Ch. 1 : Relations & Functions

Choose the correct answer

1.	Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}.$				
	A) $(2,4) \in \mathbb{R}$	B) $(3, 8) \in \mathbb{R}$	$\mathrm{C})(6,8)\in\mathrm{R}$	$D) (8,7) \in R$	(NCERT)
2.	Let R be the relation	Let R be the relation in the set $(1, 2, 3, 4)$ given by			
	$R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}.$ Choose the correct answer.				nswer.
	A) R is reflexive and symmetric but not transitive.				
	B) R is reflexive and transitive but not symmetric.				
	C) R is symmetric and transitive but not reflexive.				
	D) R is equivalence	e relation.			(NCERT)
3.	The relation $R = \{(a, b) : gcd (a, b) = 1, 2a \neq b, a, b \in Z\}$ is				
	A) transitive but n	ot reflexive	B) symmetric b	out not transitive	
	C) reflexive but no	ot symmetric	D) neither sym	metric nor transitive	(JEE-M 23)
4.	A set A has 4 elem	ents. Then the n	umber of relation	ns on A is	
	A) 2 ⁴	B) 2 ¹⁶	C) 16 ²	D) 2 ⁸	
5.	Let R be a relation on N, the set of all natural numbers given by $R = \{(a, b) : a \le b\}$. Then,				
	A) R is reflexive and symmetric		B) R is symmetric and transitive		
	C) R is reflexive and transitive but not symmetric			D) R is an equivalence relation.	
6.	Divisibility relatio	n on Z is			
	A) reflexive	B) symmetric	C) transitive	D) equivalence relatio	n
7.	Let L denote the set of all straight lines in a plane. Let R be the relation on L defined by $R = \{(l, m) : l \text{ is perpendicular to } m\}$. Then R is			L defined	
	A) reflexive	B) symmetric	C) transitive	D) equivalence relatio	n
8.	In the set of all inte	gers z, which of t	he following rela	tions is not an equivalence	ce relation ?
	A) $\{(x, y) : x \le y\}$	B) $\{(x, y) : x =$	y} C) $\{(x, y) :$	$x - y$ is even integer }	D) $Z \times Z$

9.	The relation R in the set $\{1, 2, 3\}$ given by $R = \{(1, 2), (2, 1)\}$ is					
	A) reflexive	B) symmetric	C) transitive	D) equivaler	nce (23-M, MQP)	
10.	0. The function $f: \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = x^2$ is					
	A) bijective					
	C) onto but not 1-1		D) neither 1-1 nor	r onto		
11.	1. The greatest integer function $f : \mathbf{R} \to \mathbf{R}$, given by $f(x) = [x]$, is					
	A) bijective		B) one-one but no	ot onto		
	C) onto but not 1-1		D) neither 1-1 nor onto			
12.	The modulus funct	tion f: $\mathbf{R} \rightarrow \mathbf{R}$, §	given by $f(x) = x , i$	is		
	A) bijective		B) one-one but no	ot onto		
	C) onto but not 1-1 D) neither 1-1 nor onto					
			[1,	x >0		
13.	The Signum functi	on $f: \mathbf{R} \to \mathbf{R}$, gi	ven by $f(x) = \begin{cases} 0, \\ 0 \end{cases}$	x = 0 is.		
			(1, x < 0		
	A) bijective		В) one-one but	not onto	
	C) onto but not 1-1			r 1-1 nor onto		
14.	Let $f: \mathbf{R} \to \mathbf{R} d$					
	A) f is one-one on		,	any-one onto		
15	C) f is one-one but not onto D) f is neither one-one nor onto. (NCERT, MQP) 15. Let $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = 2x$. Choose the connect constant					
15.	15. Let $f : \mathbf{R} \to \mathbf{R}$ defined by $f(x) = 3x$. Choose the correct answer. A) f is one-one onto B) f is many-one onto					
	C) f is one-one bu		,	•	nor onto. (NCERT)	
16. If $f = \{(5, 2), (6, 3)\}$, then which of the following is true?						
	A) Domain of $f = N$			B) Domain of f is {2, 3, 5, 6}		
	C) Range of $f = \{2, 3\}$			D) Range of f is $\{5, 6\}$		
17. A set A has 3 elements and the set B has 4 elements. Then the number of injective functions that can be defined from A to B is						
	A) 4!	B) 3!	C) 12!		D) 64!	
18. The number of all one – one functions from the set $A = \{a, b, c\}$ to itself is.						
	A) 3	B) 6	C) 27		D) 1	
19. If A contains 3 elements and B contains 2 elements, then the number of one – one functions from A to B is						
	A) 3	B) 0	C) 3 ²		D) 3!	

20.		et A = $\{1, 2, 3, \dots$, 13, 14} defined as R	$= \{(x, y) : 3x - y\}$	$y=0\}$	
	Then R is					
	A) reflexive	B) symmetric	C) transitive	D) non	ne of these	
21.	If $f: R \rightarrow S$, defi	ned by $f(x) = s$	in $x - \sqrt{3} \cos x + 1$ is on	to, then the inte	rval S is	
	A) [-1, 3]	B) [-1, 1]	C) [0, 1]	D) [0, 3]	(AIEEE 04)	
22.	$f: R \rightarrow R$ given by	$f(\mathbf{x}) = \mathbf{x} + \sqrt{\mathbf{x}^2}$	is			
	A) one-one	B) onto	C) bijective	D) many one-in	nto	
23.	$f: R \rightarrow R$ given by	$f(\mathbf{x}) = 5\mathbf{x} + \cos \theta $	x is			
	A) one-one and onto		B) one-one and into			
	C) many one and in	nto	D) many one and onto			
24.	In the set Z of all in	tegers, which of	the following relation R i	s not an equivale	ence relation?	
	A) x R y if $x \le y$		B) x R y if $x = y$			
	C) x R y if $x - y$ is	an even integer	D) x R y if $ x = y $			
25.	If $A = \{x, y, z\}$, the	en the relation R	$= \{(x, y), (y, x), (x, x)\}$	on A is		
	A) reflexive		B) symmetric and transitive			
	C) symmetric only		D) transitive only			
26.	26. For x, $y \in R$, define a relation R by x R y if and only if $x - y + \sqrt{2}$ is an irrational number Then R is				ional number.	
	A) an equivalence relation		B) R is symmetric			
	C) R is reflexive		D) R is transitive			
27.	7. Let $A = \{1, 2, 3\}$ and consider the relation					
	$\mathbf{R} = \{(1, 1), (2, 2),$	(3, 3), (1, 2), (2,	3), (1, 3)}. Then R is			
	A) reflexive but not symmetric		B) reflexive but not transitive			
	C) symmetric and	transitive	D) neither symmetric n	or transitive		
28.	28. Let $f : R \to R$ be defined by $f(x) = e^x - e^{- x }$. Then					
	A) the range of f is	$s(-\infty,0]$	B) f is 1 – 1			
	C) the range of f is	$[0,\infty)$	D) f is onto			
29.	A is a set having 6 which are not bijec		s. The number of distinc	t functions from	A to A (CET 18)	
	A) 6! – 6	B) $6^6 - 6$	C) $6^6 - 6!$	D) 6!		

A) 6! - 6 B) $6^6 - 6$ C) $6^6 - 6!$ D) 6!

30. If $A = \{x \mid x \in \mathbb{N}, x \le 5\}$ $B = \{x \mid x \in \mathbb{Z}, x^2 - 5x + 6 = 0\}$, then the number of onto functions from A to B is (CET 19)

31. Let x denote the total number of one-one functions from a set A with 3 elements to a set B with 5 elements and y denote the total number of one-one functions from the set A to the set $A \times B$. Then : (JEE-M 21)

A) y = 273x B) 2y = 91x C) y = 91x D) 2y = 273x
32. If f : R → R defined by
$$f(x) = (3 - x^3)^{\frac{1}{3}}$$
, then (f o f) (x) =
A) 3 - x³ B) x C) x³ D) - x
33. If f : R → R given by $f(x) = 7x + 8$ and $f^{-1}(12) = \frac{k}{7}$, then the value of k is
A) 7 B) 1 C) 4 D) 8
34. If $f(x) = \frac{3x + 2}{5x - 3}$, $x \in R - \left\{\frac{3}{5}\right\}$, then
A) $f^{-1}(x) = f(x)$ B) $f(f(x)) = -x$ C) $f^{-1}(x) = -f(x)$ D) Inverse does not exist
35. If a set A has m elements and set B has 7 elements and the number of injections from A to
B is 2520, then the value of m is
A) 2 B) 7 C) 6 D) 5
36. For any two real numbers 0 and ϕ , 0 R iff sec² 0 - tan² $\phi = 1$. Then the relation R is
A) reflexive but not transitive B) symmetric but not reflexive
C) an equivalence relation D) both reflexive and symmetric but not transitive.
37. A function f: $[0, \infty) \rightarrow [0, \infty)$ defined by $f(x) = \frac{x}{1+x}$ is
A) one-one and onto B) one-one but not onto
C) onto but not one-one D) neither one-one nor onto
38. Let a function f: N → N be defined by $f(n) = \begin{bmatrix} 2n, n = 2, 4, 6, 8, \dots, n \\ n-1, n = 3, 7, 11, 15, \dots, n \\ n-1, n = 3, 7,$

D) f is not defined

B) onto

A) one – one

- 40. Let A = {x : x \in R; x is not a positive integer} Define f : A \rightarrow R as f(x) = $\frac{2x}{x-1}$, then f is
 - A) Injective but not surjective B) surjective but not injective
 - B) bijective D) neither injective nor surjective
- **41.** The function $f(x) = \sqrt{3} \sin 2x \cos 2x + 4$ is one-one in the interval (CET 21)

A)
$$\left[\frac{-\pi}{6}, \frac{\pi}{3}\right]$$
 B) $\left(\frac{\pi}{6}, \frac{-\pi}{3}\right]$ C) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ D) $\left[\frac{-\pi}{6}, \frac{-\pi}{3}\right)$

42. Let f: $R \rightarrow R$ be defined by f(x) = 2x + 6 which is a bijective mapping then $f^{-1}(x)$ is given by (CET 16)

A)
$$\frac{x}{2}$$
 - 3 B) 2x + 6 C) x - 3 D) 6x + 2

- **43.** If $f: R \rightarrow R$ is defined by f(x) = 2x + 3, then $f^{-1}(x)$
 - A) is given by $\frac{x-3}{2}$ B) is given by $\frac{1}{2x+3}$
 - C) does not exist because 'f' is not injective
 - D) does not exist because 'f' is not surjective

44. The number of bijective functions from the set A to itself, if A contains 108 elements is

45. The set A has 4 elements and the set B has 5 elements then the number of injective mappings that can be defined from A to B is (CET 16)

- **46.** If the set x contains 7 elements and set y contains 8 elements, then the number of bijections from x to y is (CET 22)
 - A) 0 B) 7 ! C) 8 P₇ D) 8 !

47. If $f(x) = e^x$ and $g(x) = \log e^x$, then which of the following is TRUE ?

A)
$$f\{g(x)\} \neq g\{f(x)\}$$

B) $f\{g(x)\} = g\{f(x)\}$
C) $f\{g(x)\} + g\{f(x)\} = 0$
D) $f\{g(x)\} - g\{f(x)\} = 1$

- **48.** $f: R \to R$ and $g: [0, \infty) \to R$ are defined by $f(x) = x^2$ and $g(x) = \sqrt{x}$. Which one of the following is not true ? (CET 19, 23)
 - A) (fog) (2) = 2 B) (gof) (4) = 4 C) (gof) (-2) = 2 D) (fog) (-4) = 4

(CET 12)

49. Let $f: R \to R$ be defined by $f(x) = 3x^2 - 5$ and $g: R \to R$ by $g(x) = \frac{x}{x^2 + 1}$, then gof is (CET 23)

$3x^2$	P) $3x^2 - 5$	$3x^2$	$3x^2 - 5$
A) $\frac{1}{x^4+2x^2-4}$	B) $\frac{1}{9x^4 - 30x^2 + 26}$	C) $\frac{1}{9x^4 + 30x^2 - 2}$	D) $\frac{1}{9x^4 - 6x^2 + 26}$

50. Let $f(x) = \sin 2x + \cos 2x$ and $g(x) = x^2 - 1$, then g(f(x)) is invertible in the domain (CET 23) A) $x \in \begin{bmatrix} -\pi, & \pi \\ -\pi, & \pi \end{bmatrix}$ B) $x \in \begin{bmatrix} -\pi, & \pi \\ -\pi, & \pi \end{bmatrix}$ C) $x \in \begin{bmatrix} 0, & \pi \\ -\pi, & \pi \end{bmatrix}$ D) $x \in \begin{bmatrix} -\pi, & \pi \\ -\pi, & \pi \end{bmatrix}$

)
$$\mathbf{x} \in \left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$$
 B) $\mathbf{x} \in \left[\frac{-\pi}{4}, \frac{\pi}{4}\right]$ C) $\mathbf{x} \in \left[0, \frac{\pi}{4}\right]$ D) $\mathbf{x} \in \left[\frac{-\pi}{8}, \frac{\pi}{8}\right]$

Answers

1. (C) 2 = 4 - 2 but 4 < 6 \therefore $(2, 4) \notin R$; $(3, 8) \notin R$ [$\because 3 \neq 8 - 2$]. $(6, 8) \in R$ because 8 > 6 and a = 8 - 2.

2. (**B**)

 $(a, a) \in R, \ \forall a \in \{1, 2, 3, 4\} ; (1, 2) \in R \text{ but } (2, 1) \notin R$

 \therefore R is not symmetric ; it is trivially transitive.

- **3.** (**D**)
- **4.** (B)

No. of relations = $2^{n(A \times A)} = 2^{n(A).n(A)} = 2^{16}$

5. (C)

 $a \le a \forall a; 2 \le 3 \text{ but } 3 \not\leq 2; a \le b \text{ and } b \le c \Longrightarrow a \le c$

6. (C)

 $0 \nmid 0$; $4 \mid 2$ but $2 \nmid 4$; $a \mid b$ and $b \mid c \Rightarrow a \mid c$

- **7. (B)**
- 8. (A)
- **9.** (B)
- **10.** (D)

 $f(2) = f(-2) = 4 \implies f \text{ is not } 1 - 1$

range of $f = W \neq Z \Rightarrow$ not on to

11. (D)

 $f(1 . 2) = f(1 . 9) = 1 \implies f \text{ is not } 1 - 1$

range of $f = Z \neq R \implies$ not onto

12. (D)

 $f(2) = f(-2) = 2 \implies f \text{ is not } 1 - 1$

range of $f = [0, \infty) \neq R \Longrightarrow$ not onto

13. (D) $f(1) = f(2) = 1 \implies \text{not } 1 - 1$ range of $f = \{-1, 0, 1\} \neq R$ 14. (D) f(1) = f(-1); Range = $\mathbf{R}_* \neq \mathbf{R}$ **15.** (A) $f(a) = f(b) \implies a = b; f\left(\frac{b}{3}\right) = b; \frac{b}{3} \in \mathbf{R} \text{ when } b \in \mathbf{R}.$ **16.** (C) Domain = $\{5, 6\}$, Range = $\{2, 3\}$ **17. (A)** Required = ${}^{4}P_{3} = 4!$ **18. (B)** Required = ${}^{3}P_{3} = 3!$ **19. (B)** If n(A) > n(B) then no one-one functions. 20. (D) $R = \{(x, y) : 3x - y = 0\}$ i.e. $R = \{(x, y) : 3x = y\}$ If R is to be reflexive, $(x, x) \in R, \forall x \in A$. Now, $(x, x) \in R$ if 3x = x, which is true only for x = 0. In other words, $(1, 1) \notin R$ because $3.1 \neq 1$ \therefore R is not reflexive. If R is to be symmetric, then $(x, y) \in R \implies (y, x) \in R$. Now, $(x, y) \in \mathbb{R} \Rightarrow 3x = y \Rightarrow x = \frac{1}{3}y$ i.e. $3 y \neq x \Rightarrow (y, x) \notin \mathbb{R}$. For example, $(1, 3) \in \mathbb{R}$ but $(3, 1) \notin \mathbb{R}$. $\therefore \mathbb{R}$ is not symmetric Let (x, y) and $(y, z) \in R$. Then 3x = y and 3y = zThen $3x = \frac{1}{3}z \Rightarrow 3x \neq z$ i.e. $(x, z) \notin R$. For example, (1, 3) and $(3, 9) \in \mathbb{R}$ but $(1, 9) \notin \mathbb{R}$ $\therefore \mathbb{R}$ is not transitive. **21. (A)** Max. f = 1 + 2; Min. f = 1 - 222. (D) $f(x) = x + \sqrt{x^2} = x + |x| = \begin{cases} 2x & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$

23. (A)

 $f(x) = 5x \Longrightarrow f'(x) = 5, \quad \forall x \in R$

 \Rightarrow f(x) is strictly increasing function

 \therefore f(x) = 5x + |cos x| is also strictly increasing function \Rightarrow it is both 1 – 1 and onto

- **24.** (A)
- **25.** (C)
- **26.** (C)

Since $x - x + \sqrt{2} = \sqrt{2}$ which is an irrational number, so xRx, $\forall x \in R$ is possible. \therefore R is reflexive.

But R is not symmetric, for, $(\sqrt{2}, 1) \in \mathbb{R}$ but $(1, \sqrt{2}) \notin \mathbb{R}$

Also R is not transitive, for, $(\sqrt{2}, 1) \in R$ and $(1, 2\sqrt{2}) \in R$

but $\left(\sqrt{2}, 2\sqrt{2}\right) \notin \mathbb{R}$

27. (1)

Clearly, R is reflexive, for, $(1, 1) \in R$, $(2, 2) \in R$, $(3, 3) \in R$ But R is not symmetric, for, $(2, 3) \in R$ but $(3, 2) \notin R$

28. (C)

When $x \ge 0$, $f(x) = e^x - e^{-x}$ When x < 0, $f(x) = e^x - e^{-(-x)} = 0$ Clearly f is not 1 - 1When x > 0, $e^x > e^{-x} \quad \therefore f(x) > 0$, $\forall x > 0 \quad \therefore$ The range is $[0, \infty) \neq R$ \therefore f is not onto.

29. (C)

Required = No. of functions – number of bijective functions = $6^6 - 6!$

30. (A)

 $A = \{1, 2, 3, 4, 5\} \& B = \{2, 3\}$

Use : If n(A) = n ($n \ge 2$) & n(B) = 2, then the number of onto functions from A to B is $2^n - 2 = 2^5 - 2 = 30$.

31. (B)

 $x = {}^{5}P_{3} = 5.4.3$

$$y = {}^{15}P_3 = 15.14.13$$
 $\therefore \frac{y}{x} = \frac{15.14.13}{5.4.3} = \frac{91}{2} \Rightarrow 2y = 91x$

- **32. (B)**
- **33.** (C)

$$f^{-1}(x) = \frac{x-8}{7}; f^{-1}(12) = \frac{4}{7} \Rightarrow k = 4$$

34. (A)

$$f^{-1}(x) = \frac{-3x-2}{-5x+3} = \frac{3x+2}{5x-3} = f(x)$$

35. (D)
2520 = ⁷P_m \Rightarrow m = 5
36. (C)
37. (B)
 $f(x) = \frac{x+1-1}{x+1} = 1 - \frac{1}{x+1}$
 $f'(x) = \frac{1}{(x+1)^2} > 0 \Rightarrow f$ is 1-1
Range of f = [0, 1) \neq codomain \Rightarrow f is not onto

38. (D)

39. (D) $f(0) = \frac{1}{0}$, which is meaningless ! \therefore f is not a well defined function.

40. (A)

Domain = R - N;
$$f(x) = \frac{2}{1 - \frac{1}{x}}$$

 $a, b \in A \Rightarrow f(a) = f(b) \Rightarrow \frac{2}{1 - \frac{1}{a}} = \frac{2}{1 - \frac{1}{b}} \Rightarrow a = b$ \therefore f is 1 - 1

Let $y \in R$ be such that y = f(x)

Then
$$y = \frac{2}{1 - \frac{1}{x}} \Longrightarrow 1 - \frac{1}{x} = \frac{2}{y}$$

$$\frac{1}{x} = 1 - \frac{2}{y} = \frac{y - 2}{y} \quad \therefore x = \frac{y}{y - 2} \notin Domain \ if \ y = 2$$
OR

 $f(x) \neq 2$ $\therefore \frac{2x}{x-1} \neq 2$ and $2 \in R$

 \therefore Range \neq R (codomain) \therefore It is not onto \therefore (A) is the correct option

24 (A)

41. (A)

$$f(x) = \sqrt{3} \sin 2x - \cos 2x + 4 = 2\left(\frac{\sqrt{3}}{2}\sin 2x - \frac{1}{2}\cos 2x\right) + 4$$
$$= 2\left(\cos\frac{\pi}{6} \cdot \sin 2x - \sin\frac{\pi}{6} \cdot \cos 2x\right) + 4 = 2 \cdot \sin\left(2x - \frac{\pi}{6}\right) + 4$$
$$\sin\left(2x - \frac{\pi}{6}\right) \text{ is } 1 - 1 \text{ in the interval:} \left(2x - \frac{\pi}{6}\right) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$
$$\therefore 2x \in \left[-\frac{\pi}{3}, \frac{2\pi}{3}\right] \quad \therefore x \in \left[-\frac{\pi}{6}, \frac{\pi}{3}\right]$$

Aliter: The options in (B) and (D) are not intervals!! \therefore (A) or (C) is the correct answer

Take (C):
$$f\left(\frac{\pi}{2}\right) = 5 = f\left(-\frac{\pi}{2}\right)$$
 \therefore f is not $1-1$

 \therefore (A) should be the correct answer

42. (A)

We have, f(x) = 2x + 6. f is a bijective function $\Rightarrow f^{-1}$ exists. Let $x \in R$ then there exists $y \in R$ such that $f(x) = y \Rightarrow 2x + 6 = y$

$$\Rightarrow x = \frac{y-6}{2} \Rightarrow f^{-1}(y) = \frac{y-6}{2} \quad \therefore \quad f^{-1}(x) = \frac{x-6}{2} \text{ for all } x \in R$$

 $x \neq 3$ because $[x]^2 - [x] - 6 = 0$ when x = 3 \therefore (A) is the correct answer (A)

43. (A)

Let
$$y = 2x + 3 \implies 2x = y - 3 \implies x = \frac{1}{2}(y - 3) \therefore f^{-1}(x) = \frac{1}{2}(x - 3)$$

44. (B)

From memory !

45. (D)

Set A has 4 elements and set B has 5 elements, hence the number of injective mappings from A to B = ${}^{5}P_{4} = 120$

46. (A)

An n(X) < n(Y), no onto function is possible and hence bijective function from $X \rightarrow Y$ is not possible.

47. (B)

 $f(g(x)) = e^{g(x)} = f(x) ; f(x) = x ; g(f(x)) = f(x) = f(g(x))$

48. (D)

(fog) (-4) = f(g(-4)); but $g(-4) = \sqrt{-4}$ doesn't exist

49. (B)

 $(gof) (x) = g(f(x)) = \frac{f}{f^2 + 1} = \frac{3x^2 - 5}{(3x^2 - 5)^2 + 1} = \frac{3x^2 - 5}{9x^4 - 30x^2 + 26}$ 50. (D) $g(f(x)) = (\sin 2x + \cos 2x)^2 - 1 = 2 \sin 2x \cdot \cos 2x = \sin 4x;$ It is invertible if $4x \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ i.e., $x \in \left[-\frac{\pi}{8}, \frac{\pi}{8}\right]$ <u>Remark</u>: sin x is bijective and hence invertible in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$