically with the velocity of 48m/s. 
The greatest height (in metres) attained by stone, 
assuming the value of the gravitational acceleration 
g = 32 m/s2, is:

 (a) 100 (b) 88
 (c) 128 (d) 112 [2015, online]

 37. The distance, from the origin, of the normal to the 
curve, x = 2 cos t + 2t sin t, y = 2 sin t – 2t cos t at 

t = 
p
4

, is

 (a) 4 (b) 2 2

 (c) 2 (d) 2  [2015, online]

 38. Let the tangents  drawn to the circle, x2 + y2 = 16 
from the point P(0, h) meet the x-axis at points A and 
B. If the area of DAPB is minimum, then h is equal 
to:

 (a) 4 3  (b) 3 3

 (c) 3 2  (d) 4 2  [2015]

 39. Consider

  f(x) = tan
sin

sin

- +
-

Ê

ËÁ
ˆ

¯̃
1 1

1

x
x

, x ŒÊ
ËÁ

ˆ
¯̃

0
2

,
p

.

  A normal to y = f(x) at x = 
p
6

 also passes through 

the point:

 (a) (0, 0) (b) 0
2

3
,

pÊ
ËÁ

ˆ
¯̃

 (c) 
p
6

0,
Ê
ËÁ

ˆ
¯̃

 (d) 
p
4

0,
Ê
ËÁ

ˆ
¯̃

 [2016]

 40. If m and M are are the minimum and the maximum 

values of 4
1

2
+  sin22x – 2cos4x, x Œ R, then M – m 

is equal to

 (a) 
9

4
 (b) 

15

4

 (c) 
7

4
 (d) 

1

4
 [2016, online]

 41. If the tangent at a point P, with parameter t, on the 
curve x = 4t2 + 3, y = 8t3 – 1, t Œ R meets the curve 
again at a point Q, then the coordinates of Q are:

 (a) (16t2 + 3, –64t3 – 1) (b) (4t2 + 3, –8t3 – 1)
 (c) (t2 + 3, t3 – 1) (d) (t2 + 3, –t3 – 1)
 [2016, online]

 42. Let f(x) = sin4x + cos4x. Then f is an increasing func-
tion in the interval

 (a) 
5

8

3

4

p p
,

˘
˚̇

È
ÎÍ

 (b) 
p p
2

5

8
,

˘
˚̇

È
ÎÍ

 (c) 
p p
4 2

,
˘
˚̇

È
ÎÍ

 (d) 0
4

,
p˘

˚̇
È
ÎÍ

 [2016, online]

 43. Let C be a curve given by y(x) = 1 4 3+ -x , x > 3

4

. 

If P is a point on C, such that the tangent at P has 

slope 2

3

, then a point through which the normal at 

P passes, is
 (a) (1, 7) (b) (3, –4)
 (c) (4, –3) (d) (2, 3) [2016, online]
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 1. The slope of the normal to curve y = x3 – 4x2 at  
(2, –1) is

 (a) 
1

4
 (b) 

1

2

 (c) 4 (d) –4 [2006]

 2. For the curve x = t2 – 1, y = t2 – t, the tangent line 
is perpendicular to the x-axis when

 (a) t = 0 (b) t = 1

 (c) t = 
1

3
 (d) t = 1

2
 [2006]

 3. If f(x) = 4 sin x satisfies the Rolle's theorem on [0, p], 
then the value of c Œ (0, p) for which f ¢(c) = 0 is

 (a) c = 
p
6

 (b) c = 
p
4

 (c) c = 
p
2

 (d) c = p
3

 [2006]

 4. The value of c for which the conclusion of Lagrange's  
mean value theorem holds for the function f (x) = 

25 2- x  on the interval [1, 5] is

 (a) 3  (b) 5

 (c) 15  (d) 2 [2007]

 5. Let f(x) = 
x a x

x x

- + £
+ >

Ï
Ì
Ó

1 1

2 3 1

if

if

  If f (x) has a local minimum at x = 1, then
 (a) a > 5 (b) 0 < a £ 5
 (c) a £ 5 (d) a = 5 [2007]

 6. If m is the slope of a tangent to the curve e2y = 1 + 
4x2 then

 (a) Ám Á £ 1 (b) Ám Á > 1

 (c) Ám Á ≥ 1 (d) Ám Á < 1 [2007]

 7. Let f : (– •, •) Æ (– •, •) be a continuous and dif-
ferentiable function and let f ¢(.) denote the derivative 
of f(.). If f (0) = –2 and f ¢(x) £ 3 for each x Œ [0, 2], 
then the largest possible value of f(2) is

 (a) 1 (b) 2
 (c) 3 (d) 4 [2008]

 8. Let f: [–1, 2] Æ (– •, •) be given by

 f (x) = 
x x

x

4 2

2

3 1

1

+ +
+

  Then the maximum possible value of f (.) on [–1, 2] is

 (a) 1 (b) 
29

5

 (c) 
21

5
 (d) 

28

5
 [2008]

 9. Let y = f(x) be a curve which passes through (3, 1) and 
is such that normal at any point on it passes through 
(1, 1). Then y = f (x) describes

 (a) a circle of area p
 (b) an ellipse of area 2p
 (c) an ellipse of area 3p
 (d) a circle of area 4p [2008]

 10. Let f(x) = 
x

x
x

x

sin ,

,

p
0 1

0 0

< £

=

Ï
Ì
Ô

ÓÔ

  then f ¢(x) = 0 for
 (a) exactly two values of x
 (b) no value of x
 (c) infinitely many values of x
 (d) exactly one value of x [2009]

 11. Let f(x) = [1 – x2], x Œ R, where [ ] is the greatest 
integer function. Then

 (a) f is increasing
  (b) x = 0 is the point of maxima of f 
 (c) f is continuous at x = 0
 (d) f is decreasing  [2009]

 12. A particle is constrained to move along the curve  
y = x  starting at the origin at time t = 0. The point 
on the curve where the abscissa and the ordinate are 
changing at the same rate is:

 (a) 
1

2

1

2
,Ê

ËÁ
ˆ
¯̃  (b) 

1

8

1

2 2
,Ê

ËÁ
ˆ
¯̃

 (c) 
1

4

1

2
,Ê

ËÁ
ˆ
¯̃  (d) (1, 1) [2009]

 13. If the tangent and normal to the hyperbola x2 – y2 = 
4 at a point cut off intercepts a1 and a2 respectively 
on x-axis and b1 and b2 respectively on y-axis then 
the value of a1 a2 + b1 b2 is

 (a) –1 (b) 0
 (c) 4 (d) 1 [2010]

 14. Let f be a differentiable function defined on R such 
that f(0) = –3. If f ¢(x) £ 5 for all x then

Previous Years' B-Architecture Entrance  
Examination Questions
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 (a) f(2) > 7  (b) f(2) £ 7
 (c) f(2) > 8 (d) f(2) = 8 [2010]

 15. Let f be a function defined on -È
ÎÍ

˘
˚̇

p p
2 2

,  by f(x) = 3 

cos4x – 6 cos3x – 6 cos2 x – 3. Then the range of f (x) 
is

 (a) [–12, –3] (b) [–6, –3]
 (c) [– 6, 3] (d) (–12, 3] [2010]

 16. The function f (x) = xe – x has
 (a) neither maximum nor minimum at x = 1
 (b) a minimum at x = 1
 (c) a maximum at x = 1
 (d) a maximum at x = –1 [2011]

 17. Each side of a square is increasing at the uniform rate 
of 1m/sec. If after sometime the area of the square 
is increasing at the rate of 8 m2/sec, then the area of 
square at that time in sq. meters is

 (a) 4 (b) 9
 (c) 16 (d) 25 [2012]

 18. The rate of change of the volume of a sphere with 
respect to its surface area when the radius is 2 units 
is:

 (a) 4 (b) 3
 (c) 2 (d) 1 [2013]

 19. If m is the slope of a tangent to curve ey = 1 + x2 at 
the point (x, y) on the curve then all possible values 
of m lie in the interval:

 (a) [0, 1] (b) (1, •)
 (c) (– •, –1) (d) [–1, 1] [2013]

 20. f(x) = | x log x |, x > 0 is monotonically decreasing in: 

 (a) 0
1

,
e

Ê
ËÁ

ˆ
¯̃

 (b) 
1

1
e

,È
ÎÍ

˘
˚̇

 (c) (1, e) (d) (e, •) [2014]

 21. Let f (x) = | x – x1| + | x – x2|, where x1 and x2 are 
distinct real numbers. Then the number of points at 
which f(x) is minimum

 (a) 1 (b) 2
 (c) 3 (d) more than 3 [2014]

 22. The maximum value of f(x) = 2 sin x + sin 2x, in the 

interval 0
3

2
, pÈ

ÎÍ
˘
˚̇

 is

 (a) 2 1+  (b) 2 3

 (c) 3 3

2

 (d) 3  [2015]

 23. The abscissa of a point, tangent at which to the curve 
y = ex sin x, x Œ [0, p], has maximum slope, is:

 (a) p
4

 (b) p
2

 (c) p (d) 0 [2016]

 24. Let p(x) be a real polynomial of degree 4 having 

extreme values at x = 1 and x = 2. If lim
( )

x

p x
xÆ0

2
 = 1, 

then p(4) is equal to:
 (a) 16 (b) 32
 (c) 64 (d) 8 [2016]
Reasoning Type

 25. Let b, c be two non-zero real numbers such that b2 £ 3c. 
Let f (x) = x3 + bx2 + cx + d, x Œ R.

  Statement-1: f is a 1 – 1 function.
  Statement-2: f is a strictly decreasing function on R.

 [2009]

 26. Statement-1: The function f defined on R as f (x) = 
min{x, x2 ) is not differentiable at x = 1.

  Statement-2: The smaller angle between the tangents 

to the curve y = x and y = x2 at x = 1 is tan–1 1

3
.

 [2010]

 27. Statement-1: If f (x) = e(x – 1) (x – 3) then Rolle's theo-
rem is applicable to f (x) in the interval [1, 3].

  Statement-2: Mean value theorem is applicable to  
f (x) = e(x – 1) (x – 3) in the interval [1, 4]. [2011]

 28. Let f (x) = x2 – 8x +12, x Œ [2, 6].

  Statement 1: f ¢(c) = 0 for some c Œ (2, 6).

  Statement 2: f is continuous on [2, 6] and differenti-
able on (2, 6) with f (2) = f (6). [2012]

 29. Let a, b, c Œ R, a > 0 and the function f : R Æ R be 
defined by f(x) = ax2 + bx + c

  Statement-1: b2 < 4ac fi f(x) > 0 for every value 
of x.

  Statement-2: f is strictly decreasing in the interval 

-• -Ê
ËÁ

ˆ
¯̃,

b

a2
 and strictly increasing in the interval 

- •Ê
ËÁ

ˆ
¯̃

b

a2
,  [2012]

 Answers

Concept-based

 1. (a) 2. (c) 3. (b) 4. (d)

 5. (a) 6. (c) 7. (c) 8. (a)

 9. (b) 10. (c)
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Level 1
 11. (c) 12. (b) 13. (b) 14. (b)

 15. (d) 16. (c) 17. (b) 18. (a)

 19. (d) 20. (c) 21. (a) 22. (d)

 23. (a) 24. (b) 25. (d) 26. (c)

 27. (d) 28. (a) 29. (c) 30. (b)

 31. (c) 32. (c) 33. (c) 34. (c)

 35. (b) 36. (c) 37. (d) 38. (c)

 39. (c) 40. (c) 41. (d) 42. (d)

 43. (a) 44. (b) 45. (c) 46. (b)

 47. (c) 48. (a) 49. (b) 50. (b)

 51. (d) 52. (b) 53. (c) 54. (a)

 55. (a) 56. (d) 57. (d) 58. (a)

 59. (a) 60. (a)

Level 2
 61. (b) 62. (a) 63. (b) 64. (d)

 65. (a) 66. (b) 67. (b) 68. (a)

 69. (d) 70. (a) 71. (c) 72. (d)

 73. (a) 74. (a) 75. (d) 76. (c)

 77. (c) 78. (c) 79. (c) 80. (d)

 81. (b) 82. (d) 83. (a) 84. (b)

 85. (a) 86. (d) 87. (d) 88. (d)

 89. (b) 90. (c) 91. (a) 92. (d)

 93. (b) 94. (b) 95. (a) 96. (b)

 97. (c) 98. (c)

Previous Years' AIEEE/JEE Main Questions
 1. (a) 2. (b) 3. (b) 4. (a)

 5. (b) 6. (c) 7. (a) 8. (b)

 9. (c) 10. (d) 11. (b) 12. (a)

 13. (b) 14. (a) 15. (d) 16. (b)

 17. (b) 18. (b) 19. (a) 20. (b)

 21. (c) 22. (d) 23. (c) 24. (c)

 25. (a) 26. (c) 27. (d) 28. (c)

 29. (c)  30. (d) 31. (b) 32. (b)

 33. (c) 34. (a) 35. (d) 36. (a)

 37. (c) 38. (d) 39. (b) 40. (a)

 41. (d) 42. (c) 43. (a)

Previous Years' B-Architecture Entrance 
Examination Questions
 1. (a) 2. (b) 3. (c) 4. (c)

 5. (c) 6. (a) 7. (d) 8. (b)

 9. (d) 10. (c) 11. (d) 12. (c)

 13. (b) 14. (b) 15. (a) 16. (c)

 17. (c) 18. (d) 19. (d) 20. (b)

 21. (b) 22. (c) 23. (b) 24. (a)

 25. (c) 26. (b) 27. (b) 28. (a)

 29. (b)

 Hints and Solutions

Concept-based

 1.   
dy

dx
 = 

- + = -a t t

a t t

t

t

cos sin

sin cos

cos

sin

2

2

  Length of the tangent = y
t

t
1

2

2
+ sin

cos

   = 
a t

t
a t

cos

cos
cos

3
2=

 2. 
dy

dx

e

e
e

t

t
t= - = -

-
-

2

1

2
2 . If t = 0 then X = 2, y = 1

  Equation of normal is

 Y – 1 = 2 22

0
e Xt

t=
-( )

fi Y – 1 = 2(X – 2) fi 2X – Y – 3 = 0.

 3. ds

dt
t= p p

9 2
cos  and a = 

d s

dt

2

2

2

18 2
= -p p

sin t 

a(t = 1) = –
p 2

18
 4. f ¢(x) = 1 + log x – 1 = log x > 0 for x > 1. So f is 

increasing for x > 1 fi f(x) > f(1) = 0 for x > 1. 
f ¢(x) < 0 for 0 < x < 1 fi f is decreasing for  
0 < x < 1 fi f (x) > f(1) = 0 for 0 < x < 1.

 5. dy

dx
 = 3x2, we need x such that 3

8 1

2 1

9

3
32x = +

+
= =  

fi x2 = 1 so x = 1 or –1. Thus two points are (–1, 
–1) and (1, 1).

 6.   f ¢(x) = 4
1

x
x

-

  The function f increases if 4
1

0 1 2x
x

i e x- > >. .
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  The function f decreases if 4
1

0 0
1

2
x

x
i e x- < < <. .

 7. f is differentiable function, so the critical points are 
given by f ¢(x) = 0

 f ¢(x) = 3x3 – 3x2 – 18x = 3x (x + 2) (x – 3)

  The critical points of f are 0, –2, 3 but only 
0, 3  Œ [–1 4].

 8. 3 12
42
2

x
dx

dy

dx

dy x
= fi = . We need 

dx

dy
> 1

  fi 4
1

2x
>  fi x2 < 4, x π 0 fi x Œ (–2, 2) ~ {0}.

 9. For 
x

k

y dy

dx

x

k y

2

2

2

24
1

4+ = = -
,  and for y3 = 16x, 

dy

dx
= 

16

3 2y
. For orthogonality 

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

= -4 16

3
1

2 2

x

k y y

  fi  64x = 3 k2 y3 = 48 k2 x

  fi  k k2 4

3

2 3

3
= fi =

 10. g¢(t) = 0 fi 8 – 4t3 = 0 fi t3 = 2 so t = 21/3 
but 21/3 œ [–2, 1]. Now g(–2) = –32, g(1) = 7  
So –32 in the least value.

Level 1

 11. Let h(x) = tan–1 x – 
x

x1 2+
, h¢(x) = 

1

1 2+ x
– 

1

12x +
 

+ 
2

1

2

2 2

x

x( )+
> 0 for all x. For x > 0 h(x) > h(0) = 0

  fi f (x) > g(x) on (0, •)
 12. f (2) = f (3) = f (4) = f (5) = f (6) = 0,
  so, by Rolle's theorem applied on [2, 3], [3, 4], [4, 

5], [5, 6] there are x1 Œ (2, 3), x2 Œ (3,4), x3 Œ (4, 
5), x4 Œ (5, 6) such that f  ¢(xi) = 0, i = 1, 2, 3, 4. 
Since f ¢ is polynomial of degree 4 so cannot have 
five roots.

 13. f ¢(x) = (x – 3)4 (x + 1)3 (9x – 7)
  For x < – 1, f ¢(x) > 0 and for –1 < x < 0,  f  ¢(x) < 

0. x = –1 is a point of maxima.

 14. 
dy

dx
 = tan q, so equation the equation of normal is 

y – a(sin q – q cos q) = –cot q(x – a(cos q + q 
sin q) which simplifies to x cos q + y sin q = a. 
The distance of the normal from origin is | a |.

 15. Apply Rolle's theorem to show that the given equa-
tion cannot have two real distinct roots.

 16. 
dy

dx
Ê
ËÁ

ˆ
¯̃  (a/8, a/8) = –1. The equation of tangent at 

(a/8, a/8) is y + x = a/4. The x and y intercepts of 
this line both equal a/4, so 

  2 = 
a a2 2

16 16
+  fi a = 4.

 17. The slope of tangent to xm y = bm is dy

dx

my

x
= - . So 

the equation of tangent is Y – y = – 
my

x
 (X – x) 

which simplifies to 
X

x

Y

y myx
m+

+
+

 = 1. Thus the 

base of the triangle is the X-intercept, x + x/m and 
the height is the y-intercept, y + my. So the area 
of the triangle is

 (1/2) x
x

m
+Ê

ËÁ
ˆ
¯̃  (y + my)

 = 
xy m

m

b m

m n

m

m

( ) ( )1

2

1

2

2 2

1

+ = +
-

  which is constant if m = 1.
 18. The slope of the tangent is –x3/y3 and its equation 

is 
X

a x

Y

a y4 3 4 3/ /
+  = 1.

  Thus the required intercepts are p = a4/x3 and q = 
a4/y3 so that

  p–4/3 + q–4/3 = a–16/3 (x4 + y4) = a–16/3 a4 = a–4/3

 19. 1 – 2 cos x > 0 if cos x < 1/2 fi x Œ p p
3

5

3
, .Ê

ËÁ
ˆ
¯̃

 20. For x π –1, 1, dy

dx

x x

x
= - - +

-
( ) ( )

( )

/ /

/

1 1

3 1

2 3 2 3

2 2 3
 = 0 only 

at x = 0. y(0) = 2, y(–1) = y(1) = 21/3, so the great-
est value of y is 2.

 21. f ¢(x) = 4x – 
1 4 1 2 1 2 12

2x

x

x

x x x

x
= - = - +( ) ( )

2x – 1 2x + 1 x f ¢(x)

x < – 1/2 – – – –

–1/2 < x < 0 – + – +

0 < x < 1/2 – + + –

x > 1/2 + + + +

  Thus f increases on [–1/2, 0] » [1/2, •].

 22. Let (x, y) be any point on y = 
e ex x+ -

2
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 U = S2 = square of distance of (x, y) from (0, 0) 

  = x2 + 
e ex x2 2

4

1

2

+ +
-

 
dU

dx
 = 2x + e ex x2 2

2

- -
 = 0 for x = 0

  and 
d U

dx

2

2
 > 0 at x = 0. Hence S2 is min for x = 0 

and min S 2 = 1

2

1

2
+  = 1.

 23. 2x + 2y
dy

dx
 – 2 – 2 

dy

dx
 = 0 fi 

dy

dx ( , )2 2
 = –1

  Required equation of normal is y – 2 = (x – 2)
  fi y = x.

 24. Let g(x) = 
f x

x

( )
 ◊ g ¢(x) = 

xf x f x

x

¢ -( ) ( )
2

.

  Let h(x) = x f '(x) – f(x), h¢(x) = xf ¢¢(x) > 0
  So h(x) > h(0) = 0 for x > 0¢. Hence g¢(x) > 0,  

x > 0 g increases on (0, •).
 25. If a and b are real and distinct roots of x3 – 

12x + k = 0. Then f(x) = x3 – 12x + k satisfies  
f(a) = f(b) = 0 then there g Œ [a, b] Õ [0, 2] such 
that f ¢(g) = 0 i.e., 3v2 – 12 = 0 fi g = ± 2. Not 
possible.

 26. f ¢(x) = 8x1/3 – x–2/3 = 
8 1

2 3

x

x

-
/

 = 0 if x = 1/8

  f(1) = 3, f(–1) = 6 + 3 = 9, f 
1

8
Ê
ËÁ

ˆ
¯̃  = –9/8 thus 

max f = 9.
 27. f  ¢(x) = 4x3 – 18x2 + 24x – 8, f  ¢¢(x) = 12x2 – 36x 

+ 24 = 12(x2 – 3x + 2) = 12(x – 1) (x – 2), f ¢¢(x) 
= 0 fi x = 1, 2

  If x = 1 then y = 2. If x = 2, y = 3. So equation of 
tangent at (1, 2) is y – 2 = f ¢(1) (x – 1) = 2(x – 1). 
Equation of the tangent at (2, 3) is y – 3 = f  ¢(2) 
(x – 2) = 0.

 28. The odd degree has at least one real root if the equa-
tion has at two real roots then by Rolle's theorem 
there is g Œ [a, b] such that 6g2 – 6g + 6 = 0 fi 
g2 – g + 1 = 0 which is not possible for g Œ R.

 29. f (x) = (x – 2) (x – 1)4 fi f ¢(x) = (x – 1)4 + 4(x – 
1)3 (x – 2) = (x – 1)3(5x – 9) so for 1 < x < 9/5, 
f ¢(x) < 0 and for x > 9/5, f ¢(x) > 0. Thus x = 9/5 

f has local minimum f(9/5) = –
1

5

4

5

4Ê
ËÁ

ˆ
¯̃ .

 30. f(x) = 
x x x

x x x

2

2

2 2 1 2 0

2 2 0 3 2

+ + - £ £

- + < £

Ï
Ì
Ô

ÓÔ

, /

, /

  and f  ¢(1) = 0
  f ¢(0) doesn't exist. Since f (0) = 2, f (–1/2) = 5/4, 

f (3/2) = 5/4,  f (1) = 1  so Max. f (x) = 2 and min 
f (x) = 1.

 31. The function is not differentiable at x = 0 and 
x = 1. Now

 f(x) =

x

x
x

x

x

x

x

- ≥

- <
π

Ï

Ì
ÔÔ

Ó
Ô
Ô

1
1

1 1

0

2

2
,

 fi f ¢(x) = 

- + >

- <
π

Ï

Ì
ÔÔ

Ó
Ô
Ô

x

x
x

x

x

x

x

2
1

2 1

0

3

3

if

if,

  so we get a third critical point x = 2.
 32. The derivative of the function, xx (log x + 1), is 

negative when log x < –1 i.e., when x < e–1.
 33. y¢(x) = 1 – ex is positive when ex < 1 i.e., when x 

< 0
 34. 3 = f(1) = 1 + p + q and f ¢(1) = 0 fi 2 + p = 0
  fi p = –2, q = 4.
 35. Let f(x) = ax3 + bx2 + cx + d, a π 0, f ¢¢(x) = 6ax 

+ 2b, f¢¢(x) = 0

  fi x = 
-b

a3
 f¢¢¢(x) =  6a π 0. So only one point of 

inflection.

 36. f(x) = 

4 1 1

4 1

4 1

1

1

1

tan

tan

tan

-

-

-

- £ £

- >

+ < -

Ï

Ì
Ô

Ó
Ô
Ô

x x

x x

x x

if

if

if

p

p

  So max f(x) = 4 
p
2

 – p = p

 37. 
dy

dx

m

m m( )2 3

3

2-
= - The equation of normal at (m2,  

– m3) is Y + m3 = (2/3m) (X – m2). Simplifying we 
have Y = (2/3m) X – (2m/3 + m3) which is identical 
with y = 2mx – 2m3 if m2 = 2/3.

 38. f¢(x) = 2 cos x – 2 sin 2x = 2 cos x(1 – 2 sin x) > 
0

  if (i) cos x > 0, sin x < 1/2 (ii) cos x < 0, sin x 
> 1/2

  i.e., if x Œ (0, p/6) » 3 2 2p p,( )  or x Œ (p/2, 5p/6). 

So f increases on (0, p/6) » (p/2, 5p/6).

 39. f¢(x) = sec2 x – cosec2 x = 
sin cos

sin cos

2 2

2 2

x x

x x

-
 = 

- cos

sin cos

2
2 2

x

x x
 f¢(p/4) = 0, f¢(3p/4) = 0. For 0 

 < x < p/4, f¢(x) < 0 and for p/4 < x < p/2, 

f¢(x) > 0. Min f(x) = f(p/4) = 2.

 40. f¢(x) = 12x(x2 – x + 1), f ¢(x) = 0 only for x = 0.

 41. Distance of (t2, t) on y2 = x from y – x – 1 = 0 is 

| |t t t t- - = - +2 21

2

1

2
 + 1. This is minimum if t = 

1/2. So the shortest distance = 3 2 /8.
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 42. f¢(x) = 3(x – (a + 1)) (x – (a – 1)) = 0 fi x = a ± 
1.

  a – 1 Œ (–2, 4) fi a Œ (–1, 5), a + 1 Œ (–2, 4)  
fi a Œ (–3, 3)

 43. y = tan A tan (p/3 – A) = 
x x

x

( )3

1 3

-
+

, where x = 
tan A.

  
dy

dx
 = 

- - +
+

( ) ( )

( )

3 1 3

1 3 2

x x

x
. As 0 < A < p/3, x = 

tan A > 0

  
dy

dx
 = 0 fi x = 

1

3
◊ dy

dx
 > 0 for 0 < x < 

1

3
 and 

is < 0 for x >
1

3
. So ymax = y = x =( )1 3  = 1/3.

 44. f(x) = –x log x, for 0 < x < 1, and f¢(x) = –(1 + log 
x). So f¢(x) = 0 fi x = e–1. It is easy to see max 
f(x) = f(e–1) = e–1.

 45. f(x) = logx (1/9) – log3 x2 = - -log

log

log

log

9 2

3x

x

  f¢(x) = 
2 3

3

2 2

2

((log ) (log ) )

(log ) log

- x

x x
 so  f¢(x) = 0 fi log x 

= ± log 3
  fi x = 3 or 1/3. One can see by first derivative test 

that max f(x) = f(3) = – 4.
 46. Applying Lagrange's mean value theorem there is 

c Œ (1, 6) such that 
f ( ) ( )6 1

5

- +
 = f¢(c) ≥ 2 

  fi f(6) ≥ f(1) + 10 = 8.

 47. f¢(x) = 3[(sin–1 x)2 – (cos–1 x)2] 1 2- x
  f¢(x) = 0 fi sin–1 x = cos–1 x or sin–1 x = – cos–1 x 

but 
  sin–1 x + cos–1 x = p/2 so sin–1 x = cos–1 x fi sin–1 

x = p/4

  fi x = 1/ 2 . Thus f(1/ 2 ) = p3/32.
 48. f¢(x) = log x + 4 so f¢(x) > 0 if log x > –4 i.e., x > 

e–4.
 49. f¢(x) = (2 – x)xe–x. f¢(x) = 0 fi x = 0, 2
  For 0 < x < 2, f¢(x) > 0 and for x > 2, f¢(x) < 0
  So max f(x) = f(2) = 4e–2.
 50. f(x) = 

6 3 2

10 2 3 3 7

4 3 5

3 6 5

- £ -
- < £ = =

+ < £
- >

Ï

Ì
ÔÔ

Ó
Ô

x x

x x f x f

x x

x x

,

, min ( ) ( ) .

,

,ÔÔ

 51. f is not differentiable at x = 0. For x π 0, f ¢(x) = 
2 – 3x – 1/3. So f ¢(x) = 0

  fi x =
27

8
 >

10

3
,  hence f ¢(x) is never zero, for x π 0.

  Now f (– 1) = – 3, f(0) = 2

  f(10/3) = 
26

3
3

10

3
0

2 3

- Ê
ËÁ

ˆ
¯̃ >

/

 but is less then 2. 

  Hence absolute minimum is f(– 1) and absolute 
maximum is f(0).

 52. f(x) = lim
n

n

n

x

xÆ •

-
+

1

1
 = 

- £ <
>
=

Ï
Ì
Ô

ÓÔ

1 0 1

1 1

0 1

,

,

, if

if

if

x

x

x

 g¢(x) =  f(x). Hence g has local minimum at x = 1.
 53. f ¢(x) = cos x – sin x = 0 fi x = np + p/4
 f ¢¢(x) = – sin x – cos x = – (sin x + cos x)

     f ¢¢ np p+Ê
ËÁ

ˆ
¯̃4

 = (–1)n + 1 sin cos
p p
4 4

+Ê
ËÁ

ˆ
¯̃

  = (– 1) n + 1 2

  If n is even then f(x) has maxima and if n is odd then 

f(x) has minima.

 54. Let f(x) = xex x1 -( ) , we can write 

 f ¢(x) = – (x – 1) (2x + 1) ex(1 – x)

 since    ex(1 – x) > 0 " x Œ R so
  f ¢(x) < 0 for x < –1/2; f ¢(x) > 0 for –1/2 < x < 1 

and is < 0 for x > 1. 
  Thus f(x) increases on [–1/2, 1]
 55. Equation tangent at P(c, ec) is y – ec = ec (x – c) 

(1)
  The equation of line joining (c + 1, ec+1) and  

(c–1, ec–1) is

  y – ec + 1 = 
1

2
 (ec+1 – ec – 1) (x – c – 1) (2)

  Subtracting (2) from (1)
   ec (e – 1) =

 e x c e e e ec -( ) - -( ){ } + -( )È
ÎÍ

˘
˚̇

- -1
1

2

1

2
1 1

  fi e – 1 = x c e e e e-( ) - -( )È
ÎÍ

˘
˚̇

+ -( )- -1
1

2

1

2
1 1

  fi c – x = 
e e

e e

+ -
- -

-

-

1

1

2

2
 > 0 fi x < c

  Thus two lines meet on the left of x = c. 
 56. Consider f(x) = x1/x

 f ¢(x) = x
x

x
x1

2

1/ log-Ê
ËÁ

ˆ
¯̃

  f has local maximum at x = e
  Since p > e and f decreases on (e, •) so f(p) < 

f(e) fi p e < ep.
 57. Applying Lagrange’s mean value on [x, y], we have 

c Œ (x, y) such that
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 f ¢(c) = 
f y f x

y x

( ) - ( )
-

  | f(y) – f (x) | = | f ¢(c) | | y – x | £ M | y – x | 
(if | f ¢(x) | £ M)

  and | f ¢(y) – f (x) | ≥ M | x – y | (if |f ¢(x) | ≥ M)
  Putting f(x) = cot x, f ¢(x) = – cosec2 x, | f ¢(x) | ≥ 1
  Hence | cot x – cot y | ≥ | x – y |
 58. f ¢(x) = 2 cos x – 2 sin 2x = 2 cos x (1 – 2 sin x)
  Now determine the sign of f ¢(x) on [0, 2p].

 59. f(x) = p/4 – tan–1 x fi f ¢(x) = –
1

1 2+ x
 < 0 for 

all x. So the greatest value is f(0) = p/4 and least 
value is f(1) = 0.

 60. f ¢(x) = 
1

2

– log

log

x

x( )
.

Level 2

 61. f ¢(x) = (2/3) (x – 2)–1/3 (2x + 1) + 2(x – 2)2/3

  = 
10

3
Ê
ËÁ

ˆ
¯̃  (x – 1) (x – 2)–2/3

  f ¢(x) = 0 fi x = 1 also f ¢(x) does not exist at x = 2, 
hence the critical points are x = 1 and

  x = 2.

 62. f (– 2) = 1

 63. f ¢(x) = 
1

1

1

22+
-

x x
 = 

- -( )
+( )
1

1 2

2

2

x

x x
 < 0

  for x > 0 i.e. f decreases on 1 3 3/ ,ÈÎ ˘̊

  Therefore, the greatest value is f 1 3/( )   

= tan–1 
1

3

1

2

1

3
- log =

p
6

1

4
+  log 3.

 64. x y2 2

9 4
-  = 1 fi 

2

9 2

x y dy

dx
-  = 0 fi 

dy

dx
 = 

4

9

x

y

  The tangent will be perpendicular to 2y + 5x = 10

  if 
4

9

5

2

x

y
¥ -Ê

ËÁ
ˆ
¯̃  = – 1 fi 10x = 9y

  Substituting the value of x in x y2 2

9 4
-  = 1, we have 

9

100

1

4
-Ê

ËÁ
ˆ
¯̃ y2 = 1, which is not possible. Thus there 

is no point on the curve at which the tangent is per-
pendicular to 2y + 5x = 10.

 65. f ¢(x) = 

1 0 0

0 1 02

2

2

2

ab x b bc

ac bc x c

x a ab ac

ac bc x c

+

+

+
+

+

 

  +

+

+

x a ab ac

ab x b bc

2

2

0 0 1

  = (x + b2) (x + c2) – b2c2 + (x + a2) (x + c2) 
– a2 c2  + (x + a2) (x + b2) – a2 b2

  = 3x2 + 2 (a2 + b2 + c2) x

  = x (3x + 2 (a2 + b2 + c2))

  f decreases if x < 0 and x > - 2

3
 (a2 + b2 + c2)

  i.e. on ((– 2/3) (a2 + b2 + c2), 0).

 66. Let 'a' be the part of log in the channel of width 27 
m and 'b' be the part of log in the channel of width 
64 m.

  So l = a + b

    = 27 cosec q + 64 sec q

  
dl

dq
 = – 27 cosec q cot q + 64 sec q tan q

  
dl

dq
 = 0 fi tan q = 

3

4

  One can verify that d l

d

2

2q
 < 0 for q = tan–1 

3

4

  max l = 27
5

3
64

5

4
¥ + ¥  = 125.

q

q

Fig. 11.7

 67. f ¢(x) = sin a tan2 x sec2 x + (sin a – 1) sec2 x

  = sec2 x (sin a tan2 x + (sin a – 1))

  Since sec2 x π 0 so tan2 x = 
1 - sin

sin

a

a

  Now a Œ [p, 2p] so sin a < 0. Hence L.H.S. is ≥ 0 
but R.H.S. < 0. Thus there is no critical point.

 68. The derivative of f (x) is (4a – 3) + (a – 7) cos x. It 
is

  zero when cos x = 
4 3

7

a

a

-
-

 fi 
4 3

7

a

a

-
-

 £ 1
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  fi – 1 £ 
4 3

7

a

a

-
-

£ 1 fi a – 7 £ 4a – 3 £ 7 – a

  i.e. when a ≥ – 4/3 or a £ 2. Hence the interval when 
f has no critical points are (– • – 4/3] and [2, •).

 69. f ¢(x) = 3 1
21 4

1

2

- - -
+

Ê

Ë
Á

ˆ

¯
˜

b b

b
 x2 + 5 > 0 if

  x2 > 
-

- - -
+

Ê

Ë
Á

ˆ

¯
˜

5

3 1
21 4

1

2b b

b

 if

  1 – 
21 4

1

2- -
+
b b

b
 > 0

  which is trivially true if b + 1 < 0 i.e. b < – 1

  If b + 1 > 0 then

  (b + 1)2 > 21 – 4b – b2 fi (b – 2) (b + 5) > 0

  i.e. b > 2 or b < – 5

  so b Œ [2, 3].

 70. Any point on the ellipse is given by (a cos q, 
b sin q )

  Also 
dy

dx
 = – b x

a y

2

2
 = 

- b

a
 cot q

  The equation of tangent at (a cos q. b sin q) is Y – b 

sin q = 
- b

a
 cotq (X – a cos q)

  This tangent cuts the coordinate axes at the points

  0 0,
sin cos

,
b a

q q
Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃and  

  The area of the triangle formed by the tangent and 
the coordinate axes is

  A = 
1

2

ab

sin cosq q
 = ab cosec 2q

  But cosec 2q is smallest when q = p /4

  Amin = ab.

 71. Let f (x) = x – log (1 + x). The domain of f is

  (– 1, •). f ¢(x) = 1 –
1

1 + x
 =

1 1

1

+ -
+
x

x
=

x

x1 +
. Since 

1 + x > 0 for x Œ dom f so f ¢ (x) > 0 if x > 0 

and f  ¢(x) < 0 for (– 1, 0). Thus f increases (0, •). 
Morever, f (0) = 0. Hence f (x) ≥ f (0) = 0 fi x ≥ log 
(1 + x) for x Œ (0, •).

  For x Œ (– 1, 0), f decreases so

  f (x) ≥ f (0). Hence x ≥ log (1 + x) on (– 1, •).

 72. 2(x2 – 3)2 + 27 ≥ 28 and the value 28 is

  attained at x = 3 . Hence the minimum value of 

2(x2 – 3)2 + 27 is 28.

 73. f (x) = 

- - < <
=

< <

Ï
Ì
Ô

ÓÔ

x x

x

x x

2 0

1 0

0 2

  f is not continuous at x = 0. Morever

  f (0) > f (a) for a Œ (–1/2, 1/2) ~ {0}. f has local

  maximum at x = 0.

 74. f ¢ (x) = ex(1 – x) + x (1 – 2x) ex(1 – x)

  = (1 + x – 2x2) ex(1 – x) = – (x – 1) (2x + 1)ex(1 – x)

  Since ex(1 – x) > 0 for all x, so f ¢(x) > 0 if and only if 
(x – 1) (1 + 2x) < 0 i.e –1/2 = min (1, – 1/2) < x < 
max (1, –1/2) = 1.

  Thus f increases on [– 1/2, 1].

 75. Clearly f (0) = f (1) = 0. For f to be continuous

  on [0, 1], we must have lim
xÆ +0

 xa log x = 0. This is 

possible only if a > 0. Thus a = 1/2 is only such 
value.

 76. Let h be the height of cone, then the radius r of the 
cone satisfies r2 = 3 – h2

  V = 
1

3
p (3 – h2)h  so

dV

dh
 = 

1

3
p (– 3h + 3)

  
dV

dh
 = 0 fi h = 1. Also 

d V

dh

2

2
 = – p < 0

  so Vmax = 
1

3
p (3 – 1) = 

2

3

p
.

 77. Any point on the ellipse is of the form (4 cos q, 3 
sin q ), 0 £ q £ 2p. Area A of a rectangle inscribed in 
the ellipse = 4 ¥ 4 cosq ¥ 3 sin q = 24 sin 2q. This 
will be maximum when 2q = p /2 or q = p /4. Hence 
the dimensions of the ellipse are

  2·4·
1

2
 and 2·3· 

1

2
 i.e. 2 8  and 3 2 .

 78. y ¢ = 4ax3 + 3bx2 + 2 cx + d

  y ¢¢ = 12 ax2 + 6 bx + 2 c , y ¢¢ = 0 should have real 
distinct roots. This is true if 36b2 – 96ac > 0

  i.e. 3b2 – 8ac > 0.

 79. f (x) = |x2 – 3x + 2|

  = – (x2 – 3x + 2), 3/2 £ x £ 7/4

  f ¢ (x) = – (2x – 3). So the critical points are
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  3/2, 7/4 . f (3/2) = 
1

4
, f (7/4) = 

3

16
. Thus

  f (x) ≥ 
3

16
. So m = 

3

16

 80. We are looking for x Œ [0, p] for which
  |(1/2)x – sin x| is maximum.

  S = 
1 2 1 2

1 2 1 2

/ sin / sin

sin / sin /

( ) - ( ) ≥
- ( ) < ( )

Ï
Ì
Ó

x x x x

x x x x

if

if

  
dS

dx
 = 1/2 – cos x = 0 fi cos x = 1/2 fi x = p /3 

Thus critical points are x = 0, p/3, p. S(0) = 0,

  S(p/3) =
3

2 6
- p

, S (p) = 
p
2

. Thus

  Smax = p/2 at x = p.

 81. 2ax + 2h x
dy

dx
y+Ê

ËÁ
ˆ
¯̃  + 2 by 

dy

dx
 = 0

  fi 
dy

dx
 = –

ax hy

hx by

+
+

  The tangent will be || to Y-axis if hx + by = 0

 82. 
dy

dx
 = tan a –

ax

u2 2cos a
. The tangent will be parallel 

to y = x if tan a – 
ax

u2 2cos a
 = 1

  fi x = 
tan cosa a-( )1 2 2u

a

  = 
u

a

2

 (sin a – cos a) cos a

  The corresponding ordinate is given by

  y = 
u

a

2

 (sina – cosa) cosa tana

   - a

u

u

a2 2 2

4

2cos a
 (sina – cosa)2 cos2a

  = u

a

2
2 1

2
1 2sin sin cos sin cosa a a a a- - -( )È

ÎÍ
˘
˚̇

  = 
u
a

2

(sin2a – 1/2)

  According to given condition

  u

a

2

 (sin2a – 1/2) =  u

a

2

4
.

  fi sin2a = 3/4

 83. f (x) = 
1 1

2 3 1

- + £
+ >

Ï
Ì
Ó

x a x

x x

,

,

  If f (x) has local minimum at x = 1, then f (1) £ 
f (1 + h), h > 0 i.e. a £ 2 (1 + h) +3

  Hence a £ 5. So a = 5.

 84. f ¢(x) = lim
( ) ( )

h

f x h f x

hÆ

+ -
0

  = lim
( ) ( ) ( )

h

f x f h xh f x

hÆ

+ + - -
0

2 1

  = lim
( ) ( )

h

f h f

hÆ

-
0

0
 + 2x

  (Putting x = y = 0 we obtain f (0) = 1)

  = f ¢(0) + 2x = 2 (x + 1)

  f (x) = (x + 1)2 + C. Putting x = 0, we obtain C = 0. 
Thus f (x) = (x + 1)2. But g¢(x) = f (x) = (x + 1)2 > 0 
so g increases on (– •, •) in particular on (0, •).

 85. 
dy

dx
= - x

y
, 

dy
dx 1 3

1

3,( )
= -  

  Equation of tangent at (1, 3 ) is
  Y – 3  = 1 3( )  (X – 1)

  This will intersect X – axis at (4, 0). Equation of the 
normal at (1, 3 ) is

  Y – 3  = 3  (X – 1)

  This will intersect X-axis at (0, 0) so the required area 
of the triangle

  = 
1

2
4 3  = 2 3 .

 86. y ¢ = 
x x x

x x

2 2

2 2

2 3 2 1

2 3

- + - -
- +

( )

( )
 = - - +

- +
( )

( )

x

x x

1 2

2 3

2

2 2

  y ¢ = y 0 for x = 1 ± 2

  y ¢ > 0 for 1 < x < 1 + 2  and y ¢ < 0 for x > 1 + 

2

  ymax = y 1 2+( ) . Similarly ymin = y 1 2-( )
  y 1 2+( )  = 

2

4
1 2and y -( )  = –

2

4
.

 87. Equation of tangent at any point (x1, y1) is 
xx1 + yy1 = 16
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(2, 2 3)÷

(2, 2 3)- ÷

q
(8,0)

Fig. 11.8

  This passes through (8, 0) if 8x1 = 16 i.e. x1 = 2

  so y1 = 2 3 . The slope of tangent is – 3 .

  Therefore q = p /6 and 2q = p /3.

 88. For x π – 2,

  f ¢(x) = 
2

3
(x + 2)–1/3 (2x – 1) + (x + 2)2/32 2

  = 
10 3 1

2 1 3

/
/

( ) +( )
+( )

x

x

  f ¢(x) = 0 fi x = – 1 clearly f is not differentiable

  at x = – 2. Thus the critical points are – 1, – 2.

 89. f ¢(x) = 
log( ) log( )

log( )

e x
x

x
e x

e x

+ ¥
+

- + ¥
+

+( )

1 1

2

p
p

  = 
log( ) ( ) ( ) log ( )

( ) ( ) log( )

e x e x x x

x e x e x

+ ¥ + - + +
+ + +( )

p p
p 2

 

  Since log function is an increasing function and 
e < p, log (e + x) < log (p + x)

  fi (e + x) log (e + x) < (e + x) log (p + x) < 
(p + x) log (p + x) for all x > 0. Thus f ¢(x) < 0 for 
all x > 0.

  fi f decreases on [0, •).

 90. 2(l + b) = 32 fi l + b = 16.

  Area of rectangle A = lb = l(16 – l)

  dA

dl
 = 16 – 2l so 

dA

dl
 = 0 fi l = 8

  dA

dl
 = – 2 < 0. Thus A is maximum when l = 8.

 91. f ¢(x) = –
1

1

1

22+
+

x x
 = 

1

1 2

2

2

-( )
+( )

x

x x
 > 0 for x Œ 1 3,( )

  f increases on 1 3,ÈÎ ˘̊ . The greatest value of f is equal 

to f 3( )  = cot log- +1 3
1

2
3

         =
p
6

1

4
3+ log .

 92. 2y
dy

dt
 = 4

dx

dt
. According to the given condition

  
dy

dt ( , )7 6

 = 3. So

  2 ¥ 6 ¥ 3 = 4
dx

dt
 fi 

dx

dt
 = 9 unit/s.

 93. 2(l + b) = 24 fi l + b = 12

  
dl

dt

db

dt
+  = 0. If 

dl

dt
 is 1 cm/s

  then 
db

dt
= – 1. 

dA

dt
l

db

dt
b

dl

dt
= +  = b – l

  
dA

dt
 will start decreasing if b – l £ 0 but b + l = 12 

so l = 6.

 94. V = p r2h fi 
dV

dt
 = p r2 

dh

dt

  fi 
dh

dt
 = –

3
2pr

.

 95. 
dA

dt
 = l

db

dt
b

dl

dt
+

  
dA

dt l b= =12 5,

 = 12 ¥ 2 + 5 ¥ (– 2) = 14.

 96. Let g (x) = f (x) – x2. As f is twice differentiable so g 
is also twice differentiable.

  Also

  g (1) = f (1) – 12 = 1 – 1 = 0

  g (2) = f (2) – 22 = 22 – 22 = 0

  g (3) = f (3) –32 = 32 – 32 = 0

  By Rolle’s theorem $ a Œ(1, 2) and b Œ (2, 3)

  such that g ¢(a ) = 0, g ¢( b ) = 0.

  Again applying Rolle’s theorem $ g Œ (a, b )

  such that g ¢¢ (g ) = 0

  As a Œ (1, 2), b Œ (2, 3), (a, b ) Ã (1, 3)

  g ¢¢(g ) = f ¢¢(g ) – 2 = 0 fi f ¢¢(g ) = 2

  So there is some x Œ (1, 3) such that f ¢¢(x) = 2.

 97. Equation of tangent at P(x, y)

  Y – y = f ¢ (x) (X – x)
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  so A = x y
f x

-
¢

Ê
ËÁ

ˆ
¯̃

1
0

( )
,  and B = (0, y – x f ¢(x)).

  3:1 = BP:AP

  = x x f x yy
f x

2 2 2 22

2+ ¢ +¢( ( )) :
( ( ))

  
9

1
 = 

x f x

y f x

2 2

2 2

1

1

( ( ( )) )

( ( ( )) )

+ ¢
+ ¢

 (f ¢(x))2 =
x f x

y

2 2

2

( ( ))¢

  fi 9
y

x

2

2
 = (  f ¢(x)2) fi 3

y

x
 = ± 

dy

dx

  fi x

y

3

 = Const or x3y = C

  Since f (1) = 1, so Const = 1

  Thus the curve is either x3 = y or x3y = 1. 
The last curve passes through (2, 1/8)

 98. f is a differentiable function and

  f ¢(x) = 3x2 + 2bx + c

  = 3
3 3 9

2 2

x
b c b+Ê

ËÁ
ˆ
¯̃ + -

È

Î
Í

˘

˚
˙

  = 3 3
3

9
2

2

x b
c b+( ) + -È

Î
Í

˘

˚
˙/

  Since b2 < c < 3c so 3c – b2 > 0 and hence

  f ¢(x) > 0 i.e. f is strictly increasing on R.

Previous Years' AIEEE/JEE Questions

 1. Let f (x) = 1

3

1

2

3 2ax bx cx+ + .

  Note that f is continuous and differentiable on R. We 
have

  f (0) = 0 and f (1) = a b c
3 2

+ +  = 0.

  \ By the Rolle’s theorem $ a Œ (0, 1) such that f ¢(a) 
= 0.

  i.e. aa2 + ba + c = 0.

 2. dx
dt

 = a t b a
b

at
b

cos cos- ◊ Ê
ËÁ

ˆ
¯̃

 = a t at
b

cos cos-È
ÎÍ

˘
˚̇

  
dy
dt

 = - + ◊ Ê
ËÁ

ˆ
¯̃

a t b a
b

at
b

sin sin  = a at
b

sin sin-È
ÎÍ

˘
˚̇

t

fi 
dy
dx

=
sin sin

cos cos

at
b

t

t at
b

-

-
=

2 1
2

1
2

2 1

cos sin

sin

a
b

t a
b

t

a
b

+Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

- +Ê
ËÁ

ˆ
¯̃

tt a
b

t
2

1
2

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

sin

  = cot
a
b

t+Ê
ËÁ

ˆ
¯̃

1
2

  Equation tangent at any point is

  Y a t b at
b

- -Ê
ËÁ

ˆ
¯̃

cos cos

  = cot sin sin
a
b

t X a t b a
b

t+Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

1
2

 (i)

  Distance of origin from (i) is

  S = 

a t b
at

b

a

b

t

a t b
a

b
t

cos cos cot

sin sin

-Ê
ËÁ

ˆ
¯̃ - +Ê

ËÁ
ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ

1
2

¯̃̄

+ +Ê
ËÁ

ˆ
¯̃1 1

2
2cot

a

b

t

  = sin cos cos

cos

a
b

t a t b at
b

a
b

t

+Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

- +Ê
ËÁ

ˆ
¯̃

Ê
Ë

1
2

1
2

ÁÁ
ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

a t b a
b

tsin sin

  = a a
b

t t b a
b

t a
b

t
sin sin+Ê

ËÁ
ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

- - + +Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃

1
2

1
2

  = a t a
b

t b t a
b

t
sin sin- +Ê

ËÁ
ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃2 2 2 2

  = ( )sina b a
b

t t+ -Ê
ËÁ

ˆ
¯̃2 2

  So the maximum value of S is a + b.

 3. f ¢(x) = 6x2 – 18ax + 12a2 = 6(x2 – 3ax + 2a2)

  f ≤(x) = 6(2x – 3a). According to the given condition 
f ¢(p) = 0 f ¢(q) and f ≤(p) < 0, f ≤(q) > 0.

  p + q = 3a, pq = 2a2. Since p2 = q, so p3 = 2a2 and 

p + p2 = 3a and p a< 3

2

 and q a> 3

2
. p = 

- ± +1 1 12

2

a
 

thus - ± +Ê

ËÁ
ˆ

¯̃
1 1 12

2

3

a  = 2a2. Clearly a = 2 satisfy this 

equation as for a = 1, 1/2, 3 the L.H.S. is irrational 
and R.H.S. is a rational number.

 4. We have 

  u = a b a b a b a b2 2 2 2 2 2 2 2

2 2
2

2 2
2

+ + - + + - -
cos cosq q
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  Squaring, we get

  u2 = a2 + b2 + 2
a b a b2 2

2
2 2

2

2

2 2
2

+Ê

ËÁ
ˆ

¯̃
- -Ê

ËÁ
ˆ

¯̃
cos q

  Thus, max (u2) = a2 + b2 + 2
a b2 2

2

+Ê

ËÁ
ˆ

¯̃
 

= 2(a2 + b2)

  and min (u2) = a2 + b2 + 2
a b a b2 2

2
2 2

2

2 2

+Ê

ËÁ
ˆ

¯̃
- -Ê

ËÁ
ˆ

¯̃
 

= a2 + b2 + 2ab = (a + b)2

  \ max (u2) – min (u2) = (a – b)2.

 5. f≤(x) = 6(x – 1) fi f ¢(x) = 3(x – 1)2 + C1

  But f ¢(x)](2, 1) = 
dy
dx

˘
˚̇( , )2 1

 = 3

  \ 3 = 3(2 – 1)2 + C1 fi C1 = 0

  Thus, f ¢(x) = 3(x – 1)2

  fi f(x) = (x – 1)3 + C2

  As y = f(x) passes through (2, 1)

  1 = (2 – 1)3 + C2 fi C2 = 0

  \ f(x) = (x – 1)3

 6. dx
dq

 = –a sin q, dy
dq

 = a cos q

  \ dy
dx

 = -a
a

cos

sin

q
q

 fi slope of normal at q is sin

cos

q
q

.

  Thus, equation of normal at q is

  y – a sin q = sin

cos

q
q

[x – a(1 + cos q)]

  This clearly passes through (a, 0)

 7. If f(x) = 3x2 – 2x + 1, then

  f ¢(x) = 6x – 2 = 6 x -Ê
ËÁ

ˆ
¯̃

1

3
 < 0 for x < 1

3

  Thus, f(x) decreases on the interval (–•, 1/3].

  If f(x) = x3 + 6x2 + 6,

  f ¢(x) = 3x2 + 12x = 3x (x + 4) > 0 if x < –4

  fi f(x) increases on (–•, –4]

  If f(x) = x3 – 3x2 + 3x + 3, then

  f ¢(x) = 3x2 – 6x + 3 = 3(x – 1)2 ≥ 0 " x

  f(x) increases on (–•, •)

  If f(x) = 2x3 – 3x2 – 12x + 6, then

  f ¢(x) = 6x2 – 6x – 12 = 6(x2 – x – 2)

  = 6(x – 2) (x + 1) > 0 for x > 2

  fi f(x) increases on [2, •)

 8. x = a(cos q + q sin q), y = a(sin q – q cos q)

  fi dx
dq

 = a(– sin q + sin q + q cos q) = aq cos q

  and dy
dq

 = a(cosq – cos q + q sin q) = aq sin q

  \ dy
dx

 = sin

cos

q
q

  Equation of normal at q

  y – a(sin q – q cos q) = – cos

sin

q
q

{x – a(cos q + q sin q)}

  fi x cos q + y sin q = a{cos2 q + q cos q sin q + 
sin2q – q cos q sin q}

  fi x cos q + y sin q = a

  This line is at a distance a from the origin.

 9. By the Lagrange’s mean value theorem,

  f f( ) ( )6 1

6 1

-
-

 = f ¢(a) for some a Œ (1, 6)

  fi f(6) + 2 = 5f ¢(a) ≥ 10

  fi f(6) ≥ 8

 10. Let thickness of ice at time t be r cm. Then volume 
of ice:

10 cm r

Fig. 11.9

  V = 4

3

p(10 + r)3 – 4

3

p(10)3

  dV
dt

 = 4p(10 + r)2 dr
dt

  fi –50 = 4p(10 + r)2 dr
dt
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  fi dr
dt

 = 
-

+
50

4 10
2p ( )r

  fi 
dr
dt r

˘
˚̇ =5

 = 
-50

4 15
2p ( )

        = - 1

18p
  \ thickness is decreasing at the rate 

1

18p
 cm/min.

 11. f ¢(x) = 
1

2

2

2
-

x
 = 

( )( )x x
x

- +2 2

2
2

  For local maximum/minimum, set f ¢(x) = 0

  fi x = ± 2.

  As f ¢(x) < 0 for 0 < x < 2

  and f ¢(x) > 0 for 2 < x < •,

  f(x) has a local minimum at x = 2.

 12. 
f f( ) ( )3 1

3 1

-
-

 = f ¢(c)

  fi loge 3

2

 = 
1

c

  fi c = 2 log3e

 13. f ¢(x) = 
cos sin

(sin cos )

x x
x x
-

+ +1
2

  f ¢(x) > 0 if and only if cos x > sin x

  This is true if x Œ -Ê
ËÁ

ˆ
¯̃

p p
2 4

,

 14. As f(x) = x3 – px + q has three real and distinct, 
roots, f ¢(x) = 3x2 – p has two distinct zeros by Rolle’s 
theorem.

  Now f ¢(x) = 0 fi x = ± p
3

  We have f ¢(x) > 0 if x < - p
3

        < 0 if - < <p x p
3 3

        > 0 if x p>
3

  Thus f(x) has a local maximum at x = - p
3

 and local 

minimum at x = 
p
3

 15. P(x) = x4 + ax3 + bx2 + cx + d 

  fi P ¢(x) = 4x3 + 3ax2 + 2bx + c

  As P ¢(0) = 0, we get c = 0

  \ P ¢(x) = x(4x2 + 3ax + 2b)

  As x = 0 is the only real root of P ¢(x) = 0, roots of 
4x2 + 3ax + 2b = 0 must be imaginary, therefore 

  4x2 + 3ax + 2b > 0  x Œ R

  Thus, P ¢(x) < 0 for x < 0

        > 0 for x > 0.

  \ x = 0 is a point of local minimum at x = 0.

  Graph of y = P(x) is given in Fig. 11.10.

  As P(–1) < P(1), we get P(1) is maximum but P(–1) 
is not minimum of P on [–1, 1].

-1 O

P( 1)-

y

P(1)

Fig. 11.10

 16. f will be continuous at x = –1 if

  fi lim ( )
x

f x
Æ- -1

 = lim ( )
x

f x
Æ- +1

 = f(–1)

  fi k + 2 = 2(–1) + 3 = k + 2

  fi k = –1

  For this value of k, f is continuous at x = –1, f ¢(–1) 
does not exist and f ¢(x) < 0 for x < – 1

  and f ¢(x) > 0 for x > –1,

  therefore, f has a local minimum at x = –1.

 17. Equation of tangent at (x, y) to the curve y = f(x) is 
given by

  Y – y = dy
dx

(X – x)

  This tangent meets the axes at A x y dx
dy

-
Ê
ËÁ

ˆ
¯̃

,0  and 

B 0, y x dy
dx

-Ê
ËÁ

ˆ
¯̃

.

  We are given mid-point of AB = (x, y)
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  fi 
1

2
x y dx

dy
-

Ê
ËÁ

ˆ
¯̃

 = x and 
1

2
y x dy

dx
-Ê

ËÁ
ˆ
¯̃

 = y

  fi 
dx
x

dy
y

+  = 0

  fi log |xy| = c fi xy = ± ec = A.

  As it passes through (2, 3), we get 6 = A

  \ xy = 6 or y = 6/x

 18. Let g(x) = tan x – x, – p/2 < x < p/2

  fi g¢(x) = sec2x – 1 = tan2x > 0 for –p/2 < x < p/2.

  Thus, g(x) is a strictly increasing function on (–p/2, 
p/2).

  Therefore, tan x < x for –p/2 < x < p/2

  fi f (x) = 
tan x

x
 < 1 for –p/2 < x < p/2, x π 0.

  \ x = 0 is a point of maxima.

  Also,

  f ¢(0) = lim
( ) ( )

x

f x f
xÆ

-
0

0

  = lim

tan

x

x

x
xÆ

-

0

1

  = lim
tan

x

x x
xÆ

- È
ÎÍ

˘
˚̇0

2

0

0
form

  = lim
sec

x

x
xÆ

-
0

2
1

2

  = 1

2 0

2

lim
(tan )

x

x
xÆ

 = 0

  Thus, both the statements are true. However, state-
ment-2 is not a correct explanation of statement-1.

 19. f ¢(x) = 1

x
 + 2bx + a, x π 0.

  As x = –1 and x = 2 are extreme values of f so 

  f ¢(–1) = 0 = f ¢(2)

  fi –1 – 2b = a = 0 and 1

2

 + 4b + a = 0

  Solving we get, a = 1

2

 and b = - 1

4

  So f ¢(x) = 1 1

2

1

2x
x- +  = - 1

2x
 (x + 1) (x – 2)

  We have

  f ¢(x) > 0 if x < –1
    < 0 if –1 < x < 0
    > 0 if 0 < x < 2
    < 0 if x > 2

  Thus f(x) has a local maximum at x = –1 and x = 2

  \ statement-1 and statement-2 are both true and 
statement-2 is a correct explanation for the state-
ment-1.

 20. Let r be the radius of balloon and V be its volume.

  It is given that dV

dt
 = –72p

  fi 
d
dt

r4

3

3pÊ
ËÁ

ˆ
¯̃  = –72p

  fi 4

3

3pr  = –72p t + k

  When t = 0, k = 4

3

3pr  = V = 4500p

  \ 4

3

3pr  = 4500p – 72p t

  When t = 49, 4

3

3pr  = 4500p – (72p) (49) = 972p

  fi r3 = 729 fi r = 9

  Also, 
d
dt

r4

3

3pÊ
ËÁ

ˆ
¯̃  = –72p fi 4pr2 dr

dt
 = –72p

  dr
dt

 = 
-72

4
2

p
pr

 = 
-18

2r
 fi 

dr
dt r=9

 = - 2

9

.

 21. C = av + b
v

. According to the given conditions,

  75 = a b
.30

30
+  and 65 = a b

.40
40

+

  Solving a = 1

2

, b = 1800. Thus

  C = 1

2

1800v
v

+

  dC
dv

 = 
1

2

1800

2
-

v
 so dc

dv
 = 0 fi v = 60

  
d C
dv

2

2
 = 

3600
0

3v
> . Thus C is minimum when v = 60.

 22. S = 4pr2, 8 = dS
dt

 = 8pr dr
dt

 fi dr
dt

 = 1

pr
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  V = 4

3

3pr

  
dV
dt

 = 4
2pr dr

dt
 = 4r so dV

dt
ra .

 23. Let f(x) = 2x3 + 3x + k

  Suppose a, b Œ [0, 1], a < b be such that f(a) = 0 
= f(b).

  As f is differentiable on [a, b],

  By the Rolle’s theorem there exists r Œ (a, b) such 
that f ¢(r) = 0 fi 6r2 + 3 = 0.

  But 6r2 + 3 = 0 is not true for any real r.

  Thus, there is no real value of k, for which 2x3 + 3x 
+ k = 0 has two real and distinct roots in [0, 1].

 24. A = 1

2
pb , p is the perpendicular and b is the base 

p2 + b2 = h2 so A = 1

2

2 2p h p-

  
dA
dp

 = 
1

2

1

4

22 2

2 2
h p p

p

h p
- + -

-

( )
 = 

1

2

2 2 2

2 2

h p p

h p

- -

-

  
dA
dp

 = 0 fi p = 
h
2

. It is easy to see that A is maxi-

mum for p = 
h
2

, so Amax = 
1

2 2 2
2

2h
h

h-

  = 
h2

4
.

 25.  If f(x) = x log x then f ¢(x) = 1 + log x > 0 for x Œ 
[1, 2] so f increases on [1, 2]. For g(x) = 2 – x, g¢(x) 
= –1 so g decreases on [1, 2]. Therefore g(x) = f(x) 
for some x Œ [1, 2]. Hence the statement-1 follows.

 26. Let f(x) = x2ex, f ¢(x) = 2xex + x2ex > 0 for x > 0. 

  g(x) = x2e–x, g¢(x) = 2xe–x – x2e–x = (2x – x2) e–x

  g¢(x) > 0 for x < 2 and g¢(x) < 0 for x > 2. Hence 
g decreases for x > 2 and increases on (0, 2). State-
ment-2 is not true. If h(x) = x2(ex + e–x) then h¢(x) = 
2x(ex + e–x) + x2 (ex – e–x) > 0 for x > 0. Hence h 
increases for x > 0.

 27. Let F(x) = f(x) – 2g(x)

  F(0) = f(0) – 2g(0) = 2 – 0 = 2.

  F(1) = f(1) – 2g(1) = 6 – 4 = 2

  F is continuous on [0, 1] and differentiable on (0, 1) 
with F(0) = F(1), so by Rolle’s theorem there is c Œ 
(0, 1) s. t. f(c) = 0 fi f ¢(c) = 2g¢(c).

 28. f ¢(x) = 
a
x

 + 2bx + 1

  As x = –1 and x = 2 are extreme points so f ¢(–1) = 
f ¢(2) = 0 i.e.

  – a – 2b + 1 = 0

  
a
2

 + 4b + 1 = 0

  Solving a = 2, b = - 1

2
.

 29.  V = 
4

3

3pr . When V = 288p C.C then 288p = 
4

3

3pr

  fi r = 6. Also 
dV
dt

 = 4
2pr dr

dt
 fi 4p = 4 36p dr

dt

  fi 
dr
dt

 = 
1

36
.

 30. f(x) = x2 + 2bx + 2c2 = (x + b)2 + 2c2 – b2 so 
min f(x) = 2c2 – b2. Also g(x) = –x2 – 2cx + b2 = 
b2 + c2 – (x + c)2 fi max g(x) = b2 + c2

  Thus 2c2 – b2 > b2 + c2

  fi c
b

> 2  fi c
b

Œ •( )2, .

 31. Note that f is a strictly increasing function and g is a 
strictly decreasing function.

  Now, x < x + 1 fi g(x) > g(x + 1)

  fi f(g(x)) > f(g(x + 1))

 32. f(–1) = f(1)

  fi –2 + a – b = 2 + a + b

  fi b = –2

  Also, f ¢(c) = 0 fi 6c2 + 2ac + b = 0

  fi 
3

2
 + a – 2 = 0 fi a = 

1

2

  Thus, 2a + b = 1 – 2 = –1

 33. lim
( )

x

f x
xÆ

+È
ÎÍ

˘
˚̇0

2
1  = 3

  fi lim
( )

x

f x
xÆ0

2

 = 2

  \ f(x) must be of the form

  f(x) = ax4 + bx3 + 2x2

  fi f ¢(x) = 4ax3 + 3bx2 + 4x

  As f(x) has extreme values at x = 1 and x = 2, 
4a + 3b + 4 = 0
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  32a + 12b + 8 = 0

  Solving these we get a = 
1

2
, b = –2

  Thus, f(2) = 
1

2
(24) – 2(23) + 2(22) = 0.

 34. When x = 0, sin y = 0 fi y = 0 (since all lines given 
pass through origin)

  cos y 
dy
dx

 = sin cos
p p
3 3

+Ê
ËÁ

ˆ
¯̃

+ +Ê
ËÁ

ˆ
¯̃

y x y dy
dx

  When x = 0, y = 0, therefore

  
dy
dx

˘
˚̇( , )0 0

 = sin
p
3

0
Ê
ËÁ

ˆ
¯̃

+  = 3

2

  Thus, slope of normal at (0, 0) is - 2 3/  and its 
equation is

  y = -( ) +2 3 2 3/ orx x y  = 0

 35. Let m = 0.6,

  f ¢(x) = 
( )( )( ) ( )

( )

1 1 1

1

1 1

2

+ + - +
+

- -x m x mx x
x

m m m m

m

  = m x x x x

x

m m m m

m

( ) ( )

( )

1 1

1

1 1

2

+ + - -
+

- -

  = 
m x x

x

m m

m
( ) ( )

( )

1 1

1

1 1

2

+ -
+

- -

  For 0 < x < 1, f ¢(x) < 0

  as xm–1 = x–0.4 = 1/x0.4 > 1 for 0 < x < 1.

  Thus, f ¢(x) < 0 for 0 < x < 1

  fi f(x) is strictly decreasing on [0, 1]

  \ k = max f(x) = f(0) = 1

  and k = min f(x) = f(1) = 2–0.4

  Hence, (k, K) = (2–0.4, 1)

 36. If s is the height at any instant, then 

  –2g(s – 64) = v2 – u2

  where v is the initial speed and v is the speed at that 
instant.

  At the highest point,

  –2(32) (s – 64) = 0 – 482

  fi s = 64 + 
48

64

2

 = 100.

 37. Let x1 = x(p/4) and y1 = y(p/4).

  
dx
dt

 = –2 sin t + 2 sin t + 2t cos t = 2t cos t

  
dy
dt

 = 2 cos t – 2 cos t + 2t sin t = 2t sin t

  \ 
dy
dx

 = tan t fi dy

dx t

˘
˚̇ =p /4

 = 1

  fi slope of normal at t = p/4 is –1.

  Thus, equation of normal at (x1, y1) is
  y – y1 = – (x – x1) or x + y – (x1 + y1) = 0
  Its distance from the origin is

  d = 
| |x y

1 1

2

+

  But x1 + y1 = 2
1

2

1
4

2
1

2

1
4

Ê
ËÁ

ˆ
¯̃

+Ê
ËÁ

ˆ
¯̃

+ Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

p p

  = 2 2

  \ d = 2

 38. Let coordinates of A be (k, 0) then equation of tangent 
PA is

O A
x

B

P

y

( , )o  h

Fig. 11.11

  
x
k

y
h

+  = 1, where |h|, |k| > 4.

  1

1 1
2k h

+ 2

 = 4 (1)

  fi 
| || |h k

h k2 2+
 = 4

  Let D = Area of DPAB = 2(area of DOAP)

  = 2
1

2

Ê
ËÁ

ˆ
¯̃

 (|h| |k|) = 4
2 2h k+

  But from (1), k2 = 16

16

2

2

h
h -
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  \ D2 = 16(h2 + k2) = 16
16

16

2

2

2
h h

h
+

-

Ê

ËÁ
ˆ

¯̃

  = 
16

16

4

2

h
h -

  But D is minimum if and only if D2 is, we therefore 
minimize, D2.

  We have

  
d
dh

( )D2  = 16
4 16 2

16

3 2 4

2 2

h h h h
h

( ) ( )

( )

- -
-

È

Î
Í

˘

˚
˙

  = 32 4 2 4 2

16

3

2 2

h h h

h

( )( )

( )

- +
-

  As d
dh

( )D2  = 0 for h = 4 2  and d
dh

( )D2  < 0 if 

4 < h < 4 2  and is > 0 if h > 4 2

  Thus D2 is minimum when h = 4 2 .

 39. For x Œ (0, p/2)
  1+ sin x = 1 – cos (p/2 + x)
  = 2 sin2(p/4 + x/2)
  and 1 – sin x = 1 + cos(p/2 + x)

        = 2 cos2(p/4 + x/2)

  \ f(x) = tan tan
- +Ê

ËÁ
ˆ
¯̃

È
ÎÍ

˘
˚̇

1

4 2

p x
 = p

4 2
+ x

  fi f ¢(x) = 1/2

  An equation of normal to y = f(x) at x = p/6 is

  y - +Ê
ËÁ

ˆ
¯̃

p p
4 12

 = - -Ê
ËÁ

ˆ
¯̃2

6
x p

  fi y – 
p
3

 = –2x + 
p
3

  fi 2x + y = 2p/3

  It passes through (0, 2p/3)

 40. Let E = 4 + 
1

2
 sin22x – 2cos4x

  = 4 + 
1

2
 sin2 2x – 

1

2
 (2cos2x)2

  = 4+ 
1

2
 (1 – cos2 2x) – 

1

2
 (1 + cos x)2

  = 4 + 
1

2
 (1 + cos 2x) [1 – cos 2x – 1 – cos 2x]

  = 4 – 
1

2
 (1 + cos 2x) (2cos 2x)

  = 4 – cos 2x – cos2 2x

  = 
9

4

1

2
2

2

- +Ê
ËÁ

ˆ
¯̃cos x

  Note that

  m = 0 when cos 2x = 1

  and M = 
9

4
 when cos 2x = –1/2.

  So M – m = 
9

4
.

 41. An equation of tangent at P(4t2 + 3, 8t3 – 1) is 

  y – (8t3 – 1) = 
24

8

2t
t

(x – (4t3 + 3)) as 
dy
dx

 = 
24

8

2t
t

  It will meet the curve again at

  Q(4t1
2 + 3, 8t1

3 – 1) if

  8t1
3 – 8t3 = 3t[4t1

2 – 4t2]

  fi 2(t1 – t)(t1
2 + t2 + tt1) = 3(t1 – t)(tt1 + tt2)

  fi (t1 – t)(2t1
2 – tt1 – t2) = 0

  fi (t1 – t)(t1 – t)(2t1 + t) = 0 fi t1 = t, - 1

2
t.

  Thus, coordinates of Q are (t2 + 3, –t3 – 1)

 42. f(x) = sin4 x + cos4 x, since f is differentiable and 

  f ¢(x) = 4sin3x cos x – 4cos3x sin x

  = – 2 sin x cos x (cos2 x – sin2 x)

  = – sin(4x) > 0

  " ŒÊ
ËÁ

ˆ
¯̃x

p p
4 2

,

  fi f(x) increases on 
p p
4 2

,˘
˚̇

È
ÎÍ

 43. 
dy
dx

 = 
4

2 4 3x -
 = 

2

4 3x -
 = 

2

3

  fi 4 3x -  = 3 fi x = 3

  For x = 3, y = 1 + ( )( )4 3 3-  = 4

  The equation of normal at (3, 4) is

  y – 4 = - 3

2
(x – 3)

  It passes through (1, 7).
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Previous Years' B-Architecture Entrance 
Examination Questions

 1. 
dy
dx

 = 3x2 – 8x. 
dy

dx ( , )2 1-
 = 12 – 16 = –4. So the slope 

of the normal is 
1

4
.

 2. 
dx
dt

 = 2t, 
dy
dt

 = 2t – 1 fi 
dy
dx

 = 
2 1

2

t
t
-

 so tangent 

line is perpendicular to x-axis if t = 0.

 3. f(0) = f(p) = 1. f ¢(x) = cos x 4sin x so f ¢(c) = 0 fi cos 

c = 0 fi c = 
p
2

.

 4. f(5) = 0, f(1) = 24 . 
f f( ) ( )5 1

5 1

-
-

 = 
1

4
24  = 

3

2

  f ¢(x) = 
-

-

x

x25 2
 so f ¢(c) = 

3

2
 fi 

c
c

2

2
25 -

 = 
3

2

  fi 2c2 = 75 – 3c2 fi c2 = 15.  For c Œ (1, 5), we 

have c = 15 .

 5. f(x) = 
1 1

2 3 1

- + £
+ >

Ï
Ì
Ó

x a x

x x

if

if
, f(1) = a 

  So we must have lim ( )
x

f x a
Æ +

≥
1

 i.e. 5 ≥ a or a £ 5

 6. 2y = log(1 + 4x2) fi 2
dy
dx

 = 
8

1 4
2

x
x+

 

fi dy
dx

 = 
4

1 4
2

x
x+

  Since 4x £ 1 + 4x2 so |m| £ 1

 7. We have f f( ) ( )2 0

2 0

-
-

 = f ¢(c) for some c Œ (0, 2)

  f(2) = 2f ¢(c) + f(0) £ 6 – 2 = 4.

 8. f ¢(x) = 
( )( ) ( )

( )

x x x x x x

x

2 3 4 2

2 2

1 4 6 3 1 2

1

+ + - + +
+

  = 
2 2 2

1

2 2

2 2

x x x

x

( ( ) )

( )

+ +
+

  f ¢(x) = 0 for x = 0, f ¢(x) < 0, for x < 0, f ¢(x) > 0 for 
x > 0

  f(–1) = 
5

2
, f(2) = 

29

5
, f(0) = 1 so the maximum value 

of f is 
29

5
.

 9. Equation of normal at any point is Y – y = -
¢
1

f x( )

(X – x).

  This passes through (1, 1), so 1 – y = -
¢
1

f x( )
 (1 – x)

  fi 1 – y = – 
dx

dy
(1 – x)

  fi 
- -( )1

2

2y
 = 

( )1

2

2- +x
c

  Since it passes through (3, 1) so

  0 = 2 + C fi C = –2

  fi (x – 1)2 + (y – 1)2 = 4 which is circle of radius 2 
so the area is 4p.

 10. f ¢(x) = sin cos
p p p
x x x

- , 0 < x £ 1

  f ¢(0) does not exist. f ¢(x) = 0 fi tan
p
x

 = 
p
x

  Since 0 < x £ 1 so p p£ < •
x

. By drawing graph of 

tan x and x, we can see that there are infinitely many 
solutions.

 11. Since 1 – x2 is a decreasing function and [x] is an 
increasing function so f(x) = [1 – x2] is a decreasing 
function.

 12. 
dy
dt

 = 
1

2 x
dx
dt

. If 
dy
dt

 = 
dx
dt

 then 2 x  = 1

  or x = 
1

4
 so y = 

1

2
.

 13. 2x – 2y dy
dx

 = 0 fi 
dy
dx

 = 
x
y

.

  Equation of tangent at (x, y)

  Y – y = 
x
y

(X – x)

  So a1 = - +y
x

x
2

 = 4

x
, b1 = y x

y
-

2

 = - 4

y

  Equation of normal at (x, y)

  Y – y = y
x

(X – x)

  So a2 = 2x, b2 = 2y

  a1a2 + b1b2 = 
4

2
4

2
x

x
y

y¥ - ¥  = 0.
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 14. f f( ) ( )2 0

2 0

-
-

 = f ¢(c) for some c Œ (0, 2)

  f(2) = f(0) + 2f ¢(c) £ –3 + 2.5 = 7.

 15. f p
2

Ê
ËÁ

ˆ
¯̃

 = f -Ê
ËÁ

ˆ
¯̃

p
2

 = –3. Also f ¢(x) = 

6 cos x sin x (2 cos x + 1) (cos x – 2)

  For x Œ -È
ÎÍ

˘
˚̇

p p
2 2

, , 2 cos x + 1 π 0, cos x – 2 π 0 so 

  f ¢(x) = 0 fi sin x = 0 fi x = 0.

  f(0) = 3 – 6 – 6 – 3 = –12. Hence range of f(x) is 
[–12, –3].

 16. f ¢(x) = e–x – xe–x = e–x(1 – x), f ¢(x) = 0 fi x = 1

  f ≤(x) = –e–x(1 – x) + e–x(–1), f ≤(1) = –e–1 < 0

  f has maximum at x = 1.

 17. Area A(x) = x2 fi dA
dt

 = 2x dx
dt

  fi 8 = 2x dx
dt

 = 2x

  fi x = 4 fi A =16

 18.  V = 4

3

3pr  fi dV

dr
 = 4pr2 and S = 4pr2 fi dS

dr
 = 8pr

  dV

dS
 = 4

8

2p
p
r
r

 = 1

2
r , 

dV

dS r=2
 = 1.

 19.  ey = 1 + x2 fi y = log(1 + x2), so m = 
dy
dx

 = 
2

1
2

x
x+

  |m| £ 1 fi m Œ [–1, 1]

 20. f(x) = |x log x| = x |log x| = 
- < £

>
Ï
Ì
Ó

x x x
x x x

log ,

log ,

0 1

1

  f ¢(x) = 
- + < <

+ >
Ï
Ì
Ó

( log ),

log ,

1 0 1

1 1

x x
x x

  f ¢(x) < 0 if 1 + log x > 0 for 0 < x < 1 fi log x > 
–1 fi x > e–1 for 0 < x < 1

  So x
e

ŒÈ
ÎÍ

˘
˚̇

1
1, .

 21.  By drawing the graph, we get two points of minimum.

 22. f(x) = 2 sin x + sin 2x = 2 sin x + 2 sin x cos x

  = 2 sin x (1 + cos x)

  f ¢(x) = 2 cos x (1 + cos x) – 2 sin x sin x

  = 2 [cos x + cos2x – (1 – cos2 x)]

  = 2 [2cos2x + cos x – 1]

  = 2 (cos x + 1) (2 cos x – 1)

  Now, f ¢(x) = 0 fi x = p/3 (  0 < x < p)

  We have f(0) = 0, f p
3

Ê
ËÁ

ˆ
¯̃  = 2

3

2

3

2

Ê
ËÁ

ˆ
¯̃

+  = 
3

2
3 , 

and f(p) = 0.

  Thus, maximum value is 
3

2
3 .

 23. m = 
dy
dx

 = ex(sin x + cos x)

  dm
dx

 = 2ex cos x = 0 fi x = 
p
2

  d m
dx

2

2
 = 2ex (cos x – sin x)

  
d m

dx x

2

2
2

˘

˚
˙

=p /

 = 2ep/2(–1) < 0

  Thus m is maximum when x = p/2

 24. As lim
( )

x

p x

xÆ0 2
 = 1, p(x) must be of the from

  p(x) = x2 + ax3 + bx4 a, b Œ R

  p ¢(x) = 2x + 3ax2 + 4bx3

  As p ¢(1) = 0, p ¢(2) = 0, we get

  2 + 3a + 4b = 0 and 4 + 12a + 32b = 0

  fi 3a + 4b = –2, 3a + 8b = –1

  fi a = –1, b = 
1

4

  \ p(4) = 42(1 + 4a + 16b) = 16(1 – 4 + 4) = 16

 25.  f ¢(x) = 3x2 + 2bx + c. Discriminant of f ¢(x) = 4(b2 – 
3ac) £ 0

  So f ¢(x) > 0 and hence f increases. Since f is continu-
ous and increasing so f is 1 – 1.

 26. min (x, x2) = 
x x

x x

2 0 1

1

< £
>

Ï
Ì
Ó

, lim
( ) ( )

h

f h f

hÆ +

+ -
0

1 1
 = 

lim
h

h

hÆ +

+ -
0

1 1
 = 1

  lim
( ) ( )

h

f h f

hÆ -

+ -
0

1 1
 = lim

( )
h

h

hÆ -

+ -
0

21 1
 = 2. So f is 

not differentiable at x = 1.
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  For y = x, 
dy
dx

 = 1 so tan q1 = 1. For y = x2, 
dy
dx

 = 

2x so 
dy
dx x

˘
˚̇ =1

 =2. tan q = 
2 1

1 2 1

-
+ ¥

 = 
1

3

 27. f in statement-1 is continuous function on [1, 3] and 
differentiable on (1, 3) f(3) = 1 = f(1) so Rolle’s theo-
rem is applicable. Again the mean value is applicable 
so statement-2 is true but is not a correct explanation 
for statement-1.

 28.  f is continuous on [2, 6] and differentiable on (2, 6) 
being a polynomial also f(2) = 0 = f(6) so by Rolle’s 
theorem there is c Œ (2, 6) such that f ¢(c) = 0.

 29. f(x) = a x b
a

x c
a

2 + +Ê
ËÁ

ˆ
¯̃

 = a x
b

a

c

a

b

a
+Ê

ËÁ
ˆ
¯̃ + -

Ê

ËÁ
ˆ

¯̃2 4

2 2

2

  = a x b
a

ac b
a

+Ê
ËÁ

ˆ
¯̃ + -Ê

ËÁ
ˆ

¯̃2

4

4

2 2

2
 > 0

  f ¢(x) = 2ax + b. So f ¢(x) > 0 if x > - b
a2

 and 

f ¢(x) < 0 if x < - b
a2

.
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