

Redox Reactions

Numerical

Q.1 In mildly alkaline medium, thiosulphate ion is oxidized by $^{MnO_4^-}$ to "A". The oxidation state of sulphur in "A" is _____. **26th Feb Evening Shift 2021**

Q.2 Dichromate ion is treated with base, the oxidation number of Cr in the product formed is ______.26th Feb Morning Shift 2021

Numerical Answer Key

1. Ans. (6) 2. Ans. (6)

Numerical Explanation

Ans 1. $MnO_4^- + S_2O_3^{2-} \rightarrow MnO_2^+ + SO_4^{2-}$ (A)

Oxidation state of 'S' in SO²⁻4

= +6

Ans 2. $Cr_2O_7^{2-} + 2OH^- \Rightarrow 2CrO_4^{2-} + H_2O$

Let Oxidation state of Cr in CrO_4^{2-} is = x. \therefore x + (-2 × 4) = -2 \Rightarrow x = 6

MCQ (Single Correct Answer)

Q.1 In the given chemical reaction, colors of the Fe²⁺ and Fe³⁺ ions, are respectively : $5Fe^{2+} + MnO_4^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$

A Yellow, Orange
B Yellow, Green
C Green, Orange
D Green, Yellow

1st Sept Evening Shift 2021

Q.2 Experimentally reducing a functional group cannot be done by which one of the following reagents?

A Pt-C/H ₂	
B Na/H ₂	
C Pd-C/H ₂	
D Zn/H ₂ O	

1st Sept Evening Shift 2021

Q.3 In which one of the following sets all species show disproportionation reaction? (A) CIO_2^- , F_2 , MnO_4^- and $Cr_2O_7^{2-}$

 \blacksquare Cr₂O₇²⁻, MnO₄⁻, ClO₂⁻ and Cl₂

C MnO₄⁻, ClO₂⁻, Cl₂ and Mn³⁺

 \bigcirc CIO₄⁻, MnO₄⁻, CIO₂⁻ and F₂

31st Aug Evening Shift 2021

Q.4 Potassium permanganate on heating at 513 K gives a product which is :

- A paramagnetic and colourless
- B diamagnetic and green
- C diamagnetic and colourless

D paramagnetic and green

27th Aug Evening Shift 2021

Q.5 The nature of oxides V_2O_3 and CrO is indexed as 'X' and 'Y' type respectively. The correct set of X and Y is :

27th Aug Morning Shift 2021

Q.6 The incorrect statement is :

A Cl₂ is more reactive than CIF.

B F2 is more reactive than CIF.

C On hydrolysis CIF forms HOCI and HF.

D F₂ is a stronger oxidizing agent than Cl₂ in aqueous solution.

26th Aug Morning Shift 2021

Q.7 Match List - I with List - II :

	List - I		List - II
(a)	NaOH	(i)	Acidic
(b)	Be(OH) ₂	(ii)	Basic
(c)	Ca(OH) ₂	(iii)	Amphoteric
(d)	B(OH) ₃		
(e)	Al(OH) ₃		

Choose the most appropriate answer from the options given below

A (a)-(ii), (b)-(ii), (c)-(iii), (d)-(ii), (e)-(iii)

B (a)-(ii), (b)-(iii), (c)-(ii), (d)-(i), (e)-(iii)

C (a)-(ii), (b)-(ii), (c)-(iii), (d)-(i), (e)-(iii)

D (a)-(ii), (b)-(i), (c)-(ii), (d)-(iii), (e)-(iii)

27th July Morning Shift 2021

Q.8 The oxidation states of 'P' in $H_4P_2O_7$, $H_4P_2O_5$ and $H_4P_2O_6$, respectively, are :

A 7, 5 and 6

B 5, 4 and 3

C 5, 3 and 4

D 6, 4 and 5

27th July Morning Shift 2021

Q.9 Identify the process in which change in the oxidation state is five :

$$\square MnO_4 \rightarrow Mn^{-1}$$

 $\bigcirc \ CrO_4^{2-} \to Cr^{3+}$

 $\textcircled{D} C_2 O_4^{2-} \rightarrow 2 C O_2$

25th July Evening Shift 2021

Q.10 The oxidation states of nitrogen in NO, NO₂, N₂O and NO–3 are in the order of :

(A)
$$N_2O > NO_2 > NO > NO_3^-$$

- **B** NO > NO₂ > N₂O > NO₃⁻
- O NO₂ > NO₃⁻ > NO > N₂O
- **D** $NO_3^- > NO_2 > NO > N_2O$

18th March Evening Shift 2021

Q.11 The set that represents the pair of neutral oxides of nitrogen is :

A NO and N₂O

B N₂O and NO₂

C NO and NO₂

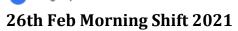
N₂O and N₂O₃

17th March Evening Shift 2021

Q.12 Statement I : Sodium hydride can be used as an oxidising agent. Statement II : The lone pair of electrons on nitrogen in pyridine makes it basic. Choose the CORRECT answer from the options given below :

A Statement I is false but statement II is true

B Both statement I and statement II are true


C Statement I is true but statement II is false

D Both statement I and statement II are false

16th March Evening Shift 2021

Q.13 Compound A used as a strong oxidizing agent is amphoteric in nature. It is the part of lead storage batteries. Compound A is :

A	PbO	
B	PbO ₂	
C	PbSO ₄	
D	Pb ₃ O ₄	

Q.14 Which of the following equation depicts the oxidizing nature of H_2O_2 ?

 $CL_2 + H_2O_2 \rightarrow 2HCl + O_2$

 $\textcircled{B} KIO_4 + H_2O_2 \rightarrow KIO_3 + H_2O + O_2$

 $\ \, {}_{\mathbf{C}} \ \, 2I^- + H_2O_2 + 2H^+ \rightarrow I_2 + 2H_2O$

$$D \ I_2 + H_2 O_2 + 2 O H^- \rightarrow 2 I^- + 2 H_2 O + O_2$$

25th Feb Morning Slot 2021

Q.15 The incorrect statement among the following is :

A RuO₄ is an oxidizing agent

B Cr₂O₃ is an amphoteric oxide.

C VOSO₄ is a reducing agent

D Red colour of ruby is due to the presence of Co³⁺

24th Feb Evening Slot 2021

Q.16 (A) HOCI + $H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$ (B) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$ Choose the correct option. A H₂O₂ acts as reducing and oxidising agent respectively in equations (A) and (B).

B H₂O₂ act as oxidizing and reducing agent respectively in equations (A) and (B).

C H₂O₂ acts as oxidising agent in equations (A) and (B).

D H₂O₂ acts as reducing agent in equations (A) and (B).

24th Feb Morning Slot 2021

MCQ Answer Key

9. Ans. (B)
10. Ans. (D)
11. Ans. (A)
12. Ans. (A)
13. Ans. (B)
14. Ans. (C)
15. Ans. (D)
16. Ans. (D)

MCQ Explanation

Ans 1. Colour of Fe²⁺ is observed green and Fe³⁺ is yellow.

Ans 2. Na in presence of H_2 , will not release electron which are required for reduction.

 H_2 gas also not get adsorbed on Na. Hence Na/ H_2 cannot be used as a reducing agent.

Ans 3. No option contains all species that show disproportionation reaction. So question is bonus.

 MnO_4^- , ClO_4^- , $Cr_2O_7^{2-}$ - Cl, Mn, Cr in these anions are present in highest oxidation state. These will not undergo disproportionation.

Ans 4.

 $2KMnO_4 \xrightarrow{\Delta}_{200^{\circ}C} K_2MnO_4 + MnO_2 + O_2 Black$

In K₂MnO₄, manganese oxidation state is +6 and hence it has one unpaired e⁻.

Ans 5.

V₂O₃ basic CrO basic

Ans 6. (i) Reactivity order : $F_2 > ClF$ (inter halogen) > Cl_2 (ii) $ClF + H_2O \rightarrow HOCl + HF$ (iii) Oxidizing power is aqueous solution $F_2 > Cl_2 > Br_2 > I_2$

Ans 7. NaOH \rightarrow Basic Be(OH)₂ \rightarrow Amphoteric Ca(OH)₂ \rightarrow Basic B(OH)₃ \rightarrow Acidic Al(OH)₃ \rightarrow Amphoteric

Ans 8. Oxidation state of P in H₄P₂O₇, H₄P₂O₅ and H₄P₂O₆ is 5, 3 & 4 respectively H₄P₂O₇ 2x + 4(+ 1) + 7(-2) = 0x = + 5 $H_4P_2O_5$ 2x + 4(+ 1) + 5(-2) = 0x = + 3 $H_4P_2O_6$ 2x + 4(+ 1) + 6(-2) = 0x = +4

Ans 9.

 $MnO_4^- + 5e \to Mn^{+2}$

Ans 10. The oxidation states of Nitrogen in following molecules are as follows $NO_3^- \rightarrow +5$ NO₂ $\rightarrow +4$ NO $\rightarrow +2$ N₂O $\rightarrow +1$

Ans 11. NO and N_2O are neutral oxides and N_2O_3 , NO_2 and N_2O_5 are acidic oxides.

Ans 12. NaH is a strong H⁻ (hydride) donor. Hence cannot be used as an oxidising agent.

Pyridine

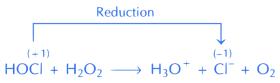
In Pyridine, the lone pair of 'N' is localised, makes it basic.

Ans 13. PbO_2 is strong oxidizing agent because Pb^{+4} is not stable and can be easily reduced to Pb^{+2} .

 PbO_2 is used in lead storage batteries. It is also amphoteric in nature.

Ans 14.

 $2I^- + H_2O_2 + 2H^+
ightarrow I_2 + 2H_2O$


Oxygen reduces from –1 to –2.

So, its reduction will takes place. Hence it will behave as oxidising agent or it shows oxidising nature.

While in other option it change from (-1) to 0.

Ans 15. Red colour of ruby is due to presence of Cr³⁺ ions in Al₂O₃. Chromium is the trace element that causes ruby's red colour, which ranges from an orange red to a publish red. The strength of ruby's red depends on how much chromium is present.

Ans 16. In equation (A), HOCl undergoes reduction in presence of H_2O_2 .

Here, oxidation state of Cl changes from +1 to -1 (i.e. reduces) \therefore H₂O₂ act as reducing agent I₂ reduces to I⁻ in presence of H₂O₂. In equation (B),

Reduction	
0 +1	
$I_2 + H_2O_2 + 2OH^-$	$\rightarrow 2I^{-} + 2H_2O + O_2$

Here oxidation state of iodine decreases (from 0 to -1) \therefore H₂O₂ act as reducing agent in both the equations.

 The compound that cannot act both as oxidising and reducing agent is: [Jan. 09, 2020 (I)]

(a) H_3PO_4 (b) HNO_2 (c) H_2SO_3 (d) H_2O_2

2. The redox reaction among the following is:

[Jan. 07, 2020 (II)]

- (a) formation of ozone from atmospheric oxygen in the presence of sunlight
- (b) reaction of [Co(H₂O)₆]Cl₃ with AgNO₃
- (c) reaction of H_2SO_4 with NaOH
- (d) combination of dinitrogen with dioxygen at 2000 K
- Which of the following reactions is an example of a redox reaction? [2017]
 - (a) $XeF_4 + O_2F_2 \rightarrow XeF_6 + O_2$

3.

- (b) $XeF_2 + PF_5 \rightarrow [XeF]^+ PF_6^-$
- (c) $XeF_6 + H_2O \rightarrow XeOF_4 + 2HF$
- (d) $XeF_6 + 2H_2O \rightarrow XeO_2F_2 + 4HF$
- 4. Copper becomes green when exposed to moist air for a long period. This is due to: [Online April 12, 2014]
 - (a) the formation of a layer of cupric oxide on the surface of copper.
 - (b) the formation of a layer of basic carbonate of copper on the surface of copper.
 - (c) the formation of a layer of cupric hydroxide on the surface of copper.
 - (d) the formation of basic copper sulphate layer on the surface of the metal.
- Which of the following chemical reactions depict the oxidizing beahviour of H₂SO₄? [2006]
 - (a) $NaCl + H_2SO_4 \longrightarrow NaHSO_4 + HCl$
 - (b) $2PCl_5 + H_2SO_4 \longrightarrow 2POCl_3 + 2HCl + SO_2Cl_2$

- (c) $2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2O$
- (d) $Ca(OH)_2 + H_2SO_4 \longrightarrow CaSO_4 + 2H_2O_4$
- Several blocks of magnesium are fixed to the bottom of a ship to [2003]
 - (a) make the ship lighter
 - (b) prevent action of water and salt
 - (c) prevent puncturing by under-sea rocks
 - (d) keep away the sharks
- 7. Which of the following is a redox reaction? [2002] (a) NaCl+KNO₃ \rightarrow NaNO₃+KCl
 - (b) $CaC_2O_4 + 2HCl \rightarrow CaCl_2 + H_2C_2O_4$
 - (c) $Mg(OH)_2 + 2NH_4Cl \rightarrow MgCl_2 + 2NH_4OH$
 - (d) $Zn + 2AgCN \rightarrow 2Ag + Zn(CN)_2$.

TOPIC 2 Oxidation Number

8. The oxidation states of iron atoms in compounds (A), (B) and (C), respectively, are *x*, *y* and *z*. The sum of *x*, *y* and *z* is [NV, Sep. 02, 2020 (I)]

- 9. The oxidation states of transition metal atoms in $K_2Cr_2O_7$, KMnO₄ and K_2FeO_4 , respectively, are *x*, *y* and *z*. The sum of *x*, *y* and *z* is ______. [NV, Sep. 02, 2020 (II)]
- Oxidation number of potassium in K₂O, K₂O₂ and KO₂, respectively, is: [Jan. 07, 2020 (1)]

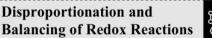
(a)
$$+2$$
, $+1$ and $+\frac{1}{2}$ (b) $+1$, $+1$ and $+1$
(c) $+1$, $+4$ and $+2$ (d) $+1$, $+2$ and $+4$

 The oxidation states of Cr in [Cr(H₂O)₆]Cl₃, [Cr(C₆H₆)₂], and K₂[Cr(CN)₂(O)₂(O₂)(NH₃)] respectively are :

(a) +3, +4, and +6 (b) +3, +2, and +4 (c) +3, 0, and +6 (d) +3, 0, and +4

Chemistry

- 12. Amongst the following, identify the species with an atom in + 6 oxidation state: [Online April 19, 2014] (a) $[MnO_4]^-$ (b) $[Cr(CN)_6]^{3-1}$
 - (d) CrO₂Cl₂ (c) Cr_2O_3
- 13. Oxidation state of sulphur in anions SO_3^{2-} , $S_2O_4^{2-}$ and


 $S_2O_6^{2-}$ increases in the orders : [Online April 22, 2013]

(a) $S_2O_6^{2-} < S_2O_4^{2-} < SO_3^{2-}$

(b)
$$SO_6^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$$

(c)
$$S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$$

(d)
$$S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$$

14. Consider the following equations :

$$2Fe^{2+} + H_2O_2 \rightarrow xA + yB$$

(in basic medium)

$$2\mathrm{MnO}_{4}^{-} + 6\mathrm{H}^{+} + 5\mathrm{H}_{2}\mathrm{O}_{2} \rightarrow x'\mathrm{C} + y'\mathrm{D} + z'\mathrm{E}$$

(in acidic medium)

The sum of the stoichiometric coefficients x, y, x', y' and z'for products A, B, C, D and E, respectively, is [NV, Sep. 04, 2020 (II)]

15. An example of a disproportionation reaction is:

[April 12, 2019 (I)]

- (a) $2MnO_4^- + 10I^- + 16H^+ \rightarrow 2Mn^{2+} + 5I_2 + 8H_2O$
- (b) $2NaBr + Cl_2 \rightarrow 2NaCl + Br_2$
- (c) $2KMnO_4 \rightarrow K_2MnO_4 + MnO_2 + O_2$
- (d) $2CuBr \rightarrow CuBr_2 + Cu$
- 16. In order to oxidise a mixture of one mole of each of FeC_2O_4 , $Fe_2(C_2O_4)_3$, $FeSO_4$ and $Fe_2(SO_4)_3$ in acidic medium, the number of moles of KMnO4 required is :

[April 8, 2019 (I)]

(a) 2 (c) 3 (d) 1.5 (b) 1

17. How many electrons are involved in the following redox reaction? [Online April 19, 2014]

$$Cr_2O_7^{2-} + Fe^{2+} + C_2O_4^{2-}$$

$$\rightarrow Cr^{3+} + Fe^{3+} + CO_2 \text{ (Unbalanced)}$$
(a) 3 (b) 4 (c) 6 (d) 5

18. Given: $XNa_2HAsO_3 + YNaBrO_3 + ZHCI \rightarrow$ NaBr+H₃AsO₄+NaCl The values of X, Y and Z in the above redox reaction are respectively : [Online April 9, 2013] (a) 2,1,2 (b) 2,1,3 (c) 3,1,6 (d) 3, 1, 4 19.

In the following balanced reaction, $X MnO_{4}^{-} + Y C_{2}O_{4}^{2-} + Z H^{+}$

$$\implies X \operatorname{Mn}^{2+} + 2Y \operatorname{CO}_2 + \frac{Z}{2} \operatorname{H}_2 \operatorname{O}$$

values of X, Y and Z respectively are

[Online May 12, 2012; 2013]

(c) 5,2,16 (d) 5,8,4 (a) 2, 5, 16 (b) 8, 2, 5

20. Given:

> $Co^{3+} + e^{-} \rightarrow Co^{2+}; E^{o} = +1.81 V$ $Pb^{4+} + 2e^{-} \rightarrow Pb^{2+}$; $E^{o} = +1.67 V$ $Ce^{4+} + e^{-} \rightarrow Ce^{3+}$; $E^{o} = +1.61 V$

 $Bi^{3+} + 3e^{-} \rightarrow Bi; E^{o} = +0.20 V$

oxidizing power of the species will increase in the order:

[April 12, 2019 (I)]

- (a) $Ce^{4+} < Pb^{4+} < Bi^{3+} < Co^{3+}$ (b) $Bi^{3+} < Ce^{4+} < Pb^{4+} < Co^{3+}$
- (c) $Co^{3+} < Ce^{4+} < Bi^{3+} < Pb^{4+}$
- (d) $Co^{3+} < Pb^{4+} < Ce^{4+} < Bi^{3+}$
- **21.** Given that $E_{O_2/H_2O}^{\circ} = +1.23V;$

$$E^{\circ}_{S_2O^{2-}_8/SO^{2-}_4} = 2.05V$$

 $E^{\circ}_{Br_3/Br^-} = +1.09V$

 $E_{Au^{3+}/Au}^{\circ} = +1.4V$

The strongest oxidising agent is :

(a)
$$Au^{3+}$$
 (b) O_2 (c) $S_2O_8^{2-}$ (d) Br_2

22. Consider the following reduction processes: $Zn^{2+} + 2e^- \rightarrow Zn(s); E^\circ = -0.76 V$ [Jan. 10, 2019 (I)] $Ca^{2+}+2e^{-}\rightarrow Ca(s); E^{\circ}=-2.87 V$ $Mg^{2+}+2e^- \rightarrow Mg(s); E^\circ = -2.36 V$ $Ni^{2+}+2e^{-} \rightarrow Ni(s); E^{\circ}=-0.25 V$ The reducing power of the metals increases in the order: (a) Ca < Zn < Mg < Ni(b) Ni < Zn < Mg < Ca(c) Zn < Mg < Ni < Ca(d) Ca < Mg < Zn < Ni

Redox Reactions

- 23. In the reaction of oxalate with permanganate in acidic medium, the number of electrons involved in producing one molecule of CO₂ is: [Jan. 10, 2019 (II)]
 (a) 1 (b) 10 (c) 2 (d) 5
- 24. In which of the following reactions, hydrogen peroxide acts as an oxidizing agent ? [Online April 8, 2017]
 - (a) $HOCl + H_2O_2 \rightarrow H_3O^+ + Cl^- + O_2$
 - (b) $I_2 + H_2O_2 + 2OH^- \rightarrow 2I^- + 2H_2O + O_2$
 - (c) $2MnO_4^- + 3H_2O_2 \rightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$
 - (d) $PbS + 4H_2O_2 \rightarrow PbSO_4 + 4H_2O$
- **25.** Consider the reaction:

$$H_2SO_3(aq) + Sn^{4+}(aq) + H_2O(l)$$

→ $Sn^{2+}(aq) + HSO_4(aq) + 3H^+(aq)$

Which of the following statements is correct?

[Online April 19, 2014]

- (a) Sn⁴⁺ is the oxidizing agent because it undergoes oxidation
- (b) Sn⁴⁺ is the reducing agent because it undergoes oxidation
- (c) H_2SO_3 is the reducing agent because it undergoes oxidation
- (d) H_2SO_3 is the reducing agent because it undergoes reduction
- 26. Which one of the following cannot function as an oxidising agent ? [Online April 25, 2013]

(a) I⁻ (b) S(s) (c)
$$NO_3^-(aq)$$
 (d) $Cr_2O_7^{2-}$

EBD 8345

Chemistry

Hints & Solutions

Ì

- (a) In H₃PO₄ oxidation state of P is +5, which cannot be oxidised further to a higher oxidation state. Hence, it cannot act as reducing agent.
- 2. (d) $N_2 + O_2 \rightarrow 2NO$ (Redox reaction) $3O_2 \rightarrow 2O_3$ (Photochemical reaction) $2NaOH + H_2SO_4 \rightarrow Na_2SO_4 + 2H_2O$

(Neutralisation reaction)

 $[Co(H_2O)_6]Cl_3 + 3AgNO_3 \rightarrow [CO(H_2O)_6](NO_3)_3 + 3AgCl$ (Neutralisation reaction)

3. (a) In the reaction

$$\begin{array}{c} \xrightarrow{\text{Oxidation}} \\ +4 \\ XeF_4 + \xrightarrow{+1} \\ O_2F_2 \xrightarrow{+6} \\ XeF_6 + \xrightarrow{0} \\ Reduction \end{array}$$

(b) Copper when exposed to moist air having CO₂. It gets superficially coated with a green layer of basic carbonate CuCO₃. Cu (OH)₂.

5. (c)
$$2HI + H_2SO_4 \longrightarrow I_2 + SO_2 + 2H_2O_3$$

in this reaction oxidation number of S is decreasing from + 6 to +4 hence undergoing reduction and for HI oxidation number of I is increasing from -1 to 0 hence undergoing oxidation, therefore H_2SO_4 is acting as oxidising agent.

6. (b) Magnesium provides cathodic protection and prevents rusting or corrosion.

7. (d)
$$\xrightarrow[]{0}{}^{-2e} \xrightarrow[]{0}{}^{+1} \xrightarrow[]{0}{}^{+2e} \xrightarrow[]{0}{}^{+2e} (CN)_2$$

The oxidation state shows a change only in (d)

8. (6)

The oxidation states of iron in these compounds will be -In A, $x + 5(-1) + (-1) = -4 \Rightarrow x = +2$

- In B, $y + 4(-2) = -4 \Rightarrow y = +4$
- In C, z = 0

The sum of oxidation states will be = 4 + 2 + 0 = 6.

9. (19)

Compound		Oxidation state of
		transition element
(i)	K ₂ Cr ₂ O ₇	x = +6
(ii)	KMnO ₄	y = +7
(iii)	K ₂ FeO ₄	z = +6
So,	(x + y + z) = 6 + 7 + 6 = 19.	

10. (b) $K_2O: 2x-2=0 \Rightarrow x=+1$ $K_2O_2: 2x-2=0 \Rightarrow x=+1$ $KO_2: x-1=0 \Rightarrow x=+1$ Thus, potassium shows +1 state in all its oxides, superoxides and peroxides.

11. (c)
$$[Cr (H_2O)_6]Cl_3$$

 $\Rightarrow x+6 \times 0 + (-1) \times 3 = 0$
 $\Rightarrow x=+3$
 $[Cr (C_6H_6)_2]$
 $x+2 \times 0 = 0; x=0$
 $K_2[Cr (CN)_2(O_2(O_2)(NH_3)]$
[Here (O)₂ is OXO, (2x-2) and
(O₂) is per OXO, (1x-2)]
 $2 \times 1 + x + 2 \times (-1) + 2 \times (-2) + (-2) + 0 = 0$
 $x=+6$

12. (d)
$$CrO_{3}CL$$

Let O. No. of
$$Cr = x$$

 $\therefore x + 2(-2) + 2(-1) = 0$

$$x - 4 - 2 = 0$$

 $\therefore x = +6$

- 13. (c) $\ln SO_3^{2-}$ x+3(-2)=-2; x=+4 $\ln S_2O_4^{2-}$ 2x+4(-2)=-2 2x-8=-2 2x=6; x=+3 $\ln S_2O_6^{2-}$ 2x+6(-2)=-2 2x=10; x=+5hence the correct order is $S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-}$
- 14. (19)

$$2Fe^{2+} + H_2O_2 \longrightarrow 2Fe^{3+} + 2OH^-$$

$$2MnO_4^- + 6H^+ + 5H_2O_2 \longrightarrow 2Mn^{2+} + 8H_2O + 5O_2$$

$$\therefore x = 2, y = 2, x' = 2, y' = 8, z' = 5$$

$$\therefore x + y + x' + y' + z' = 19$$

15. (d) $\overset{+}{\operatorname{CuBr}} \xrightarrow{0} \overset{0}{\operatorname{Cu}} \overset{2+}{\operatorname{CuBr}}_2$

It is an example of disproportionation reaction, as Cu undergoes both oxidation and reduction.

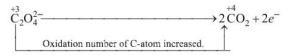
Redox Reactions

16. (a) $MnO_{4}^{-} + 5e^{-} \longrightarrow Mn^{2+}$ (i) $\operatorname{FeC}_2O_4 \longrightarrow \operatorname{Fe}^{3+} + 2\operatorname{CO}_2 + 3e^{-1}$ 1 mole of FeC₂O₄ reacts with $\frac{3}{5}$ mole of acidified KMnO₄ (ii) $\operatorname{Fe}_2(\operatorname{C}_2\operatorname{O}_4)_3 \longrightarrow \operatorname{Fe}^{3+} + \operatorname{CO}_2 + 6e^{-1}$ 1 mole of $Fe_2(C_2O_4)_3$ reacts with $\frac{6}{5}$ moles of KMnO₄ (iii) $\text{FeSO}_4 \longrightarrow \text{Fe}^{3+} + e^{-1}$ 1 mole of FeSO₄ react with $\frac{1}{5}$ moles of KMnO₄ (iv) $Fe_2 (SO_4)_3$ does not oxidise $\therefore \quad \text{Total moles required} = \frac{3}{6} + \frac{6}{5} + \frac{1}{5} = 2$ 17. (a) The reaction given is $\operatorname{Cr}_2\operatorname{O_7}^{2-} + \operatorname{Fe}^{2+} + \operatorname{C_2O_4}^{2-} \longrightarrow \operatorname{Cr}^{3+} + \operatorname{Fe}^{3+} + \operatorname{CO_2}$ $Cr_2O_7^{2-} \longrightarrow 2Cr^{3+}$ On balancing $14H^+ + Cr_2O_7^{2-} + 6e^- \longrightarrow 2Cr^{3+} + 7H_2O_7^{3-}$(i) $Fe^{2+} \longrightarrow Fe^{3+} + e^{-}$(ii) $C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$(iii) On adding all three equations, we get $Cr_2O_7^{2-} + Fe^{2+} + C_2O_4^{2-} + 14H^+ + 3e^{-}$ $\longrightarrow 2Cr^{3+} + Fe^{3+} + 2CO_2 + 7H_2O$ Hence the total no. of electrons involved in the reaction = 318. (c) On balancing the given reaction, we find 3Na2HAsO3 + NaBrO3 + 6HCl \rightarrow 6NaCl + 3H₃AsO₄ + NaBr (a) $X \operatorname{MnO}_4^- + Y \operatorname{C}_2 \operatorname{O}_4^{2-} + Z \operatorname{H}^+ \rightleftharpoons$ 19.

$$X Mn^{+2} + 2Y CO_2 + \frac{Z}{2}H_2O$$

First half reaction $MnO_4^- \longrightarrow Mn^{2+}$ (i) On balancing

 $MnO_4^- + 8H^+ + 5e^- \longrightarrow Mn^{2+} + 4H_2O$ (ii) Second half reaction


$$C_2O_4^{2-} \longrightarrow 2CO_2 \qquad \dots (iii)$$

On balancing

 $C_2O_4^{2-} \longrightarrow 2CO_2 + 2e^-$ (iv) On multiplying eqn. (ii) by 5 and (iv) by 2 and then adding we get $2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow$ $2Mn^{2+} + 10CO_2 + 8H_2O$

20. (b) Higher the reduction potential, higher will be oxidising power. So,

$$Bi^{3+} < Ce^{4+} < Pb^{4+} < Co^{3+}$$

- 21. (c) More positive is the reduction potential stronger is the oxidising agent. Reduction potential is maximum for $S_2O_8^{2-}$, therefore, it is the strongest oxidising agent amongst the given species.
- 22. (b) Higher the oxidation potential, higher will be the reducing power. So, the order of reducing behaviour is: Ca>Mg>Zn>Ni
- 23. (a) Reaction involved:

 \therefore The number of electrons involved in producing one mole of CO₂ is 1.

(a) HOCl + H₂O₂
$$\longrightarrow$$
 H₃O⁺ + $\stackrel{-1}{\text{Cl}}$ + $\stackrel{0}{\text{O}_2}$
Reduction

(b)

$$\underbrace{\overset{0}{\text{I}_2} + \text{H}_2^{-1}\text{O}_2 + 2\text{OH}^-}_{\text{Reduction}} \xrightarrow{\overset{-1}{2}\text{I}^-}_{\text{Reduction}} + 2\text{H}_2^{-1}\text{O}_2$$

0.11.1

$$2 \underset{\text{Reduction}}{\overset{+7}{\text{2MnO}_4^-}} + 3 \underset{\text{H}_2\text{O}_2}{\overset{-1}{\text{2}}} \xrightarrow{\overset{+2}{\text{2}}} 2 \underset{\text{MnO}_2}{\overset{+2}{\text{3}}} + 3 \underset{\text{O}_2}{\overset{0}{\text{3}}} + 2 \underset{\text{H}_2\text{O}}{\overset{0}{\text{3}}} + 2 \underset{\text{O}_2}{\overset{0}{\text{3}}} + 2 \underset{\text{H}_2\text{O}_2}{\overset{0}{\text{3}}} + 2 \underset{\text{O}_2}{\overset{0}{\text{3}}} + 2 \underset{\text{H}_2\text{O}_2}{\overset{0}{\text{3}}} + 2 \underset{\text{H}_2\text{O}_2}{\overset{0}} + 2 \underset{\text{H}_2\text{O}_2}{\overset{0} + 2 \underset{\text{H}_2\text{O}_2}{\overset{0}} + 2 \underset{\text{H}_2\text{$$

0-11-11-1

(d)
$$PbS^{-2} + 4H_2O_2 \longrightarrow PbSO_4 + 4H_2O$$

Oxidation

Notice that the oxidation state of oxygen goes from -1 on the H₂O₂ to -2 on the H₂O means H₂O₂ is being reduced. On the other hand the oxidation state of sulfur is going from -2 on the PbS to +6 on the PbSO₄. i.e Sulfur is being oxidised₊₄

25. (c) $H_2SO_3(aq) + Sn^{4+}(aq) + H_2O(1) \longrightarrow$

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + \operatorname{HSO}_{4}^{-}(\operatorname{aq}) + 3\mathrm{H}^{+}$$

Hence H_2SO_3 is the reducing agent because it undergoes oxidation.

26. (a) If an electronegative element is in its lowest possible oxidation state in a compound or in free state. It can function as a powerful reducing agent. e.g. I⁻