Chemical Kinetics

- 1. For a chemical reaction, $2X + Y \longrightarrow Z$, the rate of appearance of Z is 0.05 mol L^{-1} per min. Find the rate of disappearance of x in mol L^{-1} min⁻¹.
- 2. For the reaction at 273 K

 $NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$

It is observed that the pressure of NO(g) falls from 700 mm Hg to 500 mm Hg in 250 s. Calculate the average rate of reaction in 10^{-3} atm s⁻¹

- **3.** For a first order reaction, calculate the ratio between the time taken to complete 3/4th of the reaction and time taken to complete half of the reaction.
- The half-life period and initial concentration for a reaction are as follows.

Initial concentration (M)	350	540	158
t _{1/2} (hr)	425	275	941

What is order of reaction?

- 5. The rate of a reaction triples when temperature changes from 20° C to 50° C. Calculate energy of activation for the reaction in kJ mol⁻¹ (R = 8.314 JK⁻¹ mol⁻¹).
- 6. Sucrose decomposes in acid solution into glucose and fructose according to the first order rate law with $t_{1/2} = 3.00$ hours. What fraction of the sample of sucrose remains after 8 hours?
- A reaction takes place in various steps. The rate constant for first, second, third and fifth steps are k₁, k₂, k₃ and k₅ respectively. The overall rate constant is

given by
$$k = \frac{k_2}{k_3} \left(\frac{k_1}{k_5} \right)^{1/2}$$
.

If activation energy are 40, 60, 50 and 10 kJ/mol respectively, find the overall energy of activation (kJ/mol).

- 8. The half life decomposition of gaseous CH₃CHO at constant temperature but at initial pressure of 364 mm and 170 mm of Hg were 410 sec, and 880 sec respectively. Find the order of the reaction.
- 9. A gaseous reaction

$$X_2(g) \longrightarrow Y + \frac{1}{2}Z(g)$$

There is increase in pressure from 100 mm to 120 mm in 5 minutes. Calculate the rate of disappearance of X_2 in mm min⁻¹.

- 10. The reaction $X \to Y$ is an exothermic reaction. Activation energy of the reaction for X into Y is 150 kJ mol⁻¹. Enthalpy of reaction is 135 kJ mol⁻¹. Calculate the activation energy for the reverse reaction, $Y \to X$ in kJ mol⁻¹.
- 11. 2 g of a radioactive sample having half-life of 15 days was synthesised on 1st Jan. 2009. What is the amount of the sample left behind on 1st March, 2009 (including both the days) in g?
- 12. Half-lives of decomposition of NH₃ on the surface of a catalyst for different initial pressures are given as:

P(torr) 200 300 500 $t_{1/2}(min)$ 10 15 25

Find the order of the reaction

- 13. The decomposition of ammonia on tungsten surface at 500 K follows zero order kinetics. The half-life period of this reaction is 45 minutes when the initial pressure is 4 bar. Find the half-life period (in minutes) of the reaction when the initial pressure is 16 bar at the same temperature.
- 14. In a chemical reaction A is converted into B. The rates o reaction, starting with initial concentrations of A as 2×10^{-3} M and 1×10^{-3} M, are equal to 2.40×10^{-4} Ms⁻¹ and 0.60×10^{-4} Ms⁻¹ respectively. Find the order of reaction with respect to reactant A.
- 15. The instantaneous rate of disappearance of MnO $_4^-$ ion in the following reaction is $4.56 \times 10^{-3} \, \text{Ms}^{-1}$.

 $2\text{MnO}_4^- + 10\text{I}^- + 16\text{H}^+ \rightarrow 2\text{Mn}^{2+} + 5\text{I}_2 + 8\text{H}_2\text{O}$ Find the rate of appearance I_2 in Ms^{-1} .

SOLUTIONS

1. (0.1) Rate of reaction

$$= -\frac{1}{2} \frac{d[X]}{dt} = -\frac{d[Y]}{dt} = +\frac{d[Z]}{dt} \qquad(i)$$

.. Rate of appearance of

$$z = \frac{d[Z]}{dt} = 0.05 \text{ mol } L^{-1} \text{ per min.}$$

 \therefore Rate of disappearance of $x = -\frac{d[X]}{dt}$ From equation (i), we get

$$-\frac{1}{2}\frac{d[X]}{dt} = \frac{d[Z]}{dt} \quad \therefore \quad -\frac{d[X]}{dt} = 2 \times \frac{d[Z]}{dt}$$
$$= 2 \times \frac{d[Z]}{dt} = 2 \times 0.05 = 0.1 \text{ mol } L^{-1} \text{ min}^{-1}$$

2. (1.053) $NO(g) + O_3(g) \longrightarrow NO_2(g) + O_2(g)$

Average rate =
$$\frac{\text{Change of pressure}}{\text{Change of time}} = \frac{\Delta P}{\Delta t}$$

$$=\frac{700-500}{250}=\frac{200}{250}$$

$$= \frac{200}{760 \times 250} \text{ atm s}^{-1} = 1.053 \times 10^{-3} \text{ atm s}^{-1}$$

3. (2) $t_{1/2} = \frac{0.69}{k}$, $t_{3/14} = t_{75\%}$

$$t_{3/4} = \frac{2.303}{k} log \frac{a}{\left(a - \frac{3a}{4}\right)}$$

$$= \frac{2.303}{k} \log 4 = \frac{2.303}{k} \times 2 \times 0.3010 = \frac{0.69 \times 2}{k}$$

$$\frac{t_{3/4}}{t_{1/2}} = \frac{0.69 \times 2}{k} \times \frac{k}{0.69} \Rightarrow t_{3/4} = 2t_{1/2}$$

4. (2) $t_{1/2} \propto (a)^{1-n}$

For I
$$\Rightarrow$$
 425 \propto $(350)^{1-n}$ (i

For II
$$\Rightarrow 275 \propto (540)^{1-n}$$
 (ii

For III
$$\Rightarrow 941 \propto (158)^{1-n}$$
 (iii)

By Eqns. (i) and (ii),
$$\frac{425}{275} = \left(\frac{350}{540}\right)^{1-n}$$

Taking
$$\log \Rightarrow \log \frac{425}{275}$$

$$= (1 - n) \log \frac{350}{540} \Rightarrow n = 2$$

5. (28.81) $\log \frac{k_2}{k_1} = \frac{E_a}{R \times 2.303} \left[\frac{T_2 - T_1}{T_1 T_2} \right]$

Given
$$\frac{k_2}{k_1} = 3$$
; R= 8.314 JK⁻¹ mol⁻¹;
 $T_1 = 20 + 273 = 293$ K and $T_2 = 50 + 273 = 323$ K
Substituting the given values in the Arrhenius

$$\log 3 = \frac{E_a}{8.314 \times 2.303} \left\lceil \frac{323 - 293}{323 \times 293} \right\rceil$$

$$E_{a} = \frac{2.303 \times 8.314 \times 323 \times 293 \times 0.477}{30}$$

 $= 28811.85 \text{ J mol}^{-1} = 28.81 \text{ kJ mol}^{-1}$

6. (0.158) Decomposition of sucrose is first order reaction,

$$k = \frac{2.303}{t} \log \frac{[A_0]}{[A]} \qquad ...(i)$$

For time, $t_{1/2} = 3.0 \text{ hr}$

$$k = \frac{0.693}{t_{1/2}} = \frac{0.693}{3 \text{ hr}} = 2.231 \text{ hr}^{-1}$$

Substituting $k = 0.231 \text{ hr}^{-1}$ in (i) we get,

$$2.231 = \frac{2.303}{8} \log \frac{[A_0]}{[A]}$$

$$\log \frac{[A_0]}{[A]} = 0.8024$$

$$\frac{[A_0]}{[A]}$$
 = Antilog 0.8024 = 6.345

:. Fraction of sample remains

$$=\frac{[A]}{[A_0]} = \frac{1}{6 \cdot 345} = 0.158$$

7. (25) $k = A \cdot e^{-E_a/(RT)}$

: Effective overall energy of activation

$$E_a = E_a(2) - E_a(3) + \frac{1}{2}E_a(1) - \frac{1}{2}E_a(5)$$

$$=60-50+\frac{1}{2}\times40-\frac{1}{2}\times10=25 \text{ kJ/mol}$$

8. (2)
$$\frac{t_{1/2}(1)}{t_{1/2}(2)} = \left[\frac{p(2)}{p(1)}\right]^{n-1},$$

$$\frac{880}{410} = \left[\frac{364}{170}\right]^{n-1},$$

$$[2.14]^1 = [2.14]^{n-1}$$
; $n-1=1$; $n=2$

Rate of appearance of
$$Z = \frac{120 - 100}{5} = 4 \text{ mm min}^{-1}$$

Rate of disappearance of $X_2 = 2 \times \text{rate}$ of appearance of $Z = 2 \times 4 \text{ mm min}^{-1} = 8 \text{ mm min}^{-1}$

10. (285)
$$X \longrightarrow Y$$
; $\Delta H = -135 \text{ kJ/mol}$,
 $E_a = 150 \text{ kJ/mol}$
For an exothermic reaction

$$E_a(F.R.) = \Delta H + E'_a(B.R.)$$

150 = -135 + $E'_a(B.R.)$

$$E'_{a}(B.R.) = 285 \text{ kJ/mol}$$

11. (0.125) Given,
$$t_{1/2} = 15$$
 days

$$N_0 = 2 g$$

From Ist Jan. 2009 to Ist March 2009

no. of day
$$= 60$$

 \therefore no. of half lives = 4

$$\therefore \frac{N}{N_o} = \left(\frac{1}{2}\right)^4$$

or
$$\frac{N}{2} = \frac{1}{16}$$

$$N = 0.125 g$$

12. (0)
$$\frac{(t_{1/2})_1}{(t_{1/2})_2} = \left(\frac{a_2}{a_1}\right)^{n-1}; \ \frac{10}{15} = \left(\frac{300}{200}\right)^{n-1}$$

or,
$$\left(\frac{2}{3}\right)^1 = \left(\frac{3}{2}\right)^{n-1} = \left(\frac{2}{3}\right)^{1-n}$$
; $1-n=1$, $n=0$

13. (180) For a zero order reaction,

 $t_{1/2} \propto a_0$ (initial concentration or initial pressure)

$$(t_{1/2})_1 \propto P_1$$

$$(t_{1/2})_2 \propto P_2$$

$$\frac{\left(t_{1/2}\right)_2}{\left(t_{1/2}\right)_1} = \frac{P_2}{P_1}, \ \frac{\left(t_{1/2}\right)_2}{45} = \frac{16}{4}$$

$$(t_{1/2})_2 = \frac{16}{4} \times 45 = 180 \text{ min}$$

14. (2) $A \longrightarrow B$

Initial concentration Rate of reaction

$$2 \times 10^{-3} \text{ M}$$

$$2.40 \times 10^{-4} \text{ Ms}^{-1}$$

$$1 \times 10^{-3} \text{ M}$$

$$0.60 \times 10^{-4} \text{ Ms}^{-1}$$

rate of reaction

$$r = k[A]^x$$

where x =order of reaction

hence

$$2.40 \times 10^{-4} = k \left[2 \times 10^{-3}\right]^{x}$$

$$0.60 \times 10^{-4} = k \left[1 \times 10^{-3}\right]^x$$

On dividing eqn.(i) from eqn. (ii) we get

$$4 = (2)^x$$

$$\therefore x = 2$$

i.e. order of reaction = 2

15. (0.0114)
$$\frac{d\text{MnO}_4^-}{dt} = 4.56 \times 10^{-3} \,\text{Ms}^{-1} (\text{Given})$$

From the reaction given,

$$-\frac{1}{2}\frac{dMnO_4^-}{dt} = \frac{4.56 \times 10^{-3}}{2}Ms^{-1}$$

$$-\frac{1}{2}\frac{d\mathrm{MnO}_{4}^{-}}{dt} = \frac{1}{5}\frac{d\mathrm{I}_{2}}{dt}$$

$$\therefore -\frac{5}{2} \frac{d \text{MnO}_4^-}{dt} = \frac{d I_2}{dt}$$

On substituting the given value

$$\therefore \frac{dI_2}{dt} = \frac{4.56 \times 10^{-3} \times 5}{2} = 1.14 \times 10^{-2} \,\text{M/s}$$
$$= 0.0114 \,\text{Ms}^{-1}.$$