1.	Match the column-I and colum	in-II -	1.	स्तम्भ-I का स्तम्भ	I-II से मिलान	कीजिए -				
	Column-I	Column-II		स्तम्भ-I		स्तम्भ-II				
	I. Froth flotation process	a. Based on density differ-		I. झाग प्लवन वि	धि	a. अयस्व	तथा अशुद्धियों के			
		ence between ore and impurities				बीच घनत	व अन्तर के आधार पर			
	II. Hydrolic washing	b. Based on preferential wettability of ore particles and impurities		II. जलीय शोधन		अयस्क कणों तथा अशुद्धियों वरीयता पूर्वक गीले होने के भार पर				
	III. Electro magnetic separation	c. Based on adding of a sub- stance which react with ore component so that compo- nent separate easily		III. विद्युत चुम्बक	नीय पृथक्करण	c. एक पर के साथ अ	शर्थ की अयस्क घटकों भिक्रिया होने के आधार घटक आसानी से पृथक			
	IV. Leaching	d. Based on magnetic prop- erties of component		IV. लीचिंग (निक्ष	ग़ालन)	d. घटकों आधार पर	के चुम्बकीय लक्षणों के			
	(1) I-b; II-a; III-d; IV-c (2) I-a; II-b; III-d; IV-c (3) I-b; II-a; III-c; IV-d (4) I-d; II-b; III-a; IV-c			(1) I – b; II – a; (2) I – a; II – b; (3) I – b; II – a; (4) I – d; II – b;	; III – d; IV – ; III – c; IV –	- c - d				
2.	Which of the following statem	nents is correct?	2.	निम्न में कौनसा क	म्न में कौनसा कथन सत्य है?					
	(1) Geometrical isomerism is rC.N.4 having tetrahedral geor(2) Square planar complex	netry		ज्यामितीय समाव (2) वर्ग समतर्ल	यवता नहीं दश	र्गाते हैं	य ज्यामिती वाले संकुल 1तीय समावयवता नहीं			
	geometrical isomerism(3) The square planar complexMab₃ exhibits cis-trans isometrical			दर्शाते हैं (3) सामान्य सूत्र trans समावयवत	समतलीय संकुल cis-					
	 (4) The platinum glycinato c show geometrical isomerism 				glycinato	complex, [I	Pt(Gly) ₂] ज्यामितीय			
3.	Actinoids show wide range lanthenoids due to :	e of oxidation states than	3.	अधिक होती है।	क्योंकि-		लेन्थेनाइडों की अपेक्षा			
	 (1) Minimum energy gap b/w (2) Minimum energy gap b/w (3) Minimum energy gap b/w (4) Minimum energy gap b/w 	7s and 5f. 6s and 5d.		(1) 7s तथा 6d व (2) 7s तथा 5f वे (3) 6s तथा 5d वे (4) 6s तथा 4f वे	के मध्य न्यूनतम के मध्य न्यूनतग	न ऊर्जा अन्तराल म ऊर्जा अन्तरात	। न			
4.	In the isoelectronic series of r strength is expected to increas (1) $[Mn(CO)_6]^+ < [Cr(CO)_6] < [Mr(2) [V(CO)_6]^- < [Cr(CO)_6] < [Mr$	netal carbonyl, the C-O bond se in the order V(CO) ₆] ⁻	4.	• •	गी समइलेक्ट्रोन जम है- ⁺<[Cr(CO) ₆]	गिय श्रेणी में C-(]<[V(CO) ₆] [–]) बन्ध की बन्ध सामर्थ्य			
5.	(4) $[Cr(CO)_{6}]^{-} < [Mn(CO)_{6}]^{+} < [Mn(CO)$	Cr(CO) ₆] V(CO) ₆] ⁻ quare planar complex will be rism -	5.	(3) [V(CO) ₆] ⁻ < (4) [Cr(CO) ₆]< निम्न में कौनसा दर्शाता है -	:[Mn(CO) ₆] ⁺ :[Mn(CO) ₆] ⁺ वर्ग समतलीर	<[Cr(CO) ₆] <[V(CO) ₆]	।क्ष-विपक्ष समावयवता (4) Ma ₄			

6.	The 3d elements show	variable oxidation states because	6.	 3d श्रेणी के तत्व परिवर्तनशील ऑक्सीकरण अवस्था दर्शाते हैं, क्यों 							
	-	owing sets of orbitals are almost			युग्म की ऊर्जा लगभग समान होती है, यह						
	similar-			युग्म होगा-							
	(1) ns, (n – 1)d	(2) ns, nd		(1) ns, (n – 1)d	(2) ns, nd						
	(3) (n –1)s,nd	(4) np, (n − 1) d		(3) (n −1)s,nd	(4) np, (n − 1) d						
7.	Match the Column-I and		7.	स्तम्भ-I का स्तम्भ-II से मिल	•						
	Column-I	Column-II		स्तम्भ-I	स्तम्भ-II निष्कर्षण की सामान्य विधि						
	Metal	Common method of extraction		धातु							
	I. Aluminium	a. Roasting followed by re duction with coke		I. एल्यूमिनियम	a. भर्जन के बाद कार्बन के साथ अपचयन						
	II. Iron	b. Partially Roasting of sulphide and reduction		II. आयरन	b. सल्फाईड का आंशिक भर्जन तथा अपचयन						
	III. Copper	c. Reduction of the oxide with CO and coke in Blast		III. कॉपर	c. वात्या भट्टी में CO तथा कोयल के साथ ऑक्साइड का अपचयन						
		furnace									
	IV. Zinc	d. Electrolysis of Al ₂ O ₃ dis-		IV. जिंक	d. गलित Na ₃ AlF ₆ में घुलित						
		solved in molten Na_3AIF_6			Al ₂ O ₃ का विद्युत अपघटन						
	(1) I – d; II – c; III – b; I			(1) I-d; II-c; III-b; I							
	(2) I-d; II-b; III-a; I			(2) I-d; II-b; III-a; IV-c							
	(3) I-c; II-b; III-a; I			(3) I-c; II-b; III-a; IV-d							
•	(4) I – c; II – a; III – b; I			(4) I - c; II - a; III - b; IV - c							
8.	The method of zone r principle of:	efining of metals is based on the	8.	क्षेत्रीय शोधन विधि आधारि							
		he pure metal than that of impurity. nt of the impurity than that of the		(1) अशुद्धी की तुलना में गतिशीलता	शुद्ध धातु की गलित मिश्रण में अधिव						
	pure metal.				ाद्ध धातु की तुलना में अधिक होगा						
	(3) Greater noble chara the impurity	acter of the solid metal than that of		(3) अशुद्धी की तुलना में ध	प्रातु का अधिक अक्रिय गुण						
	(4) Greater solubility of than in the solid	of the impurity in the molten state		(4) अशुद्धी का ठोस अवस् विलेयता	था की तुलना में गलित अवस्था में अधिव						
9.	In the 3d series the ent	halpy of atomization of zinc is the	9.	3d श्रेणी में जिंक की कणन एन्थैल्पी निम्नतम (126 kJ mol ⁻¹)							
	lowest (126 kJ mol ^{-1}), b	ecause?		क्योंकि -							
	(1) It have stronger inte	ratomic at interaction		(1) यह प्रबल अन्तर परमाण्विक अन्त: क्रिया रखता है।							
	(2) It have high melting p	point		(2) यह उच्च गलनांक रखता है।							
	(3) It have high degree of	fionization		(3) यह आयनन की उच्च मात्रा रखता है।							
	(4) Weak metallic bond			(4) दुर्बल धात्विक बंध							
10.	Which of the following L	anthenoid show +4 oxidation state	10.	निम्न में से कौनसा लेन्थेनाइत	ट +4 ऑक्सीकरण अवस्था दर्शाता है-						
	(1) Lu	(2) Gd		(1) Lu	(2) Gd						
	(3) Ce	(4) Eu		(3) Ce	(4) Eu						

11.	Form the stability constant (hypothetical values), given below,	11.	नीचे दिए गये स्थायीत्व स्थिरांक (काल्पनिक मान) के अनुसार प्रबलतम
	predict which is the reaction containing strongest ligand-		लिगेन्ड वाली अभिक्रिया का अनुमान लगाइए-
			3
	(1) $Cu^{2+} + 4NH_3 \implies [Cu(NH_3)_4]^{2+}$, K = 4.5 × 10 ¹¹		(1) $Cu^{2+} + 4NH_3 \implies [Cu(NH_3)_4]^{2+}$, $K = 4.5 \times 10^{11}$
	(2) $Cu^{2+} 4CN^{-} \Longrightarrow [Cu(CN)_4]^{2-}, K = 2.0 \times 10^{27}$		(2) $Cu^{2+} 4CN^{-} \implies [Cu(CN)_4]^{2-}, K = 2.0 \times 10^{27}$
	(3) $Cu^{2+} + 2en \implies [Cu(en)_2]^{2+}$, K = 3.0 × 10 ¹⁵		(3) $Cu^{2+} + 2en \implies [Cu(en)_2]^{2+}$, K = 3.0 × 10 ¹⁵
	(4) $Cu^{2+} + 4H_2O \implies [Cu(H_2O)_4]^{2+}$, K = 9.5 × 10 ⁸		(4) $Cu^{2+} + 4H_2O \implies [Cu(H_2O)_4]^{2+}$, K = 9.5 × 10 ⁸
12.	In the context of the Hall - Heroult process for the extraction of Al, which of the following statements is false - $(1) Na_3AlF_6$ serves as the electrolyte.	12.	हॉल-हेरॉल्ट प्रक्रम से ऐलुमिनियम के निष्कर्षण के संदर्भ में कौन सा कथन गलत है? (1) Na ₃ AIF ₆ विद्युत अपघट्य का काम करता है।
	(2) \overrightarrow{CO} and \overrightarrow{CO}_2 are produced in this process.		(2) इस प्रक्रम में CO तथा CO ₂ का उत्पादन होता है।
	(3) Al_2O_3 is mixed with CaF_2 and Na_3AlF_6 which lowers the melting point of the mixture and brings conductivity.		(3) CaF ₂ तथा Na ₃ AlF ₆ को Al ₂ O ₃ में मिलाने पर मिश्रण का गलनांक कम होता है और उसमें चालकता आती है।
40	(4) Al^{3+} is reduced at the cathode to from Al.	1.2	(4) कैथोड़ पर Al ³⁺ अपचयित होकर Al बनाता है।
13.	Which complex will show optical isomerism - $(1) [Co(NH_3)_6]^{3+}$ $(2) [Pt(NH_3)_3Br] NO_3$	13.	निम्न में कौनसा संकुल प्रकाशिक समावयवता दर्शाता है- (1) [Co(NH ₃) ₆] ³⁺ (2) [Pt(NH ₃) ₃ Br] NO ₃
	(3) $[Cr(en)_3]Cl_3$ (4) $[Ni(CN)_4]^{2-}$		(3) $[Cr(en)_3]Cl_3$ (4) $[Ni(CN)_4]^{2^-}$
14.	5 5	14.	कैसिटेराइट अयस्क से धातु निष्कर्षण में सम्मिलित है–
	(1) carbon reduction of an oxide ore		(1) ऑक्साइड अयस्क का कार्बन द्वारा अपचयन
	(2) self-reduction of a sulphide ore		(2) सल्फाइड अयस्क का स्वत: अपचयन
	(3) removal of copper impurity		(3) ताम्र अशुद्धि का निष्कासन
	(4) removal of iron impurity		(4) लौह अशुद्धि का निष्कासन
15.	Which of the following process is used for purification of Ni	15.	Ni धातु के शुद्धिकरण में कौनसा प्रक्रम प्रयुक्त होता है –
	(1) Baeyer process (2) Mond process		(1) बेयर विधि (2) माण्ड विधि
	(3) Hall process (4) None of these		(3) हॉल विधि (4) इनमें से कोई नहीं
16.	Which of the following order of synergic bonding is correct	16.	
	(1) $[\text{Ti}(\text{CO})_6]^{-2} < [\text{V}(\text{CO})_6]^{-1} < [\text{Cr}(\text{CO})_6] < [\text{Mn}(\text{CO})_6]^+$		(1) $[\text{Ti}(\text{CO})_6]^{-2} < [\text{V}(\text{CO})_6]^{-1} < [\text{Cr}(\text{CO})_6] < [\text{Mn}(\text{CO})_6]^+$
	(2) $[\text{Ti}(\text{CO})_6]^{-2} > [\text{V}(\text{CO})_6]^{-1} > [\text{Cr}(\text{CO})_6] > [\text{Mn}(\text{CO})_6]^+$		(2) $[Ti(CO)_6]^{-2} > [V(CO)_6]^{-1} > [Cr(CO)_6] > [Mn(CO)_6]^+$
	(3) $[\text{Ti}(\text{CO})_6]^{-2} < [\text{V}(\text{CO})_6]^{-1} < [\text{Cr}(\text{CO})_6] > [\text{Mn}(\text{CO})_6]^+$		(3) $[\text{Ti}(\text{CO})_6]^{-2} < [V(\text{CO})_6]^{-1} < [\text{Cr}(\text{CO})_6] > [\text{Mn}(\text{CO})_6]^+$
	(4) $[\text{Ti}(\text{CO})_6]^{-2} > [\text{V}(\text{CO})_6]^{-1} < [\text{Cr}(\text{CO})_6] < [\text{Mn}(\text{CO})_6]^+$		(4) $[\text{Ti}(\text{CO})_6]^{-2} > [V(\text{CO})_6]^{-1} < [Cr(\text{CO})_6] < [Mn(\text{CO})_6]^+$
17.	Consider the following reaction :	17.	दी गयी अभिक्रिया पर विचार कीजिये –
	$P_4 + SOCl_2 \xrightarrow{\Delta} Chloride of phosphorus \xrightarrow{H_2O} Oxy acid of phosphorus + white fumes$		P ₄ + SOCl ₂ —^→ फोस्फोरस का क्लोराइड — ^{H2O} → फॉस्फोरस का ऑक्सी अम्ल + श्वेत धुम्र
	On the given information, chloride of phosphorus and oxy		दिये गये रूपान्तरण के अनुसार फॉस्फोरस का क्लोराइड तथा ऑक्सी
	acid are respectively		अम्ल है –
	(1) PCI_3 and H_3PO_4		(1) PCl ₃ तथा H ₃ PO ₄
	(2) PCl ₃ and H ₃ PO ₃		(2) PCl ₃ तथा H ₃ PO ₃
	(3) PCI_5 and H_3PO_3		(3) PCl ₂ तथा H ₂ PO ₃
	(4) PCl_5 and H_3PO_4		(4) PCl ₅ तथा H ₃ PO ₄
	· · ɔ ɔ 4		× 5 5 4

18.	Which of the following statement is incorrect-	18.	निम्न में से कौनसा कथन असत्य है-
	(a) Cyanocobalamin is vitamin B_{12} and it is a complex of		(a) सायनोकोबालेमीन विट्यमिन B ₁₂ है तथा यह Co ²⁺ का संकुल है
	Co ²⁺ .		
	(b) Insulin is a hormone and it is a complex of Fe^{2+} .		(b) इंसुलिन एक हॉर्मोन है तथा यह Fe ²⁺ का संकुल है।
	(c) Carboxypeptidase A is an enzyme and it is a complex of		(c) कार्बोक्सिपेप्टाइडेज A एक एंजाइम है तथा यह Mg ²⁺ का संकुल
	Mg ²⁺ .		है ।
	(d) Haemoglobin is the red pigment of blood and it is a		(d) हीमोग्लोबिन रक्त में उपस्थित लाल वर्णक है तथा यह Fe ²⁺ का
	complex of Fe ²⁺ .		संकुल है
	(1) a and d (2) c and d		(1) a तथा d (2) c तथा d
	(3) only b (4) b and c		(3) केवल b (4) b तथा c
(Q.	19-20) Consider the following ellinghan diagram	(Q.	19-20) एलिघंम आरेख पर विचार कीजिए-
	$\Delta G \qquad 0 \qquad 500^{\circ}C \qquad T \rightarrow \\ \bigcirc \qquad Fe \rightarrow FeO \\ \hline CO \qquad CO$		$\Delta G = \begin{pmatrix} 0 & 500^{\circ}C & T \rightarrow \\ \hline & & & \\ \hline \\ \hline$
	give the answer of following question		निम्न प्रश्न के उत्तर दीजिए-
19.	Which of the following reaction is not possible above 500°C	19.	
	temperature.		होगी-
	(1) FeO + C \rightarrow Fe+ CO (2) CO ₂ + C \rightarrow 2CO (2) FeO + CO \rightarrow Fe+ CO (4) None of these		(1) FeO + C → Fe+ CO (2) CO ₂ + C → 2CO (3) FeO + CO → Fe+ CO ₂ (4) इनमें से कोई नहीं
20.	(3) FeO + CO \rightarrow Fe+ CO ₂ (4) None of these Incorrect statement is –	20	(3) FeO + CO → Fe+ CO ₂ (4) इनमें से कोई नहीं असत्य कथन है-
20.	(1) CO is best reducing agent before 500°C	20.	(1) 500 ⁰ C से पहले CO उचित अपचायक अभिक्रमक है
	(2) CO_2 is more stable than CO before 500°C		(2) 500 ⁰ C से कम ताप पर CO ₂ , CO की अपेक्षा अधिक स्थायी है
	(3) Reduction of FeO is not possible by CO before 500°C		(3) 500 ⁰ C से कम ताप पर FeO का CO से अपचयन सम्भव नहीं है
	(4) Coke is more sensitive towards O ₂ above 500°C		(4) 500 ⁰ C से अधिक ताप पर कोक की O ₂ के प्रति बन्धुता अधिक है
21.	In general, the transition elements exhibit their highest	21.	संक्रमण धातुओं की उच्चतम आक्सीकरण अवस्था कौनसे अधातु परमाणु
	oxidation states in their compounds with elements like-		के साथ पाई जाती है?
	(1) C (2) S		(1) C (2) S
	(3) C & S (4) O & F		(3) C तथा S (4) O तथा F

-									
22.	Which of the following mixture is used in Holme's signal :	22.	निम्न में से कौनसा मिश्रण होल्म के संकेतों में प्रयुक्त किया जाता है -						
	(1) Ca_3P_2 and $Ca_3(PO_4)_2$		(1) Ca ₃ P ₂ तथा Ca ₃ (PO ₄) ₂						
	(2) CaC_2 and $CaCl_2$		(2) CaC ₂ तथा CaCl ₂						
	(3) Ca_3P_2 and CaC_2		(3) Ca ₃ P ₂ तथा CaC ₂						
	(4) None of these		(4) इनमें से कोई नहीं						
23.	EAN of the elements (*) are equal in:	23.	तत्वों (*) के EAN मान किस स्थिति में बराबर हैं- *						
	(1) $[Ni(CO)_4], [Fe(CN)_6]^{4-}$		(1) $[Ni(CO)_4], [Fe(CN)_6]^{4-1}$						
	(2) $[\overset{*}{N}i(en)_{2}]^{2+}$, $[\overset{*}{Fe}(H_{2}O)_{6}]^{2+}$		(2) $[\tilde{N}i(en)_2]^{2+}$, $[Fe(H_2O)_6]^{2+}$						
	(3) $[\overset{*}{\text{Co}}(\text{CN})_6]^{3-}$, $[\overset{*}{\text{Fe}}(\text{CN})_6]^{3-}$		(3) $[\overset{*}{\text{Co}}(\text{CN})_6]^{3-}$, $[\overset{*}{\text{Fe}}(\text{CN})_6]^{3-}$						
	(4) $[\overset{*}{N}i(en)_{2}]^{2+}$, $[\overset{*}{Sc}(H_{2}O)_{6}]^{3+}$		(4) $[\overset{*}{N}i(en)_{2}]^{2+}$, $[\overset{*}{Sc}(H_{2}O)_{6}]^{3+}$						
24.	Which of the following oxy acid of Phosphorus contain P-H	24.	निम्न में से कौनसे ऑक्सी अम्ल में P-H बंध है –						
	bond -								
	(1) Phosphonic acid H_3PO_3		(1) फॉस्फोनिक अम्ल H ₃ PO ₃						
	(2) Phosphinic acid H_3PO_2		(2) फॉस्फिनिक अम्ल H ₃ PO ₂						
	(3) Pyrophosphorus acid $H_4P_2O_5$		(3) पायरोफॉस्फोरस अम्ल H ₄ P ₂ O ₅						
	(4) All of these		(4) उपरोक्त सभी						
25.	Choose the incorrect statements -	25.	असत्य कथन का चुनाव कीजिए-						
	(1) complex tetracarbonyl Nickel (0) shows back bonding		(1) tetracarbonyl Nickel (0) संकुल पश्च बंधन प्रदर्शित करता है						
	(2) Overall formation constant of a complex $[Cu(NH_3)_4]^{2+}$		(2) एक संकुल $[Cu(NH_3)_4]^{2+}$ आयन के लिए पूर्ण सम्भवन स्थिरांव						
	ion is 2.1×10^{13} then dissociation constant of the complex will be 4.76×10^{-14} .		का मान 2.1 × 10^{13} है, तो संकुल के वियोजन स्थिरांक का मा 4.76×10^{-14} होगा						
	(3) IUPAC name of $Hg[Co(SCN)_4]$ is mercury tetrathiocynato		(3) Hg[Co(SCN) ₄] का IUPAC नाम mercury tetrathiocynate						
	cobaltate (III)		cobaltate (III) है						
	(4) trans $[CrCl_2(ox)_2]^{3-}$ is optically active.		(4) विपक्ष [CrCl ₂ (ox) ₂] ³⁻ प्रकाशिक सक्रिय है						
26.	Which of the following statement is incorrect about ozone	26.	कौनसा कथन ओजोन के लिए असत्य है -						
	(1) Ozone is allotropic form of oxygen		(1) ओजोन, ऑक्सीजन का अपररूप है						
	(2) Ozone is bent molecule		(2) ओजोन विकृत अणु है						
	(3) O–O bond length is identical		(3) O–O बंध लंबाई समान है						
	(4) Ozone is paramagnetic		(4) ओजोन अनुचुम्बकीय है						
27.	Which of the following does not belong to 3d series of	27.	निम्न में से कौनसा संक्रमण धातु तत्व 3d श्रेणी से संबंधित नहीं है-						
	transition elements-								
	(1) Titanium (2) Iron		(1) टाइटेनियम (2) आयरन						
20	(3) Palladium (4) Vanadium	20	(3) पैलेडियम (4) वैनेडियम रैन में उपरिश्वन सेना रै						
28.	Matte contains - (1) Cuprous sulphide and ferrous sulphide	28.	मैट में उपस्थित होता है- (1) क्यूप्रस सल्फाइड व फैरस सल्फाइड						
	(2) Cuprous sulphide and little ferrous sulphide		(1) क्यूप्रस सल्फाइड व कुछ फैरस सल्फाइड (2) क्यूप्रस सल्फाइड व कुछ फैरस सल्फाइड						
	(3) Little cuprous sulphide and high amount of ferrous sulphide		(2) अनूत्रस सल्पाइड व अधिकतर फैरस सल्पाइड						
	(4) All of these		(4) उपरोक्त सभी						

29.	Which of the following species act as bleaching agent due	29.	निम्न में से कौनसी प्रजाति अपचायक प्रकृति के कारण विरंजक अभिकर्मक
	to their reducing nature :		का कार्य करती है -
	(1) moist HCl		(1) नम HCl
	(2) moist SO ₂		(2) नम SO ₂
	(3) moist Cl ₂		(3) नम Cl ₂
	(4) O ₃		(4) O ₃
30.	Which of the following is correctly matched?	30.	कौनसा सही सुमेलित है-
	(1) $[Fe(CN)_6]^{4-}$ and $[Fe(CN)_6]^{3-}$ — both are octahedral and		(1) [Fe(CN) ₆] ^{4–} तथा [Fe(CN) ₆] ^{3–} — दोनों अष्टफलकीय,
	diamagnetic with d ² sp ³ hybridisation of Fe		प्रतिचुम्बकीय, Fe का d²sp³ संकरण
	(2) $[Ni(CO)_4]$ and $[Ni(CN)_4]^{2-}$ — both are tetrahedral and		(2) $[Ni(CO)_4]$ तथा $[Ni(CN)_4]^{2-}$ — दोनों चतुष्फलकीय, प्रतिचुम्बकीय
	diamagnetic with sp ³ hybridisation Ni		तथा Ni का sp ³ संकरण
	(3) Ni(CO) ₄ and $[Co(CO)_4]^-$ — both are tetrahedral and diamagnetic		(3) Ni(CO) ₄ तथा [Co(CO) ₄] ⁻ — दोनों चतुष्फलकीय तथा प्रतिचुम्बकीय
	(4) $[Co(H_2O)_6]^{3+}$ and $[Cr(H_2O)_6]^{3+}$ — both are		(4) [Co(H ₂ O) ₆] ³⁺ तथा [Cr(H ₂ O) ₆] ³⁺ — दोनों अनुचुम्बकीय तथा
	paramagnetic with d^2sp^3 hybridisation of metal		धातु का d ² sp ³ संकरण
31.	Negative oxidation state of sulphur is found in :	31.	निम्न में से कौनसे ऑक्सी अम्ल में सल्फर का ऑक्सीकरण अंक
			ऋणात्मक है -
	(1) H ₂ SO ₄		(1) H ₂ SO ₄
	(2) H ₂ SO ₅		(2) H ₂ SO ₅
	(3) H ₂ S ₂ O ₆		(3) H ₂ S ₂ O ₆
	(4) H ₂ S ₂ O ₃		(4) H ₂ S ₂ O ₃
32.	Fac and Mer isomerism is associated with which of the	32.	Fac व Mer समावयवता प्रदर्शित करने वाले का सामान्य सूत्र होगा?
	following general formula?		
	(1) $[M(aa)_2]$ (2) $[M(aa)_3]$		(1) $[M(aa)_2]$ (2) $[M(aa)_3]$
22	(3) [Mabcd] (4) [Ma ₃ b ₃] Which of the following statements are true (or) false:	22	(3) [Mabcd] (4) [Ma ₃ b ₃] निम्न में से कौनसे कथन सही (T) अथवा गलत (F) है-
55.	(i) $[Cr(NH_3)_6] [Cr(CN)_6]$ and $[Cr(NH_3)_4 (CN)_2] [Cr(NH_3)_2]$	55.	(i) [Cr(NH ₃) ₆] [Cr(CN) ₆] और [Cr (NH ₃) ₄ (CN) ₂] [Cr(NH ₃) ₂
	$(CN)_4$ are coordination isomers.		(CN) ₄] दोनों उपसहसंयोजक समावयवी है
	(ii) $[Cr(py)_2 (H_2O)_2 Cl_2] Cl and [Cr(py)_2 (H_2O)Cl_3] H_2O are$		(ii) [Cr(py) ₂ (H ₂ O) ₂ Cl ₂] Cl और [Cr(py) ₂ (H ₂ O)Cl ₃] H ₂ O आयनन
	ionisation and hydrate isomers		व जलयोजन समावयवी है
	(iii)[Pt (NH ₃) ₄ Br ₂] Cl ₂ and [Pt (NH ₃) ₄ Cl ₂] Br ₂ are linkage		(iii)[Pt (NH ₃) ₄ Br ₂] Cl ₂ और [Pt (NH ₃) ₄ Cl ₂] Br ₂ बंधन समावयवी है
	isomers (iv) The hybridisation state of Ni in $[Ni(CN)_4]^{-2}$ is dsp ²		(iv) [Ni(CN) ₄] ⁻² में Ni का संकरण dsp ² है
	(1) TTFT (2) FTFT		(1) TTFT (2) FTFT
	(3) TTFF (4) TFFT		(3) TTFF (4) TFFT
34.	The number of unpaired electrons in $d^{6},lowspin,octahedral$	34.	
	complex is-		की संख्या-
	(1) 4 (2) 2 (3) 1 (4) 0		(1) 4 (2) 2 (3) 1 (4) 0

35.	The crystal field stabilisation energy of $[Co(NH_3)_6]CI_3$ is	35.	[Co(NH ₃) ₆]Cl ₃ संकुल क्रिस्टल क्षेत्र स्थायीकरण ऊर्जा है-
	(1) $-7.2\Delta_0$ (2) $-0.4\Delta_0$		(1) $-7.2\Delta_0$ (2) $-0.4\Delta_0$
	(3) $-2.4\Delta_0$ (4) $-3.6\Delta_0$		$(3) - 2.4\Delta_0$ $(4) - 3.6\Delta_0$
36.	How may moles of AgCl would be obtained, when 100 ml	36.	AgCl के कितने मोल प्राप्त होगें जब 100 ml , 0.1 M Co(NH ₃) ₅ Cl ₃
	of 0.1 M Co(NH ₃) ₅ Cl ₃ is treated with excess of AgNO ₃ ?		विलयन को AgNO ₃ की अधिकता में अभिकृत करावाया जाता है-
	(1) 0.01 (2) 0.02 (2) 0.02 (4) page		(1) 0.01 (2) 0.02
27	(3) 0.03 (4) none Which of the following statements about $Fe(CO)_{5}$ is correct–	37.	(3) 0.03 (4) कोई नहीं Fe(CO) ₅ के सन्दर्भ में निम्न में से कौनसा कथन सही है-
57.	(1) It is paramagnetic and high spin complex	57.	(1) यह अनुचुम्बकीय तथा उच्च चक्रण संकुल है
	(2) It is diamagnetic and high spin complex		(2) यह प्रतिचुम्बकीय तथा उच्च चक्रण संकुल है
	(3) It is diamagnetic and low spin complex		(3) यह प्रतिचुम्बकीय तथा निम्न चक्रण संकुल है
	(4) It is paramagnetic and low spin complex		(4) यह अनुचुम्बकीय तथा निम्न चक्रण संकुल है
38.	$\rm Mn^{2+}$ forms a complex with $\rm Br^-$ ion. The magnetic moment	38.	Mn ²⁺ , Br ⁻ आयन के साथ एक संकुल बनाता है जिसका चुम्बकीय
	of the complex is 5.92 B.M. What could not be the probable		आघूर्ण 5.92 B.M. है तो उस यौगिक के लिए निम्न में से कौनसा सूत्र व
	formula and geometry of the complex?		ज्यामिती संभव नहीं है-
	(1) $[MnBr_6]^{4-}$, octahedral		(1) [MnBr ₆] ^{4_} , अष्ठफलकीय
	(2) $[MnBr_4]^{2-}$, square planar		(2) [MnBr ₄] ^{2−} , वर्ग समतलीय
	(3) $[MnBr_4]^{2-}$, tetrahedral		(3) [MnBr ₄] ^{2–} , चतुष्फलकीय
	(4) $[MnBr_5]^{3-}$, trigonal bipyramidal		(4) [MnBr ₅] ³⁻ , त्रिकोणीय द्विपिरामिडिय
39.	One mole of the complex $\text{Co}(\text{NH}_3)_5\text{Cl}_3$, gives 3 moles of	39.	संकुल Co(NH $_3$) $_5$ Cl $_3$, का एक मोल जल के साथ विघटन करने पर 3
	ions on dissolution in water. One mole of the same com-		मोल आयन देता है। इसी संकुल का एक मोल, दो मोल AgNO3 के
	plex reacts with two moles of AgNO_3 solution to yield two		साथ अभिक्रिया कर दो मोल AgCl(s) देता है। संकुल की संरचना
	moles of AgCl(s). The structure of the complex is:		होगी-
	(1) [Co(NH ₃) ₅ Cl]Cl ₂		(1) [Co(NH ₃) ₅ Cl]Cl ₂
	(2) [Co(NH ₃) ₃ Cl ₃]. 2NH ₃		(2) $[Co(NH_3)_3Cl_3]$. 2NH ₃
	(3) [Co(NH ₃) ₄ Cl ₂]Cl.NH ₃		(3) $[Co(NH_3)_4Cl_2]CI.NH_3$
	(4) [Co(NH ₃) ₄ Cl]Cl ₂ . NH ₃		(4) $[Co(NH_3)_4CI]CI_2$. NH ₃
40.	Incorrect statment is –	40.	असत्य कथन है-
	(1) Transition metal and their compounds act as catalyst		(1) संक्रमण धातु तथा उनके यौगिक परिवर्तनशील ऑक्सीकरण अवस्था
	due to variable oxidation state		के कारण उत्प्रेरक का कार्य करते है
	(2) Interstitial compounds retain their conductivity		 (2) अन्तराकाशी यौगिक अपनी चालकता बनाये रखते है (2) उपग्रे प्राप्त प्राप्त के उपग्रे के उप
	(3) Transition metals from number of alloy due to very similar atomic size		(3) समान परमाण्विक आकार के कारण संक्रमण धातु असंख्य मिश्र धातुओं का निर्माण करती है।
	(4) None of these		योतुजा को निमाण करता है। (4) इनमें से कोई नहीं
41	Lowest melting point is	41	न्यूनतम गलनांक है-
	(1) Mn (2) Fe		(1) Mn (2) Fe
	(3) V (4) Co		(3) V (4) Co
		L	

42.	The maximum temperature obtained in theregion of the	42.	लौहे के निष्कर्षण में, उच्चतम ताप, वात्या भट्टी के क्षेत्र में प्राप्त
	blast furnace used in extraction of iron:-		किया जाता है –
	(1) Reduction (2) Combustion		(1) अपचयन (2) दहन
	(3) Fusion (4) Slag formation		(3) गलन (4) धातुमल निर्माण
43.	Geometry, hybridisation and magnetic moment of the ions	43.	
	$[Ni(CN)_4]^{2-}$, $[MnBr_4]^{2-}$ and $[FeF_6]^{4-}$ respectively are-		आघूर्ण के मान क्रमश: है-
	(1) tetrahedral, square planar, octahedral : sp^3 , dsp^2 , sp^3d^2		(1) चतुष्फलकीय, वर्गसमतलीय, अष्ठफलकीय : sp ³ , dsp ² , sp ³ d ² :
	: 5.9, 0, 4.9		5.9, 0, 4.9
	(2) tetrahedral, square planar, octahedral : dsp^2 , sp^3 , sp^3d^2		(2) चतुष्फलकीय, वर्गसमतलीय, अष्ठफलकीय : dsp², sp³, sp³d² :
	: 0, 5.9, 4.9		0, 5.9, 4.9
	(3) square planar, tetrahedral, octahedral : dsp ² , sp ³ , d ² sp ³		(3) वर्गसमतलीय, चतुष्फलकीय, अष्ठफलकीय : dsp², sp³, d²sp³ :
	: 5.9, 4.9, 0		5.9, 4.9, 0
	(4) square planar, tetrahedral, octahedral : dsp^2 , sp^3 , sp^3d^2		(4) वर्गसमतलीय, चतुष्फलकीय, अष्ठफलकीय : dsp², sp³, sp³d² :
	: 0, 5.9, 4.9		0, 5.9, 4.9
44.	Consider the following statements :	44.	वार्नर सिद्धान्त के अनुसार निम्न कथनों पर विचार कीजिए-
	According the Werner's theory-		
	(a) Ligands are connected to the metal ions by covalent		(a) लिगेन्ड धातु आयन से सहसंयोजक बंध द्वारा बंधित होते हैं
	bonds		
	(b) Secondary valencies have directional properties		(b) द्वितीयक संयोजकताओं का दिशात्मक गुण होता है
	(c) Secondary valencies are non-ionisable		(c) द्वितीयक संयोजकताऐं अनायनित होती है
	Of these statements-		इन कथनों में से -
	(1) a, b, and c are correct (2) b and c are correct		(1) a, b, व c सत्य है (2) b व c सत्य है
	(3) a and c are correct (4) a and b are correct		(3) a व c सत्य है (4) a व b सत्य है
45.	In an octahedral crystal field, the t _{2a} orbitals are	45.	अष्टफलकीय क्रिस्टल क्षेत्र में t _{2a} कक्षक -
	(1) Reaised in energy by 0.4 Δ_0		(1) 0.4 ∆ ₀ ऊर्जा में बढ़ते हैं
	(2) Lowered in energy by $0.4 \Delta_0$		(2) 0.4 ∆ ₀ ऊर्जा में घटते हैं
	(3) Raised in energy b 0.6 Δ_0		(3) 0.6 ∆ ₀ ऊर्जा में बढ़ते हैं
	(4) Lowered in energy by 0.6 Δ_0		(4) 0.6 ∆ ₀ ऊर्जा में घटते हैं

- 1. (I) Froth Floatation \rightarrow difference in wetting properties
 - (II) Hydrullic washing \rightarrow difference in density
 - (III) Magnetic isolation \rightarrow difference in Megnetic properties
 - (IV) Leaching \rightarrow Used a suitable chemical
- 4. Due to synergic effect -
 - C O bond order \downarrow

Synergic effect $\infty \xrightarrow{\oplus \text{ve charge}} \\ \ominus \text{ve charge}$

Order of synergic effect $\Rightarrow V^{-} > Cr^{o} > Mn^{+}$

Order of C–O bond strength \Rightarrow V⁻ < Cr° < Mn⁺

- 9. Enthalpy of atomisation ∞ metallic bond strength
- 12. In hall Herout process Al_2O_3 , CaF_2 and Na_3AlF_6 are used as electrolytes
- 14. Cassiterite \Rightarrow SnO₂
- 17. $P_4 + 8SOCl_2 \xrightarrow{\Delta} 4PCl_3 + 4S_2Cl_2 + 4SO_2$ $PCl_3 + 3H_2O \xrightarrow{} H_3PO_3 + 3HCl$
- 26. Ozone is a diamagnetic gas.
- 29. $SO_2+2H_2O \longrightarrow H_2SO_4 + 2[H]$ moist

ANSWER-SHEET

Qus.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	2	2	1	1	1	4	4	3	2	1	3	1	2	2	2	4	3	3
Qus.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	4	3	1	4	4	4	3	2	2	3	4	4	4	4	3	2	3	2	1	4
Qus	41	42	43	44	45															
Ans.	1	2	4	2	2															