
21. M O V I N G  C H A R G E S 
A N D  M A G N E T I S M 

1. INTRODUCTION

In the previous chapters on electrostatics and current electricity, we have studied about the electric force and electric 
field. Another important property associated with moving charges is the magnetic force and the magnetic field. 
The current flowing in a conductor produces a magnetic field and any charge moving in this field will experience a 
magnetic force which will depend on the velocity (both magnitude and direction) as well as on some property of 
the field. We will study the properties and laws governing the magnetic field and magnetic force in detail in this 
chapter.

There are a wide variety of industrial and medical applications of magnetic fields and forces. Common example, is 
the use of electromagnet to lift heavy pieces of metal. Magnets are used in CD and DVD players, computer hard 
drives,loud speakers, headphones, TVs, and telephones. We are surrounded by magnets. Right from our doorbells 
to cars to security alarm systems and in our hospitals, magnets are being used everywhere.

2. LORENTZ FORCE: DEFINITION OF MAGNETIC FIELD B

If electric field and magnetic field occur simultaneously in a region then the force acting on a point charge q in 

the region will depend both on the position of the charge as well as on its velocity. The force F


 will have two 

components, viz. the electric force eF


 and magnetic force mF


. The force eF


 does not depend on the motion of 

the charge, but only on its position, while mF


 depends both on charge’s velocity and position (see Fig. 21.1). The 

magnitude of eF


is qE and direction is along E


 (q is positive).

To know the direction and magnitude of mF


we introduced a vector B


 called magnetic flux density ormagnetic 

induction, which characterizes the magnetic field at a particular 

point. Experiments show that the force mF


isproportional to the 

magnitude of charge q, to the velocity v
  of the charge and the 

magnitude of density B


, this force being always perpendicular 

to vector v
  as well as vector B


. Also, if the charge moves along 

the direction of B


 at a point then the magnetic force on it is zero.

We can summarize all these experimental results with the 
following vector equation:

		  mF qv xB=
 

That is, the force mF


 on the point charge is equal to the 
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Figure 21.1: Magnetic Force on a Moving Charge
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charge q times the cross product of its velocity v
  and the field B


 (all measured in the same reference frame). Using  

formula for the magnitude of cross product, we can write the magnitude of mF


as m vF   q B sin= θ  where θ is the 

angle between the velocity v
  and magnetic field B


.

If angle θ is 90o, then the above relation for magnetic force can be used to define the magnitude of magnetic flux 
density B as,

		  mFB
q v⊥

=

where v⊥  is the velocity component perpendicular to vector B


.

Thus, the total electromagnetic force acting on charge q is given as, e mF F F= +
  

or		  F qE q[v B]= + ×
  

This is called Lorentz force.

The unit of B is Tesla abbreviated as T. If q=1 C, v=1 ms-1, sin θ=1 for θ = 90o, and Fm = 1 N,then B=1 T = 1 
Weber-m-2. Thus 1 Tesla is defined as the unit of magnetic field strength in S.I units which when acting on 1 C of 
charge moving with a velocity of 1 ms-1 at right angles to the magnetic field exerts a force of 1 N in a direction 
perpendicular to that of field and velocity vectors. C.G.S. units of magnetic field strength or magnetic induction is 
1 gauss or 1 oersted. 1 gauss = 1 oersted= 10-4T.

Illustration 1: A 2 MeV proton is moving perpendicular to uniform magnetic field of 2.5 T. What is the magnetic 
force on the proton? (Mass of proton = 1.6 x 10-27 kg)� (JEE MAIN)

Sol: Kinetic energy of proton is 
2

pm v
K.E.

2
= . 1 MeV=1.6 x 10-13J.

K.E = 2 MeV = 2 x 1.6 x 10-13J 	 or 1
2

mv2= 3.2 x 10-13J

∴V= 
132x3.2x10

m

−

	= 
13

27

2x3.2x10
1.6x10

−

−
	 = 2 x 107 m s-1

Now, magnetic force on proton, F= ev B = 1.6 x 10-19 x 2 x 107 x 2.5 = 8.0 x 10-12 N

Illustration 2: A charged particle is projected in a magnetic field 2B (3i 4 j)x10 T−= +


 

The acceleration of the particle is found to be, 2a (xi 2 j) ms−= +


   Find the value of x. � (JEE MAIN)

Sol: Magnetic force on a moving charge is perpendicular to the magnetic field. Therefore the dot product of force 
and magnetic field vector is zero.

As we have read  mF B⊥
 

  i.e., the acceleration a B⊥
 

    or 	 a B 0⋅ =
 

or 2(xi 2 j) (3i 4 j)x10 0−+ ⋅ + =  ; (3x+8)x102=0 	 ∴ 28x ms
3

−= −

3. RELATION BETWEEN ELECTRIC AND MAGNETIC FIELD

Suppose in a particular inertial reference frame K, the electric field is zero and the magnetic field has a non-zero 
finite value. A point charge is moving with some velocity v

  in the frame K and thus experiences a magnetic force, 
and its velocity changes. Now suppose we have a frame K’ translating with respect to frame K withconstantvelocity 
v
 . In the frame K’,the point charge is initially at rest, and so the magnetic force on it will be zero. Butas its velocity 
changes in the K frame, its velocity changes in the K’ frame as well, i.e. it experiences a force in K’ frame as well. 
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This initial force on it is the force eF


due to electric field in the K’ frame.Thus the magnetic field in K frame appears 
as a combination of electric field and magnetic field in K’ frame. The electric and magnetic fields are thus inter-
dependent. We introduce a single physical entity called electromagnetic field. Whether the electromagnetic field 
will appear as electric field or magnetic field depends on the frame of reference. If we confine to a particular 
reference frame, we can treat electric fieldand magnetic field as separate entities. A field which is constant in one 
reference frame in the general case is found to vary in another reference frame.

4. MAGNETIC FIELD LINES

Magnetic field lines are used to represent the magnetic field in a region. The rules to construct the magnetic field 
lines are:-

(a)	 The direction of tangent to a magnetic field line at a point gives the direction of magnetic flux density vector 
B


 at that point.

(b)	 The density of the magnetic field lines at a point isproportional to the magnitude of vector B


at that point. At 
points where the field lines are closer together, the magnetic field is stronger.

•• In case of a bar magnet, the density of magnetic field lines is high at points near the poles, and the 
density at pointsnear the center of the magnet is low.

•• If we place a magnetic compass at any point in the earth’s magnetic field, it will align itself in the 
direction of the magnetic field lines.

Vaibhav Krishnan (JEE 2009 AIR 22)

•• Common misconception about magnetic field lines is that it is the path followed by a magnetic 
north pole in a magnetic field.

•• This is not correct. It is the instantaneous direction of the magnetic force acting on the magnetic 
north pole in the magnetic field.

Vaibhav Gupta (JEE 2009 AIR 54)

5. EARTH’S MAGNETIC FIELD

Magnetic field is present everywhere near the earth’s surface. The line of earth’s magnetic field lies in a vertical plane 
coinciding with the magnetic north-south direction at that place i.e. the plane passing through the geomagnetic 
poles. This plane is called the Magnetic Meridian. This plane is slightly inclined to the plane passing through the 
geographic poles called the geographic meridian.The angle between the magnetic meridian and the geographic 
meridian at a point is called the declination at that point. The earth’s magnetic poles are opposite to the geographic 
poles i.e. at earth’s North Pole, its magnetic south pole is situated and vice versa.

In the magnetic meridian plane, the magnetic field vector of the earth at any point, is generally inclined to the 
horizontalat that pointby an angle called the magneticdip at that point. If magnetic field of the earth at that point 
is B and the dip is θ, 
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Bv = the vertical component of B in the magnetic meridian plane = B sinθ

BH = the horizontal component of B in the magnetic meridian plane = B cosθ.

		  V

H

B
tan

B
= θ

6. MOTION OF CHARGED PARTICLE IN ELECTRIC AND MAGNETIC FIELD

6.1 Trajectory of a Charged Particle Moving in Uniform Electric Field
Let a positively charged particle having charge +q and mass m 
enter at origin O with velocity v along X-direction in the region 
where electric field Eis along the Y-direction (see Fig. 21.2).

Force acting on the charge +q due to electric field E is given by

	 F qE=
 

Acceleration of the charged particle is F qEa or a
m m

= =
 

 

�
...(i)

The charged particle will accelerate in the direction of E


 and get 
deflected from its straight line path.

During its motion in the region of electric field, along x-axis we 
have ux=v and ax= 0 and x = vt

or	 xt
v

= 	 …(ii)

Along y axis we have, uy = 0, y
qEa
m

=
         

(∴ Initially the particle was moving along x-direction)

		  2
y

1y a t
2

=

∴		  21 qEy t
2 m
 

=  
 

Using Eq, (ii), we get 
2

1 qE xy
2 m v
  

=   
  

 or	
2

2
2

qExy Kx
2mv

= = 	 …(iii)

where	
2

qEK
2mv

= is a constant.Thus the charged particle moves along a parabolic trajectory.

6.2 Trajectory of a Charged Particle Movingin Uniform Magnetic Field
(a)	 Magnetic force acting on a charged particle moving with velocity v

 parallel 
(θ=0) or antiparallel (θ=180o) to B


, will be zero. Thus the trajectory of the 

particle is a straight line.

(b)	 If velocity v
 of the particle is perpendicular to B


i.e. θ =90o, then magnetic 

force is F= qvB and the direction of this force is always perpendicular to v. The 
charged particle moves in a circular trajectory (see Fig. 21.3).

(c)	 If velocity v
  of the charged particle makes an angle θ with B


, the particle 

moves in a helical path. The component v sin θ  which is perpendicular to B


drives the charged particle along a circular path whereas the component v 
cos θ  , which is parallel or antiparallel to B


, remains unchanged as there is 

no magnetic force along the direction of B


. Thus the charged particle moves 
along a helical path (see Fig. 21.4).
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Figure 21.2: Charged particle moving  
in electric field
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Figure 21.3: Charged particle 
moving in uniform magnetic 
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(d)	 The magnetic force on the component of velocity perpendicular to the magnetic field provides the centripetal 
force to the charged particle to follow a circular trajectory of radius r.

	 qv⊥ 
2mv

qv B
r
⊥

⊥ =

	 or  
mv

r
qB

⊥=

Angular velocity, 
v qB
r m
⊥ω = =

Frequency qBf
2 m

=
π

Time period T= 2 m
qB
π

Time period T is independent of v.

7.DISCOVERY OF ELECTRON

The Fig. 21.5 shows the simplified version of Thomson’s’ experiment. An electric field E


is established in the region 
between the deflecting plates by connecting a battery across their terminals. The magnetic field B


in the region 

between the deflecting plates is directed into the plane of the figure.

To vacuum pump

x x x x x

x x x x x
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Figure 21.5: Thomson’s experimental set up

Charged particles (electrons) are emitted by a hot filament at the rear of the evacuated cathoderay tube and are 
accelerated by an applied potential difference V. After they pass through a slit in screen C, they form a narrow 
beam. They then pass through the region between the deflecting plates, headed towards the center of fluorescent 

screen S, where they produce a spot of light. The crossed-fields E


and B


 in the region between the deflecting 

plates can deflect them from the center of the screen. By controlling the magnitude and directions of the fields, E


and B


 the deflection of the charged particles can be controlled.

When both the fields E


and B


 are turned-off the beam of charged particles reaches the screen un-deflected.

When fieldE


 is turned-on the beam of charged particles is deflected.

Keeping the fieldE


 unchanged, fieldB


 is also turned-on.The magnitude of B


 is adjusted such that the deflection 

v sin �

�

v

B

Figure 21.4: Charged particle moving in  
helical path in uniform magnetic field
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of the charged particles becomes zero. In this situation the electric force on the charged particles is balanced by 
the magnetic force.

		  q E q v B= − ×
 

or		  E v B= − ×
 

The ratio of magnitudes of E


and B


 in this situation gives the speed of the charged particles.

		  Ev
B

=

When only field E


 is turned-on, the displacementof the charged particlesin the y-direction, when they reach the 
end of the plates, as derived in article 6.1 is

		
2

2

q EL
y

2mv
=

where v is the particle’s speed along x-direction, mits mass, qits charge, and L is the length of the plates. The 
direction of deflection of charged particles show that the particles are negatively charged.

Substituting the value of v in terms of E and B we get,

		
2 2q B L

y
2mE

=

or		
2 2B Lm

2yEq
=

Thus in this way the mass to charge ratio of electrons was discovered.

Charged particle motion as a points on wheel

•• 1. Suppose electric and magnetic field are perpendicular to each other and a charged particle is 
projected perpendicular to magnetic field, its motion can be assumed as that of the motion of a 
particle on a wheel

•• 2. The point could be inside, on or outside the wheel depending on the problem

•• 3. Suppose in this field it is projected in any other way (expect along the magnetic field) its horizontal 
motion is still like that of a point on a wheel, while vertical motion will be uniform velocity motion

•• 4. To such problem, just resolve the particle velocity in to along the magnetic field and perpendicular 
to it

•• 5. If electric field is not perpendicular, resolve it also into along and perpendicular to magnetic field 
and solve accordingly.

Nitin Chandrol (JEE 2012 AIR 134)

8. HALL EFFECT
The Hall Effect is the production of a voltage difference (the Hall voltage) across acurrent carrying conductor, lying 
in a magnetic field perpendicular to the current. The hall voltage is produced in the direction transverse to the 
electric current in the conductor. It was discovered by Edwin Hall in 1879.Hall Effect allows us to find out whether the 



Physics  |   21.7

charge carries in a conductor are positively or negatively charged 
and the number of charge carries per unit volume of the conductor.

External magnetic field B


, points into the plane of a copper strip 
of width d, carrying a current I as shown in Fig. 21.6.The magnetic 

force mF


 will act on each drifting electron, towards the right edge 
of the strip. As the electrons accumulate on the right edge, positive 

charges are induced on the left edge and an electric field E


 is 

produced within the strip, directed from left to right.This field 

exerts an electric force eF


 on each electron, towards the left edge 

of the strip.The hall potential difference V across the width of the 

strip,due to the electric field E


 isV=Ed.

When the electric and magnetic forces balance each other, eE=evdB 
or E = vd B

Thedrift speed vd is given as d
J Iv

ne neA
= =

So we obtain	 BI
n

V e
=


 where  (= Cross section Area

Width
− ) is the thickness of the strip.

Illustration 3:Copper has 8.0 x 1028 conduction electrons per metre3. A copper wire of length 1 m and cross-
sectional area 8.0 x 10-6 m2 carrying a current and lying at right angle to magnetic field of strength 5 x 10-3 T 
experiences a force of 8.0 x 10-2N. Calculate the drift velocity of free electrons in the wire.� (JEE ADVANCED)

Sol: If v is the drift speed of electrons then the magnetic force on the wire is

	 oF qvBsin qvBsin90 qvB= θ = =

where q is the total charge of electrons in the wire.

	 n=8.0 x 1028 m-3

l= 1 m; A=8.0 x 10-6m2

Charge on each electron, e=1.6 x 10-19 C

Number of electrons in the copper wire = n x volume of wire = n(A l)

Total charge in the wire, q=n((A l)e or q=8.0 x 1028 x 8.0 x 10-6 x 1 x 1.6 x 10-19=1.024 x 105C

Using 	 F=qvB sin θ, we have,
2

5 3 o

F 8.0x10
qBsin 1.024x10 x5x10 xsin90

−

−
ν = =

θ
= 1.563 x 10-4m s-1

9. MAGNETIC FORCE ON A CURRENT CARRYING WIRE

Suppose in a conductor number of free electrons per unit volume is n, then in an infinitesimal volume dV in the 
conductor, the total charge of free electrons will be

		  dq = ne dV

If the magnetic field at the location of the elementary volume is B


, and the drift velocity of free electrons is dv
  then 

the magnetic force on the elementary volume will be

		  ddF ne[v B]dV= ×
 

Now we know that the current density is given as

i i

d

B
�

vd

�
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�

B
�

E
�

+

+

+

+

+

-

-
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�

FB

�
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�

Figure 21.6: Hall Effect in conductor
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		  dj nev=
 

So		  dF [ j B]dV= ×
 

Introducing the vector d

  in the direction of current we can write, j dV j Sd I d= ∆ =

  
  . Here ΔS is the area of 

cross-section and d the length of the elementary volume dV.

So		  dF I [d B]= ×
 



The total magnetic force on the conductor is F I [d B]= ×∫
 



For a thin straight wire of length L, if the field B


 is constant throughout the length of the wire and perpendicular 
to it, we can write

		  F I L B=

In vector form we can write, F I L B= ×
  

, where L


 is a length vector that has magnitude L and is directed along the 
wire segment in the direction of the (conventional) current.

Few important points regarding the force on current carrying conductor 
in magnetic field are given below:

(a)	 In a uniform magnetic field the force, dF= IBd sin θ , does not 
depend on the position vector r

  of the current element.Thus 
this force is non-central. (Acentral force is a function of position 
vector r

 , F f(r )=
 

)

(b)	 Theforce dF


 is always perpendicular to the plane containing B


 

and d

 .Vectors B


 and d


  may or may not be perpendicular to 

each other.

(c)	 As explained above, the total magnetic force on the conductor is

	 F I [d B]= ×∫
 



	 For uniform magnetic field, B


 can be taken out from the integral.

	 F I d B = × ∫
 



According to the law of vector addition d∫

  is equal to the length 

vector L


from initial to final point of the conductor as shown in 
Fig. 21.7. For a conductor of any arbitrary shape the magnitude 

of vector L


 is different from the actual length L’ of the conductor.

	 ∴	 F IL xB=
  

(d)	 For a current carrying closed loop of any arbitrary shape placed 
in a uniform magnetic field (see Fig. 21.8),

	 F I d B 0 = × = ∫
 

�

Here as we add all the elementary vectors d

  around the closed 

loop, the vector sum is zero because the final point is same as 
the initial point.

	 ∴	 d 0=∫

�

Thus the net magnetic force on a current loop in a uniform 
magnetic field is always zero.

However, different parts of the loop do experience different net forces, although the vector some of all these 

L’

L
-

I

Figure 21.7: Current carrying conductor in 
uniform magnetic fieldr

I

I

F = 0
net

-

Figure 21.8: Current carrying loop in 
uniform magnetic field

I B

�

F = 0net

�net = 0

Uniform

field

-

-

-

Figure 21.9: Area vector of closed loop  
is in direction of uniform magnetic field
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forces comes out to be zero.

So the loop may experience some infinitesimal contraction or 
expansion, thus may be under tension.

Although the resultant of magnetic forces acting on the loop is 
zero, the resultant torque due the magnetic forces may not be zero.

Thus the torque on a loop in a uniform magnetic field is not always 
zero.

(e)	 When a current carrying closed loop is placed in a non-uniform 
magnetic field, in the general case it will experience non-zero net 
force as well as net torque.

Even a conductor of arbitrary shape not forming a loop, will 
experience a torque in a non-uniform field.

If the conductor is free to move, it will execute combined 
translational and rotational motion.

(f)	 When a current carrying conductor or closed loop translates or rotates in a magnetic field, the kinetic energy 
gained by it is, not due to the work done by magnetic forcesbut, at the expense of the energy supplied by the 
electric source which is maintaining current in the conductor/loop.

F 0
net

�-

�
net

= 0
-

F
net

-

I
1

I
2

I
1

I
2

F 0
net

�-

�
net

� 0
-

Figure 21.11: Closed loop in non-uniform magnetic field

The net work done by magnetic forces acting on a current carrying conductor is zero.

Though it may appear that,

W F.dr [ I (d B)].dr K= = × = ∆∫ ∫ ∫
  



but actually the kinetic energy is supplied by the electric source.

Illustration 4: A wire 12 cm long and carrying a current of 2 A is placed perpendicular to a uniform magnetic field. 
If a force of 0.8 N acts on it, calculate the value of the magnetic induction.� (JEE MAIN)

Sol: This problem can be solved using formula F BI sin= θ  for force on current carrying wire in uniform magnetic 
field.

 = 12 cm = 12 x 10-2 m ; I = 2 A ; F = 0.8 N; θ =90o

Using, F= BIlsin θ , we get
12 o

F 0.8B 3.3T
I sin 2x12x10 xsin90−

= = =
θ

I

F = 0
net

-

�
net

� 0
-

Figure 21.10: Area vector of closed loop 
is perpendicular to uniform magnetic field 

magnetic field
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9.1 Fleming’s Left Hand Rule
If the thumb and the first two fingers of the left hand are stretched mutually perpendicular to each other and if the 
first finger points in the direction of the magnetic field and the second middle finger points in the direction of the 
current in the conductor, then the direction of thumb gives the direction of force on the conductor.

Field

Current

Figure 21.12: Fleming’s Left hand Rule

10. TORQUE ON A CURRENT LOOP

Let us consider a square loop PQRS having side  and area A=l2 

(See Figure). Let us introduce a unit vector n̂  normal to the plane 
of the loop whose direction is related to the direction of current 
in the loop by the right-hand screw rule. Area of the loop can be 
written in vector form as 2 ˆA n=


 .

If current I in the loop is anti-clockwise then the vector n̂  will be 
directed along the perpendicular to the plane of the paper towards 
the reader as shown in the Fig. 21.13. Suppose the loop is placed 
in a uniform magnetic field B


 directed along the perpendicular 

to the plane of the paper towards the reader, i.e. along the vector 
n̂ .In this situation, the magnitude of magnetic force on each of 

the branches of the loop will be IB, i.e. 1 2 3 4F F F F I B= = = =
   

 . 

The direction of force on each branch can be found by Fleming’s 

left hand rule. We can easily see that 1 3F F= −
 

 and 1F


 and 3F


have 

same line of action. Similarly 2 4F F= −
 

and 2F


 and 4F


 have same 
line of action.So, the net force as well as the net torque on the loop PQRS is zero.

Now suppose the loop is rotated through an angle θ  about the 

lineMN as shown in Fig. 21.14).So the anglebetween vector n̂ and 

B


will beθ. In this situation each of the sides Q’R’ and S’P’ makes an 

angle 90o-θ with the magnetic field B


so that 2 4F F I Bcos= = θ
 



and again we have 2 4F F= −
 

and 2F


 and 4F


 have same line of 

action. The side PQ shifts to P’Q’ and RS shifts to R’S’ such that 

PQ || P'Q' and RS || R'S' so that 1 3F F I B= =
 

  and again we have 

1 3F F= −
 

, but the lines of action of 1F


 and 3F


 are displaced from 

each other by a distance of lsinθ. This forms a force couple, and 
the torque due to it will have magnitude 

	 τ = (I  B)  sin θ = I 2 Bsin θ = I A B sin θ

This torque is directed along the line MN.
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Figure 21.13: Zero torque on closed  
loop in uniform magnetic field

P’

��

P

Q’

Q

NM
F

2

-
F

4

-

F
1

-

F
3

-

I

I

R

S’

B
-

B
-

B
-

B
-

S

Figure 21.14: 14 Non-zero torque on closed  
loop in uniform magnetic field
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In vector form we can write I A Bτ = ×
 

Defining magnetic dipole moment of the loop as ˆM I A I An= =
 

, we can write torque as M Bτ = ×
 

If the number of turns in the loop is N then we have, ˆM NI A NI An= =
 

Note that although this formula has been derived for a square loop, it comes out to be true for any shape of the 
loop.

Illustration 5: A vertical circular coil of radius 0.1 m has moment of inertia as 1 x 10-1kg m2.It is free to rotate along 
y-axis coinciding with its diameter. Initially axis of the coil and direction of magnetic field of 1 T are along x-axis. 
The coil takes a quarter rotation. Find � (JEE ADVANCED)

(i) Magnetic field strength at the center of the coil. Current of 3.19 A flows through this coil having 200 turns.

(ii) Magnetic moments of the coil.

(iii) Torque at the initial and final positions of the coil.

(iv) Angular speed at the final position.					   

Sol: The torque on coil is M Bτ = − ×
   where M


the magnetic moment of coil is. As torque d dI I I

dt d
ω ω

τ = α = = ω
θ

, 
integrating equation of torque we get the angular velocity.

(i) Using 0NI
B

2R
µ

= , we have
7

6(4 x10 )(200)(3.19)B 4x10 T
2x0.1

−
−π

= =

(ii) Magnetic moment, m = NIA=NI (πR2)= 200 x 3.19 x πx(0.1)2 = 20Am2

(iii) Torqueτ=N1ABsin θ =m sin θ ; initially θ =0 so sin θ =0 and τ=0

Finally,	 θ =90o so sin θ =sin90o=1 i.e., τ=mB; i.e.τ=20x4x10-6x1=8x10-5Nm

(iv) dI and mBsin
dt
ω

Γ = Γ = θ ; d d d d dI mBsin , But x
dt dt d dt d
ω ω ω θ ω
= θ = = ω

θ θ
Then, Iωdω=(mB sin θ )d θ

Integrating, we get 
/2 2

0 0

90II d mB sin d i.e, mBcos | mB
2 0

ω π ω
ω ω = θ θ = − θ =∫ ∫

i.e.			 
1/21/2 52mB 2x8x10

I 0.1

−  
ω = =   

    
=4 x 10-2 rad s-1

Note:

(a)	 Never use Fleming left-hand rule or right hand rule while solving questions. It becomes cumbersome to 
remember them precisely. Instead always find the direction of force by identifying the directions of motion 
and the field and then take the cross-product.

(b)	 Also, torque can be directly calculated by formula M B×
 

, where M is the magnetic dipolemoment as discussed 
below.

11. MAGNETIC DIPOLE MOMENT

Every current carrying loop behave like a magnetic dipole. It has two poles, north 
(N) and south (S) similar to a bar magnet. (see Fig. 21.15) Magnetic field lines are 
closed pathsdirected from the North Pole to the South Pole in the region outside 
the magnetic dipole and from South Pole to North Pole inside the magnetic dipole. 

S N

Figure 21.15: North and South  
Pole of current coil
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Each loop has magnetic dipole moment defined as M NI A=
 

, where N is the number of turns in the loop, I is the 
current in the loop andA is the area of cross-section of the loop.

For the direction of M


 any one of following methods can be used:

(a)	 The direction of M


 is from South Pole to North Poles we traverse inside the magnetic 
dipole. For a current loopthe North and the South Pole can be identified by the sense 
of current. The side fromwhere the current seems to flow clockwise is the South Pole 
and the opposite side from where it seems to flow anticlockwise is theNorth Pole.

(b)	 Vector M


 is along the normal to the plane of the loop. The direction of M


is related 
to the direction of current in the loop by the right hand screw rule. Curl the fingers of 
the right hand around the perimeter of the loop in the direction of current as shown 
in Fig.21.16. Then thumb extendedperpendicular to the plane of the loop, points in 

the direction of M


.

The potential energy U of a magnetic dipole placed in a uniform magnetic field is

	 U MBcos= − θ

or	 U M.B= −
 

For a bar magnet we define the magnetic dipole moment as

	 M m=
 



Here m is the pole strength of the bar magnet and vector 

  is directed from South Pole 

to North Pole.

The unit of magnetic dipole moment is A-m2.

The magnetic field at a large distance x on the magnetic axis of a bar magnet having 
magnetic dipole moment M


 is

	 0
3

2M
B

4 x

 µ
=   π  




The magnetic field at a large distance x on the perpendicular bisector of a bar magnet having magnetic dipole 
moment M


 is 

	
0

3

M
B

4 x

 µ
= −   π  




Illustration 6: A square loop OABCO of side  carries a current I. It is placed as shown in Fig. 21.18. Find magnetic 
moment of the loop.� (JEE MAIN)

Sol: The magnetic moment of the loop is M I A=  for single turn. The direction 

ofM


is related to the direction of current in the loop by the right hand screw rule.

As discussed earlier, magnetic moments of the loop can be written as, 

( )M I BCxCO=
  

Here, BC k=


 		  o o 3ˆCO cos60 i sin60 j i j
2 2

= − − = − −
   

∴ 3M I ( k)x i j
2 2

  
 = − − −     

     or 
2IM ( j 3 i)

2
= −

   

M

Figure 21.17: Direction of 
magnetic moment

B
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z

i

O

60
o

C
x

y

Figure 21.18

M
�

i

Figure 21.16: Right 
hand screw rule
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Illustration 7:Find the magnitude of magnetic moment of the current carrying 
loop ABCDEFA. Each side of the loop is 10 cm long and current in the loop is 
i=20 A.� (JEE ADVANCED)

Sol: The magnetic moment of the loop is M I A=  for single turn. If a loop is 
divided into different parts, the magnetic moment of entire loop is vector sum 
of the magnetic moments of its individual parts.

By assuming two equal and opposite currents in BE, two current carrying loops 
(ABEFA and BCDEB) are formed. Their magnetic moments are equal in magnitude 
but perpendicular to each other. Hence,

		  2 2
netM M M 2M= + =  

Where M=iA-(2.0)(0.1)(0.1)=0.02 A-m2		  2
netM ( 2)(0.02) A m= −  

=0.028 A-m2
A

B

C D

A

E

F

Figure 21.20

12. BIOT-SAVART LAW
Biot-Savart law is gives the strength of the magnetic field at any point due to a 

current element. If infinitesimalcurrent element of length d

  carries a current I, 

the magnetic field or magnetic induction dB


 at any point P is given by Biot-Savart 
law as

	 0
3

Id r
dB

4 r

 µ ×
= ⋅  π 


 

Here r
  is the position vector from the center of the element of length d


  to 

the point of observation P. The direction of d

  is along the direction of current I 

through it. If θ is the angle which r
  makes with the length d


 of the conductor, 

the magnitude of magnetic induction is given by

	 o
3

Id (r sin )
dB

4 r

µ θ
=

π

 

	 0
2

Id (sin )
dB

4 r

µ θ
=

π

 

Here m0 is the permeability of free space and 70 0
4

1 −=
µ

π
Tesla-meter/ampere.

The direction of dB


is perpendicular to the plane containing current element d

 and radius vector r

  which joins 

d

 to P.

The total magnetic induction due to the conductor is given by, B dB= ∫
 

.

�
P

O

dl
�

r
�

i

Figure 21.21 : Magnetic field 
due to current element dℓ
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Figure 21.19
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The magnetic intensity H at any point in the magnetic field is related to the magnetic induction 

as BH or B H= = µ
µ

 where µ  is permeability of the medium. The unit of magnetic intensity H 

is A-m-1

Maxwell’s Cork Screw Rule: If a right handed cork screw is rotated so that its tip moves in the 
direction of flow of current through the conductor, then the direction of rotation of the head of 
the screw gives the direction of magnetic field lines around the conductor.

Right Hand Rule: If we hold the conductor in the right hand such that the thumb is stretched 
in the direction of current, the direction in which the fingers curl gives the direction on the 
magnetic field.

12.1 Application of Biot-Savart Law
Biot-Savart law is used to find the magnetic field due to current carrying conductors.

12.1.1 Magnetic Induction Due to Infinitely Long Straight Current Carrying Conductor

Suppose the current I flows through a long straightcurrent carrying conductor. We intend to find the magnetic field 

at point P at perpendicular distance r from the conductor. As shown in Fig. 21.23. the magnitude of field dB


 at P 
due toan infinitesimal element of length d, is given by Biot-Savart law as:	

0
2

Id sin(90 )
dB dB

4 x

µ + α
= =

π

 

where x is the distance between the current element and point P. The field dB


 is directed into the plane of the 
figure and perpendicular to it.

I

�

d�

dB

Ar

x

d�
�

xd�

Figure 21.23: Magnetic field due to infinitely long straight wire

Now from Fig. 21.23. it is clear that, d cos α = x dα and rx
cos

=
α

, so we can 
write,

		  0I cos d
dB

4 r
µ α α

=
π

� ……(i)

The conductor is infinitely long,so as the angle α varies from 
2
π

− to 
2
π ,  

the infinitesimal element covers the infinite length of the conductor, and for 

allinfinitesimal elements making-up the conductor the field dB


 is directed into 

the plane of the figure. Thus we can add the magnitudes of dB


 due to all the 
infinitesimal elements to get the magnitude of total field as, Figure 21.24: Magnetic field 

due to finite straight wire

P

I

r

�
1

�
2

O

Figure 21.22: 
Right hand  
thumb rule
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/2

o o

/2

I I
B cos d

4 r 2 r

π

−π

µ µ
= α α =

π π∫

12.1.2 A Straight Conductor of Finite Length

If a conductor of finite length subtends an angle α1on one side and α2on the other side ofperpendicular from point 
P as shown in Fig. 21.24 then we can write,

1
1o o o

1 22
2

I I I
B cos d sin [sin sin ]

4 r 4 r 4 r

α
α

−α
−α

µ µ µ
= α α = α = α + α

π π π∫ � ….(ii)

12.1.3 At the End of a Straight Conductor of Infinite Length

In this case, the angle α varies from 0 to 
2
π , and we can write

	 /2
o o

0

I I
B cos d

4 r 4 r

πµ µ
= α α=

π π∫

12.1.4 At The End of a Straight Conductor of Finite Length

In this case, (see Fig. 21.25) the angle α varies from 0 to α, and we can write

	 0 o

0

I I sin
B cos d

4 r 4 r

αµ µ α
= α α =

π π∫

12.1.5 At a Point Along the Length of the Straight Conductor Near Its End

In this case (see Fig. 21.26) 1 2
π

α = and 2 2
π

α = − , and thus equation (ii)gives B=0. Actually 

in this case the value of α does not vary at all i.e. it is constant (at all points of the wire we 

have 
2
π

α = ), thus dα = 0 and thus equation (i) gives dB = 0.

Illustration 8: Calculate the magnetic field at the center of a coil in the form of a square 
of side 4 cm carrying a current of 5A.� (JEE MAIN)

Sol: Square loop can be considered as four wires each of length . Magnetic field due to 

any one wire, at a the center is calculated as 0
1 1 2

1B sin sin
4 x
µ

 = θ + θ π

A square coil carrying current is equivalent to four conductors of finite length.

Step 1

Magnetic field at O due to conductor BC is

0
1 1 2

1B sin sin
4 x
µ

 = θ + θ π

Here	 0
1 2 45θ = θ = ; I=5A,x=2 cm=2x10-2m

∴	
7

o o
1 2

10 x5B sin45 sin45
2x10

−

−
 = +  	= 

7
5

2

10 x5x 2 3.54x10 T
2x10

−
−

−
=

I

�
r P

I

r

P

Figure 21.25: Magnetic 
field at end of straight 

wire of finite length

Figure 21.26: Magnetic 
field along length of 

straight wire

A B

CD

O
45

o

45
o a

Figure 21.27
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By symmetry, magnetic field intensity at O due to each arm will be same.Moreover, the direction of magnetic field 
at O due to each arm of the square is same

Step 2

∴ Net magnetic field at O due to current carrying square,

	 B=4B1	 =4 x 3.54 x 10-5Tor	 B=1.42 x 10-4T

12.1.6 Magnetic Field on the Axis of a Current Carrying Circular Arc

If a current I is flowing in a circular arc of radius R lying in the y-z plane with center at origin O and subtending an 
angle ϕ at O, then the magneticfield dB


at a point Pon x-axiswith coordinates (x, 0, 0) due to a small elementary arc 

of length d Rd= θ

  at a distance r from P is given by Biot-Savart Law as: 

	 0
3

I d r
dB

4 r

µ ×
=

π

   � … (i)

where r
 is a vector from midpoint of d


  to P.

As shown in Fig. 21.28 the coordinates of d

  are (0, R cosθ, R sinθ), where θ is the angle between the radius of the 

arc through d

  and the y-axis.

Y

Rd�

I R �

�

O

(0, Rcos , Rsin )� �
r

Z

B
Z

B
Y

P B
X

(x, 0, 0)

X

Figure 21.28: Magnetic field at a point on the axis of current carrying arc

So we can write ˆ ˆ ˆr x i R cos j R sin k= − θ − θ
 � … (ii)

Magnitude 2 2r x R= + � … (iii)

Let us express d

  in Cartesian coordinates system as shown in Fig. 21.29.

ˆ ˆd Rsin d j Rcos d k= − θ θ + θ θ

 � … (iv)

Put (ii), (iii) and (iv) in (i) to get

	 0

2 2 3

ˆ ˆ ˆ ˆ ˆI ( R sin d j R cos d k) (x i R cos j R sin k)
dB

4 ( x R )

µ − θ θ + θ θ × − θ − θ
=

π +



⇒	 20
2 2 3/2

I ˆ ˆ ˆdB (R d i x Rcos d j xR sin d k)
4 (x R )

µ
= θ + θ θ + θ θ

π +


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Resultant magnetic field at P is

	
φ φ φµ

= θ + θ θ + θ θ
π + ∫ ∫ ∫


20

2 2 3/2
0 0 0

I ˆ ˆ ˆB (R d i xR cos d j xR sin d k)
4 (x R )

⇒	 µ
= φ + φ + − φ

π +


20

2 2 3/2

I ˆ ˆ ˆB [R i xRsin j xR(1 cos )k]
4 (x R )

Thus B


 can be resolved into components parallel to the x, y and the z axes.

	 µ φ
=

π +

2
0

x 2 2 3/2

I R
B

4 (x R )

	
µ φ

=
π +

0
y 2 2 3/2

I R xsin
B

4 (x R )

	 µ − φ
=

π +
0

z 2 2 3/2

I R x(1 cos )
B

4 (x R )

The field at center of the arc: At center x = 0, so

	

µ φ
=

π
0

x

I
B

4 R

	 yB 0=

	 zB 0=

Thus at the center the field is normal to the plane of the arc.

For a semicircular loop, the angle subtended at the center is φ = π, so 0I
B

4r
µ

=

12.1.7 Magnetic Field on the Axis of a Current Carrying Circular Loop

The field B


on the axis of a current carrying circular loop (see Fig. 21.30) can be obtained from the expression of B


 
for a current carrying circular arc derived in the previous article by substituting the value of angle ϕ subtended at 
the center as 2π.

∴	 20
2 2 3/2

I ˆ ˆ ˆB [R (2 ) i xRsin2 j xR(1 cos2 )k]
4 (x R )

µ
= π + π + − π

π +



∴	
2

0
2 2 3/2

IR ˆB i
2(x R )

µ
=

+



Thus field B


 is directed along the axis of the circular loop.

For a coil havingN circular turns,	
2

0
2 2 3/2

NIR
B

2(R x )

µ
=

+

The field at center of the coil:

At center x = 0, so
2

0
0 3

NIR
B

2R

µ
=

∴	 0
0

NI
B

2R
µ

=

Y

I

R

d�

�

�
�

O

d�
d� =Rd�
-

-

Figure 21.29: Vector is in  
the YZ plane

X

Y

Z

(x, 0, 0) BX

P

Figure 21.30: Magnetic field at a point  
on the axis of circular loop
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The direction of B at the center of circular current carrying arc or closed circular loop can be found as follows:

If we curl the fingers of the right hand in the direction of the current in the arc/loop, then the stretched thumb 
points in the direction of the field at the center.

If the point P is at a very large distance from the coil,then x2>>R2,	
2

0
3

NIR
B

2x

µ
=

If A is area of one turn of the coil, A=πR2	 0
3

NI A
B

2 x

µ
=

π

Illustration 9: A straight wire carrying a current of 12 A is bent into a semi-circular are of radius 2.0 cm as shown in 
Fig. 21.31.(i) What is the direction and magnitude of magnetic field (B) at the center of the arc?� (JEE ADVANCED)

(ii) Would the answer change if wire is bent in the opposite way?

Sol: For given arrangement of wire, the magnetic field at the 
center due to the straight sections will be zero. The magnetic 
field at center will be due to the semicircular wire. Direction 
of field depends on direction of current and determined by 
right hand thumb rule.

(i) The wire is divided into three sections: (a) the straight 
section to be left (b) the straight section to the right and  
(c) circular arc.

Step 1. Magnetic field due to a current carrying element at a point is given by 0
2

Idl sin
dB

4 r

µ θ
=

π

In the given case, angle between dl


and r for the straight section is 0oor π .So sin 0 =sin π=0

Hence magnetic field at the center (O) of the arc due to straight sections is ZERO

Step 2. Magnetic field at the center due to current carrying semi-circular section is

0 01 2 I IB x
2 4 r 4 r

µ µπ π
= =

π π
= 

7

12

10 x3.142x12
2x10

−

−
=1.89x 10-4 T

The magnetic field is directed into the plane of the paper. 

(ii) Direction of the field will be opposite to the found out in (i).

Illustration 10: A current path shaped as shown in Fig. 21.32 produces a magnetic field at P, the center of the arc. 
If the arc subtends an angle of 30o and the radius of the arc is 0.6m, what are the magnitude and direction of the 
field produced at P if the current is 3.0 A	�  (JEE ADVANCED)

Sol: Magnetic field at the center P of arc CD is 0I
B

4 R
µ φ

=
π

, and due to straight 
wires AC and DE is zero.

The magnetic field at P due to the straight segment AC and DE is zero, 

because d

  is parallel to r

  along these paths, this means that d

 x r

 =0. 

Each length element d

  along path CD is at the same distance from P, 

hence B at P is due to segment CD which is given by

0 0 0I I I
B

4 r 4 r 6 24r
µ µ µπ

= φ = × =
π π

2.0

cm

O

Figure 21.31

A

E
D

P

C

30
o

Figure 21.32
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Y

X

Z

d

B �

I
2

I
1

dF

d�
-

-

Figure 21.33: Force between parallel currents

13. FORCE BETWEEN PARALLEL CURRENTS
Consider two long wires kept parallel to each other such that the 
separation d between them is quite small as compared to their 
lengths. Suppose currents I1 and I2 flow through the wires in the 
same direction (see Fig. 21.33). Consider a small element d of 
the wire carrying current I2.The magnetic field at d due to the 
wire carrying current 

I1 is 0 1I ˆB ( k)
2 d
µ

= −
π


� ...(i)

(B


 is normal to and directed into the plane of the figure)

The magnetic force on this element is 2 2
ˆ ˆdF I d B I d ( j) B( k)= × = × −

 
 

or,	 0 1 2
2

I Iˆ ˆdF I d B( i) d ( i)
2 d
µ

= − = −
π


  	 (directed towards the wire carrying current I1)

Thus the wire carrying current I2 is attracted towards the wire carrying current I1. By Newton’s third law the force 
acting on wire carrying current I1 will also be attractive.Thus the two wires are attracted towards each other.

The force per unit length on each of the wires due to the other wire will be,

		  0 1 2I IdF
d 2 d

µ
=

π

Parallel currents attract each other, and antiparallel currents repel each other.

Note: Memorizing various formula of magnetic field due to ring and wire carrying current would easily help in 
calculating magnetic field due to complicated wire systems. Also, be careful about the direction of field in every 
problem you solve.

Illustration 11: A current of 10A flows through each two parallel long wires. The wires are 5 cm apart. Calculate the 
force acting per unit length of each wire. Use the standard values of constants required.	� (JEE MAIN)

Sol: Field of one wire exerts force on other wire and the force per unit length of wire is 0 1 22I IF
4 d
µ

=
π

.

Force acting per unit length of long conductor due to another long conductor parallel to it and carrying same 
current.

0 1 22I IdF
d 4 d

µ
=

π
;I1=I2=10A, r=5 cm =5x10-2m, 0

4
µ

π
=10-7TmA-1; 

7

2

dF 10 x2x10x10
d 5x10

−

−
=


=4 x 10-4 N m-1

Illustration 12:The wires which connect the battery of an automobile to its starting motor carry a current of 30A 
(for a short time).What is the force per unit length between the wires, if they are 70 cm long and 1.5 cm apart? Is 
the force attractive or repulsive?� (JEE ADVANCED)

Sol: Field of one wire exerts force on other wire and the force per unit length of 

wire is 0 1 22I IF
4 d
µ

=
π

. 

Force depends on direction of current. Parallel currents attract while anti-parallel 
currents repel.

0 1 22I IdF
d 4 d

 µ
=   π  

; I1=I2=300A; r=1.5cm=1.5x 10-2m

F1 F2

M

70 cm

1.5 cm

Figure 21.34
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∴	
7

1
2

10 x 2 x 300 x dF 1.2Nm
d 1.5x1

300
0

−
−

−
= =


	

Since current in both the wires flows in opposite direction, so the force is repulsive.

14. AMPERE’S LAW
This law is also called the ‘Theorem on Circulation of Vector B’.

According to this law the line integral or circulation of magnetic field vector B


 around a closed path is equal to 0µ  
times the algebraic sum of the currents enclosed by the closed path.

	 0 encB d I⋅ = µ∫
 

�

The closed path is also called Amperian loop.

Ienc is the algebraic sum of all the currents passing through 
the area enclosed by the closed path. Current is assumed 
positive if it is along the direction associated with the 
direction of the circumvention of the closed path through 
the right-hand screw rule.If we curl the fingers of the 
right hand around the closed path, in the direction of 
circumvention, the stretched thumb gives the positive 
direction of current. The current in the opposite direction 
is negative.

For example in the Fig. 21.35 shown, the current directed out of the plane of the figure is positive, so we have Ienc 

= I1 - I2; ( )0 1 2B d I I⋅ = µ −∫
 

�

14.1 Limitations of Ampere’s Circuital Law
Ampere’s law is an important tool in calculating the magnetic field due to a current distribution. However this 
usefulness is limited to only a few cases where the magnetic field is having a symmetrical distribution in space. The 
Amperian loop is chosen in such a way that the magnetic field has a constant value along the loopand is directed 
tangentially at all points of the loop.If such a choice of a loop is not possible, then Ampere’s law cannot be used to 
find out the magnetic field. For example this law can’t be used to find the magnetic field at the center of a current 
carrying loop.

Note: Ampere’s circuital law holds good for a closed path of any size and shape around a current carrying conductor.

14.2 Applications of Ampere’s Law

14.2.1 Magnetic field due to current carrying circular wire of infinite length

Let R be the radius of the infinite circular wire carrying current I. The magnetic field lines are concentric circles with 
their centers on the axis of the wire.

(a) Magnetic field intensity at a point outside the wire

We intend to find magnetic field at a distance r> R from the axis of the wire. We choose a circular path of radius r 
and center at the axis of the wire as the Amperian loop. B


will be constant and tangential at all points of this loop.

Using Ampere’s law,

I
2�

I
3

I
1

d�
B�

B.d =Bd cos�� �

Direction of

contour

circumvention

Amperian

Loop

-

-

--

Figure 21.35: Current enclosed by amperian loop
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	 0B.d I= µ∫
 

� 		  or 			   0
0Bd cos0 I= µ∫ �

or 	 0B d B(2 r) I= π = µ∫ �

∴	 0I
B

2 r
µ

=
π

		�   …(i)

Thus, the magnetic field intensity at a point outside the wire varies inversely as the distance of the point from the 
axis of the wire.

r>R

I � r R

r

Amperian

Loop

r<R�

Figure 21.36: Circular cross-section of infinitely long straight wire

That is,		  1B
r

∝

At the surface of the wire, r = R, so 		  0I
B

2 R
µ

=
π

	�  …(ii)

(b) Magnetic field intensity at a point inside the wire

We intend to find magnetic field at a distance r< R from the axis of the wire. We choose a circular path of radius r 

and center at the axis of the wire as the Amperian loop. B


 will be constant and tangential at all points of this loop.
Using Ampere’s law,

	 0 encB.d I= µ∫
 

� 		  or 			   0
0 encBd cos0 I= µ∫ �

or 	 0 encB d B(2 r) I= π = µ∫ 

If the current is uniformly distributed throughout the cross – section of the wire, then we have

	
2

2
enc 2 2

IrII ( r )
R R

= π =
π

∴	
2

0 2

Ir
B(2 r)

R
π = µ

∴	 0
2

Ir
B

2 R

µ
=

π

Thus,	 B r∝

The variation of B with distance r from the axis of the wire is shown in Fig.21.37.

Illustration 13: Figure 21.38 shows the cross section of a long conducting cylinder with inner radius a=2.0 cm and 
outer radius b=4.0 cm.The cylinder carries a current out of the page, and the magnitude of the current density in 

the cross section is given by j = cr2, with c=3.0 x 106 A/m4and r in meters. What is the magnetic field B


at appoint 
that is 3.0 cm from the central axis of the cylindrical?� (JEE ADVANCED)

B

B
r� B� 1

r

r=R

Figure 21.37: Variation of field  
with radial distance r
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Sol: The magnetic field in this case is symmetric. The field lines are concentric 
circles. We choose a circular amperian loop coaxial with the cylinder. First find 

the current enclosed for region a<x<r where r = 3 cm. Then use 0 encB ds i⋅ = µ∫
 

�  

to find B


.

We write the integral as 
r 2

enc a
i JdA cr (2 rdr)= = π∫ ∫

r4r 3
a

a

r2 c r dr 2 c
4

 
= π = π  

  
∫

4 4c(r a )
2

π −
=

The direction of integration indicated in Fig. 21.38 is (arbitrarily) clockwise. 
Applying the right-hand rule for Ampere’s law to that loop, we find that we 
should take ienc as negative because the current is directed out of the page but 
our thumb is directed into the page.

We next evaluate the left side of Ampere’s law exactly as we did in figure. 

Then Ampere’s law, 0 encB ds i ,⋅ = µ∫
 

�

Gives us 	 4 40 c
B(2 r) (r a )

2
µ π

π = − −

Solving for B and substituting known data yield 4 40 c
B (r a )

4 r
µ π

= − −
π

( )( ) ( ) ( )
7

4 4 5
6 4

x 0.030 
4 x10 T m / A 3.0

m
x10 A

–  0
/ m

4(0.030m
.020m   2.0 x 

)
10 T−

−π ⋅  = −  π 
−


=

.

Thus, the magnetic field B


at a point 3.0 cm from the central axis has magnitude B=2.0 x 10-5 T and forms magnetic 
field lines that are directed opposite our direction of integration, hence counterclockwise in figure.

14.2.2 Magnetic Field Inside a Solenoid

A solenoid is an insulated wire wound closely into multiple turnsto form a helix. The length of the solenoid is 
assumed to be much larger than its diameter. At points very close to a turn, the magnetic field lines are almost 
concentric circles.The fields due to adjacent turns at points near the axis add-up while fields at points away from 
the axis cancel each other. If the solenoid is very tightly wound and its length is quite large, then the field inside it 
is uniform and parallel to its axis, while field outside it will be zero.

x x x x x

Figure 21.39: Magnetic field lines inside solenoid

a
b

Figure 21.38
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PLANCESS CONCEPTS

We can apply Ampere’s law to find the magnetic field inside the solenoid. We choose a rectangular Amperian 
loop abcd partly inside the solenoid and partly outside it as shown in Fig. 21.40, its length lbeing parallel to the 
solenoid’s axis.

B�
a b

cd

� � � � � � � � � � � �

Amperian

Loop

�

Figure 21.40: Rectangular amperian loop

There are four sides of the rectangle. We write B.d∫
 

�  as the sum of four integrals, one for each side:

		
b c d a

a b c d
B.d B.d B.d B.d B.d= + + +∫ ∫ ∫ ∫ ∫
        

    �

The sides bc and da do not contribute to the line integral as the magnetic field is perpendicular to these sides at 
points inside the solenoid and at points outside the solenoid the magnetic field is zero. The side cd is completely 
outside the solenoid and hence the magnetic field is zero at all its points. So the only side that contributes to the 
line integral is ab.

Thus, we get	 0B.d B n I= = µ∫
 

  �

Here I is the current through each turn of the solenoid and n is the number of turns per unit length of the solenoid. 
The net current enclosed by the rectangle is n  I.

∴		  0B n I= µ

(a) 	 Magnetic field inside a solenoid and coil

	 (i) 	 Magnetic field is considered uniform throughout the solenoid, while it is not true for coil

	 (ii) 	 This is because, solenoid is long, while coil is thin.

(iii)	 Thus, magnetic field lines look very symmetric inside a solenoid, and of nearly equal length, 
while in a coil, the path are very different, and by Ampere’s law, their magnitude is different

(b) 	 Magnetic field on the axis at the end of a long solenoid

(i)	 Think of an infinite solenoid, if you could take the midpoint at the axis of this solenoid then 

the magnetic field strength at that point from each side would be 0nI
B

2
µ

= the situation you 

describe is like taking half of this infinite solenoid (as L>>d) and so 0nI
B

2
µ

=

		  ( 0µ =permeability of free space, n= number of coils in the solenoid, l= current)

Anurag Saraf (JEE 2011 AIR 226)
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Illustration 14:A closely wound solenoid 80 cm long has 5 layers of winding of 400 turns each. The diameter of the 
solenoid is 1.8 cm. if the current carries is 8.0 A, find the magnitude of B inside the solenoid near its center.�  
� (JEE MAIN)

Sol: For solenoid of length  the field at a point inside it is 0NI
B

µ
=


 where N is the number of turns in solenoid.

Magnetic field induction at a point inside the solenoid is

7
0

2

NI 4 10 x(400x5)x8B
(80x10 )

−

−

µ π
= =


	  = 8 π x10-3T ≈ 2.5 x10-2 T

Illustration 15: A solenoid is 2 m long and 3 cm in diameter. Ithas 5 layers of winding of 1000 turns each and 
carries a current of 5A. What is the magnetic field at its center?� (JEE MAIN)

Sol: For solenoid of length  the field at a point inside it is 0NI
B

µ
=


 where N is the number of turns in solenoid.

Magnetic field at the center of a solenoid is given by,

0NI
B

l
µ

= =(4 π x10-7) 5x1000
2

 
 
 

x5= 1.57 x 10-2 T

14.2.3 Magnetic field Inside a Toroid

Toroid is a circular solenoid. An insulated conducting wire is tightly wound on a ring (or torus) made ofnon-
conducting material to form a toroid. The magnetic field inside a toroid can be obtained by using Ampere’s law. 
We choose a circularAmperian loop of radius rinside the toroid concentric with it.

	 0 encB d Bd B d B(2 r) I⋅ = = = π = µ∫ ∫ ∫
 

  � � �

�� �
�

�

�
����

�
�
�

�

r

I

B�

B�

Figure 21.41: Magnetic field inside Toroid

If each turn of the toroid carries current I and the total number of turns in the toroid is N, then current enclosed by 
the Amperian loop is NI.

So	 02 r B N Iπ = µ  or, 0NI
B

2 r
µ

=
π
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Illustration 16: A toroid of 4000 turns has outer radius of 26 cm and inner radius of 25 cm. If the current in the wire 
is 10A, calculate the magnetic field of the toroid also in the inner air space of the toroid.� (JEE ADVANCED)

Sol: For toroid the field at a pointinside it at radial distance r from its 

center is 0NI
B

2 r
µ

=
π

 where N is the number of turns in toroid.

Radius of toroid r = 225 26 25.5cm 25.510 m
2

−+
= =

Length of toroid l=2 π r=2 π x (25.5 x 10-2= 51 x 10-2 π  m

∴  Number of turns /unit length, n=
2

4000
51x10− π

Field in a toroid is given by 

B= 0nIµ = 2
2

40004 x10 x10
51x10

−
−

 
π   π 

 ;= 3.14 x 102T

Field in the air space bounded by the toroid is zero because the field exists inside 
the envelope of the winding of the toroid.

15. MOVING COIL GALVANOMETER
Moving Coil Galvanometer is a device used to detect/measure small electric current flowing in an electric circuit.

Principle: When a current carrying loop or coil is placed in the uniform magnetic field, it experiences a torque and 
thus starts rotating.

Construction: A moving coil galvanometer is shown in Fig. 21.43. It consists of a coil made of insulated copper 
wire wound on a soft-iron cylinder. The coil is suspended by a spiral spring between two cylindrical shaped poles 
of a permanent magnet.

The spring exerts a very small restoring torque on the coil.

Theory

Let	 B 	= Magnetic field

	 I 	= Current flowing through the coil

	  	= Length of coil

	 b 	= Breadth of the coil

	 (xb) = A= Area of the coil

	 N	= Number of turns in the coil

When current flows through the coil, it experiences a torque, which is given by

	 τ=NIAB sinθ

where, θ is the angle between the normal to the plane of the coil and the direction of the magnetic field. 
Initially, θ = 90o, so τ=NIAB� …(i)

This torque is called deflecting torque.As the coil gets deflected, the spring is twisted and a restoring torque is 
developed in it which is proportional to the angle of deflection φ

	 τres=kφ	�  …(ii)

Soft iron core

N S

Coil

Figure 21.43: Moving coil 
galvanometer

25

cm

2
6

cm

Figure 21.42
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Here k is a constant for a particular spring.

For equilibrium of the coil,

Deflecting torque= Restoring torque

i.e.		  NIAB=kφ	�  …(iii)

or 		  kI
NAB
φ

= 	�  …(iv)

or		  I = Gφ			�    …(v)

where kG
NAB

=  is Galvanometer constant

∴		  I ∝ φ	� …(vi)

Thus, the current flowing through the coil is directly proportional to the deflection of the coil. Hence we can 
determine the current in the coil by measuring its deflection.

Use of a radial magnetic field in the moving coil galvanometer

A radial magnetic field, produced by cylindrical poles of permanent magnet is always parallel to the plane of the 
coil of the galvanometer. Thus the angle between the normal to the coil and the magnetic field is always 90o. Thus 
torque on the coil is τ = NIAB = kφ or I ∝φ. Thus, when radial magnetic field is used, the current in the coil is always 
proportional to the deflection. Hence, a linear scale can be used to determine the currentin the coil.

Use of Galvanometer 

(a)	 It is used to detect electric current in a circuit e.g., Wheatstone Bridge.

(b)	 It is convertedinto an ammeter by putting a small resistance parallel toit.

(c)	 It is converted into a voltmeter by putting a high resistance in series with it.

(d)	 It is used as an ohmmeter.

Sensitivity of a Galvanometer

A galvanometer is said to be sensitive if a small current flowing through its coil produces a large deflection in it.

(a) 	 Current Sensitivity

	� The current sensitivity of a galvanometer is the deflection produced in the galvanometer per unit current 
flowing through it.

	 i.e. Current sensitivity = NAB
I k
φ
=

	 Current sensitivity of galvanometer can be increased either by

(i)	 Increasing the magnetic field B by using a strong permanent horse-shoe shaped magnet.

(ii)	 Increasing the number of turns N.

(iii)	 Increasing the area of the coil A. (but this will make the galvanometer bulky and ultimately less sensitive)

(iv)	 Using a spring having small value of restoring torque constant k.

(b) 	 Voltage Sensitivity

	 Voltagesensitivity is the deflection produced in the galvanometer per unit voltage applied to it.

	 Voltage sensitivity = 
V
φ =

IR
φ i.e., voltage sensitivity = NBA

kR
(R= resistance of the coil)
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	 Voltage sensitivity can be increased by

(i)	 Increasing N 

(ii)	 Increasing B 

(iii)	 Increasing A 

(iv)	 Decreasing k and 

(v)	 Decreasing R.

Advantage of a moving coil galvanometer

(a)	 A minutely small current in the electric circuit can be detected using an extremely sensitively galvanometer.

(b)	 A linear scale can be used to read the current, since deflection of the coil is directly proportional to the current.

(c)	 The external magnetic fields (e.g. horizontal component of earth’s magnetic field) cannot effect the deflection 
of the coil of the galvanometer,because the magnetic field of the permanent magnet is very strong. Thus the 
galvanometer can be placed in any location.

(d)	 A dead beat type galvanometer is used.(The coil of a dead beat type galvanometer comes to rest quickly after 
deflecting to its equilibrium position, i.e it does not oscillate)

16. CYCLOTRON
Cyclotron is a device used to accelerate positively 
charged particles (like protons,α particles, deuteron, 
ions etc.) to acquire enough energy to carry out 
nuclear disintegrations.

Principle: It works on the following principle: A 
positively charged particle is made to accelerate 
through an electric field and using a strong magnetic 
field it is circled back to the region of the electric 
field, to accelerate it again and again to acquire 
sufficiently large amount of energy.

Construction and Working: It consists of two 
hollow D-shaped metallic chambers D1 and D2 called 
dees. These dees are separated by a small gap where 
a source of positively charged particles is placed. 
Dees are connected to high frequency oscillator, 
which provides high frequency electric field across 
the gap of the dees which accelerates the particles.
The magnetic field inside the dees is perpendicular to the plane of motion of particles and drives theminto a 
circular path. Suppose the particles start from rest and are accelerated towards chamber D2. After completing a 
semicircle, when the particles reach the gap of the dees again, thereversal of the polarity of electric field ensures 
that the particlesareagain accelerated towards the other chamber D1 by the electric field. Radius of the circular path 
increases with increase in speed, thusthe particles follow a spiral path (see Fig. 21.44)

Theory: The magnetic force on the positively charged particle provides the centripetal force to move in a circle of 
radius r.

∴	
2mv mvqvB or r

r qB
= = 	�  … (i)

High

frequency

oscillator

Source of

positively

charged

particle

Deflecting

plate

S

N

Target

W

D1

D2

B
�

�

Figure 21.44: Cyclotron
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Time taken by the particle to complete the semi-circle inside the dee,

	 distance r mvt or t
speed v v qB

π π
= = = × 	 or	 mt

qB
π

= � … (ii)

This shows that time taken by the positively charged particle to complete any semi-circle (irrespective of its radius)
is same

(a)	 Time Period: Let T be the period of the high frequency electric field, then the polarities of dees will change 

after time T
2

.

	 The particle will be accelerated if time taken by it to describe the semi-circle is equal to T
2

.

	 i.e. 		  T mt
2 qB

π
= = or 	 2 mT

qB
π

= 	�  … (iii)

(b)	 Cyclotron frequency: c
1 qBf
T 2 m

= =
π

	�  … (iv)

	 ∴  Cyclotron angular frequency	 c
qB2 f
m

ω = π = 	�  … (v)

(c)	 Energy gained: Energy gained by the positively charged particle in the cyclotron is given by 21E mv
2

=

	 From eqn.(i), we have v= qBr
m

, then E= 1
2

m x 
2

qBr
m

 
 
 

or	
2 2 2q B rE
2m

= � … (vi)

Maximum energy gained by the positively charged particle will depend on the maximum value of radius of 
its path, i.e the radius of the dees.

		
2 2

2
max max

q BE r
2m

 
=   
 

� … (vii)

(d)	 Limitations of Cyclotron: Cyclotron cannot accelerate uncharged particles like neutron.

(e)	 Cyclotron cannot accelerate electrons because they have very small mass. Electrons start moving at a very 
high speed when they gain small energy in the cyclotron. The frequency of oscillating electric field required 
to keep them in phase with the electric field is very high, which is not feasible.

(f)	 The positively charged particle having large mass (i.e. ions) cannotbe accelerated after a certain speed in the 
cyclotron. When the speed of ion becomes comparable to the speed of light,the mass of ion increases as per 
the relation

	 0

2

2

m
m ,

v1
c

=

−

where m= mass of ion at velocity v, m0=mass of ion at rest,cis speed of light (3 x 108 ms-1)

Time taken by the ion to describe semi-circular path increases as mass increases.So as the mass increases, the 
ion does not reach the gap between the two dees exactly at the instant the polarity is reversed and,it is not 
be accelerated further.

Uses of a Cyclotron

(a)	 It is used to produce radioactive material for medical purposes.

(b)	 It is used to synthesize fresh substances.

(c)	 It is used to improve the quality of solids by adding ions.

(d)	 It is used to bombard the atomic nuclei with highly accelerated particles to study the nuclear reactions.
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Note: Sections after this are not in the syllabus of JEE ADVANCED but they are important for understanding the 
concepts completely. 

Illustration 17:A cyclotron’s oscillator frequency is 10 MHz. What should be the operating magnetic field for 
accelerating protons? If the radius of its dees is 60 cm. What is the kinetic energy (in MeV) of the proton beam 
produced by the acceleration?		�  (JEE MAIN)

( )19 27 13
0e  1.60 x 10 C,m 1.67 x 10 ,  1MeV  1.6 x 10k Jg− − −= = =

Sol: The frequency of cyclotron is Bq
f

2 m
=

π
 where q is the charge and m is the mass of the charged particle to be 

accelerated inside the cyclotron. The kinetic energy of the particle is 
2mv

in eV
2e

 
  
 

.

Cyclotron’s oscillator frequency should be same as the proton’s revolution frequency (in circular path)

∴ 	  ƒ= Bq
2 mπ

or

B= 2 mf
q
π

Substituting the values in SI units, we have 
27 6

19

(2)(22 / 7)(1.67x10 )(10x10 )
B

1.6x10

−

−
= =0.67 T

The emerging beam of proton moves with the velocity

v = ω r = 2πƒ r = 7 7 12 10 0.60 3.77 10 ms−× π× × = ×

Thus the kinetic energy (in MeV) is 
( )227 72

19

1.67 10 3.77 10mv
eV 7.42 MeV

2e 2 1.6 10

−

−

× × × 
= =   × × 

17. MAGNETIC POLES AND BAR MAGNET
Two isolated charges of opposite signs are placed near each other, to form an electric dipole characterized by 
an electric dipole moment p

 .On the other hand in magnetism an isolated ‘magnetic charge’ does not exist. The 
simplest magnetic structure is the magnetic dipole, characterized by a magnetic dipole moment M


.A current loop, 

a bar magnet and a solenoid of finite length are examples of magnetic dipoles.

When a magnetic dipole is placed in an external magnetic fieldB


, a torque act on it, given by	 MxBτ =
  

The magnetic field B


 due to a magnetic dipole at a point along its magnetic axis at (large) distance r from its center, 

is 0
3

2MB
4 r

µ
=

π




A bar magnet has two poles (North and South) separated by a small distance. 
However, we cannot separate these poles apart. If a magnet is broken, the 
fragments prove to be dipoles and not isolated poles. If we break up a magnet 
into the electrons and nuclei that make up its atom, it will be found that even 
these elementary particle a re magnetic dipoles.

The poles of the bar magnet are modeled as follows:

(a)	 There are two types of magnetic charges; positive magnetic charge or North Pole and negative magnetic 
charge or South Pole. Every Pole has a strength m. The unit of Pole strength is A-m.

N S

N S N S N S

Figure 21.45: Poles of bar magnet
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(b)	 A magnetic charge placed in a magnetic field experiences a force, F mB=
 

. The force on positive magnetic 
charge is along the field and force on a negative magnetic charge is opposite to the field.

(c)	 A magnetic dipole is formed when a negative magnetic charge –m and a positive magnetic charge +m are 
placed at a small separation d. The magnetic dipole moment is, M=md. The direction of M


 is from –m to +m.

Geometrical Length and magnetic Length

In bar magnet, the poles are located at points which are slightly inside the two ends. The distance between the 
locations of the poles is called the magnetic length of the magnet. The distance between the ends is called the 
geometrical length of the magnet.

Magnetic length

N S

Geometric length

Figure 21.46: Geometric and Magnetic length of a bar magnet

Illustration18: Calculate the magnetic induction at a point 1
o
A  away from a proton, measured along its axis of 

spin. The magnetic moment of the proton is 1.4 x 10-26 A-m2.	�  (JEE MAIN)

Sol: On the axis of a magnetic dipole, magnetic induction is given by. 0
3

2MB
4 r

µ
= ⋅

π

Substituting the values, we get 
( )( )( )

( )

7 26

310

10 2 1.4x10
B

10

− −

−
= = 2.8 x 10-3T= 2.8 mT

18. MAGNETIC SUSCEPTIBILITY
For paramagnetic and diamagnetic materialsthe intensity of magnetization is directly proportional to the magnetic 
field intensity.

		  mI H= χ
 

The proportionality constant mχ  is called the magnetic susceptibility of the material. I and H have the dimensions 
of A-m-1 and the susceptibility mχ  is a dimensionless constant. For vacuum mχ =0. For paramagnetic materials  

mχ > 0, and for diamagnetic materials mχ < 0 are diamagnetic.

19. CURIES’S LAW
When the temperature increase, due to thermal agitation the magnetization I decreases for a given magnetic 
intensity H,which means mχ decreases as T increases. According to Curie’s law, the susceptibility of a paramagnetic 

substance is inversely proportional to the absolute temperature: mχ = c
T

 where c is a constant called the curie 
constant.
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The magnetization of ferromagnetic material also decreases with increase in temperature, and on reaching a certain 
temperature,the ferromagnetic properties of the material disappear. This temperature is called Curie point (Tc). At 
temperatures above Tcferromagnetic turns into a paramagnetic and its susceptibility varies with temperature as,

	 m
c

C'
T T

χ =
−

where C’ is a constant.

20. PROPERTIES OF PARA-, DIA- AND FERRO-MAGNETISM

(a)	 Paramagnetic Substances: Example of such substances are platinum, aluminium, chromium, manganese, 
CuSO4 solution, etc. They have the following properties:

(i)	 The substances, when placed in magnetic field, acquire 
a feeble magnetisation in the same sense as the applied 
field. Thus, the magnetic inductance inside the substance is 
slightly greater than outside to it.

(ii)	 In a uniform magnetic field, these substances rotate until 
their longest axes are parallel to the field.

(iii)	 These substances are attracted towards regions of stronger 
magnetic field when placed in a non-uniform magnetic field.

(iv)	 Figure 21.47 shows a strong electromagnet in which one of the pole pieces is sharply pointed, while the 
other is flat. Magnetic field is much stronger near the pointed pole than near flat pole. If a small piece 
of paramagnetic material is suspended in this region, a force can be observed in the direction of arrow.

(v)	 If a paramagnetic liquid is filled in a narrow U-tube and one limb is placed in between the pole pieces of 
an electromagnet such that the level of the liquid is in line with the field, then the liquid will rise in the 
limb as the field is switched on.

(vi)	 For paramagnetic substances, the relative permeability rµ is slightly greater than one.

(vii)	At a given temperature the magnetic susceptibility mχ  does not change with the magnetizing field. 
However it varies inversely as the absolute temperature. As temperature increases mχ  decreases. At 
some higher temperature mχ becomes negative and the substance become diamagnetic.

(b)	 Diamagnetic Substances: Examples of such substances are bismuth, antimony, gold, quartz, water, alcohol, 
etc. They have the following properties:

(i)	 These substances, when placed in a magnetic field, acquire feeble 
magnetization in a direction opposite to that of the applied field. 
Thus, the lines of induction inside the substance are smaller than 
those outside to it.

(ii)	 In a uniform field, these substances rotate until their longest axes 
are normal to the field.

(iii)	 In a non-uniform field, these substances move from stronger to 
weaker parts of the field.

(iv)	 If a diamagnetic liquid is filled in a narrow U-tube, and one limb is 
placed in between the pole of an electromagnet, the level depresses 
when the field is switched on.

(v)	 The relative permeability rµ is slightly less than 1.

(vi)	 The susceptibility mχ  of such substances is always negative. It is 
constant and does not vary with field or the temperature.

N S

Figure 21.47: Paramagnetic material  
in strong magnetic field

N S

Figure 21.48: Liquid column of 
paramagnetic substance in strong 

magnetic field
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(c)	 Ferromagnetic Substances: Examples of such substances are iron, nickel, steel, cobalt and their alloys. These 
substances resemble to a higher degree the paramagnetic substances with regards to their behaviour. They 
have the following additional properties:

(i)	 These substances are strongly magnetized by even a weak magnetic field.

(ii)	 The relative permeability is very large and is of the 
order of hundreds and thousands.

(iii)	 The susceptibility is positive and very large.

(iv)	 Susceptibility remains constant for very small 
values of H


, increases for larger values of H


 and 

then decreases for very large values of H


.

(v)	 Susceptibility decreases steadily with the rise of the 
temperature. Above a certain temperature, known 
as Curie temperature, the ferromagnetic substances 
become paramagnetic. For iron, it is 1000oC, 770oC 
for steel, 360oC for nickel, and 1150oC for cobalt.

21. HYSTERESIS
Hysteresis is the dependence of the magnetic flux density B in a 
ferromagnetic material not only on its current magnetizing field H, 
but also on its history of magnetization or residual magnetization.

When a ferromagnetic material is magnetized in one direction, and 
then the applied magnetizing field is removed, then its magnetization 
will not be reduced to zero. It must be driven back to zero by a field 
in the opposite direction. If an alternating magnetic field intensity is 
applied to the material, its magnetization will trace out a loop called 
a hysteresis loop.

The phenomena in which magnetic flux density (B) lags behind the 
magnetizing field (H) in a ferromagnetic material during cycles of 
magnetization is called as hysteresis.

PROBLEM-SOLVING TACTICS

(a)	 General advice for this section involves learning of formulae and avoiding silly mistakes. Also it would be 
better to go by the usual algorithm of noting down known and unknown quantities and linking them.

(b)	 Much of manipulation and mathematical complexity is involved here which can’t be avoided. 

N S

Figure 21.49: Diamagnetic substance  
in magnetic field

A

H0

C

-H0 D

O G
H

F

E

Figure 21.50: Hysteresis loop of I vs H
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FORMULAE SHEET

(a)	 Magnetic Force on a charge moving with velocity v
  in magnetic field B


is mF qv B= ×
  . Magnitude is 

mF qvB sin= θ .

(b)	 Charged particle moving in uniform magnetic field

(i) Angular velocity	
q B

2 f
m

ω = π =

(ii) Time period		 2 mT
q B
π

=

(iii) Radius mv m 2qV 1 2mVr
qB qB m B q

= = =

(c)	 Helical Paths: Radius 
mv

r
qB

⊥=  Pitch: 
2 mp v T v
| q | B⊥ ⊥
π

= =

(d)	 The cyclotron oscq B 2 mf= π

(e)	 Crossed Fields: Lorentz Force F q(E v B)= + ×
  

(f)	 Trajectory of a charged particle in electric field 
2

2

q Ex
y

2mv
=

(g)	 Magnetic force on current element dF Id B= ×
 



(h)	 Magnetic force on a conductor in uniform fieldF IL B= ×
  

(i)	 Magnetic dipole moment of a current coil having N turns m ˆp NI An=


( j)	 Torque on a current coil mp Bτ = ×


(k)	 Potential energy of current coil mU p .B= −


(l)	 Biot-Savart Law 0
3

Id r
dB

4 r

µ ×
=

π

   , 0
2

Id sin
dB

4 r

µ θ
=

π


(m)	 Magnetic field at center of an arc subtending angle θ, 0 IB
4 R

 µ θ
=   π 

(n)	 Magnetic field at a point on the axis of a N turn coil	
( )

2
0

3 22 2

NIR
B

2 z R

µ
=

+

(o)	 Magnetic field at center of N turn coil 0 NI
B

2 R
µ

=

(p)	 Concentric coils with equal turns

(i) Similar currents flowing in the same direction

Net magnetic field, 		  0 0

1 2

NI NIB
2 R 2 R
µ µ

= + 0

1 2

1 1NI
2 R R

 µ
= +  

 

R1

R2

i i

Figure 21.51 
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(ii) Similar currents flowing in the opposite direction

Net magnetic field,		   0 0

1 2

NI NIB
2 R 2 R
µ µ

= −

				               
0

1 2

1 1NI
2 R R

 µ
= −  

 

 (q)	 Mutually perpendicular coils

Net Magnetic field, 		  0 2 IB 2
4 R

 µ π
=   π 

(r)	 Dispatched coils

Net Magnetic Field, 		
2

0
2 3 3/2

IR
B 2

2 (R x )

µ
=

+

				  
2

0
2 2 3/2

IR

2(x R )

µ
=

+

(s)	 Infinite straight wire 0I
B

2 R
µ

=
π

(t)	 Semi-infinite straight wire 0I
B

4 R

µ
=

π

(u)	 Force per unit length between two parallel currents separated by 

distance d, 0 1 2I IdF
d 2 d

µ
=

π

(v)	 Ampere’s law 0 encB.d I= µ∫
 

�

(w)	 Field inside infinite straight wire of circular cross-section 0
2

I
B r

2 R

µ
=

π

(x)	 Magnetic Field inside long solenoid having n turns per unit length 0B nI= µ

(y)	 Magnetic Field inside toroid having N turns 0 NI
B

2 r
µ

=
π

(z)	 Magnetic field due to bar magnet at end-on position 0
3

2M
B

4 d

µ
=

π

(aa)	 Magnetic field due to bar magnet at broadside-on position 
0

3

MB
4 d

µ
=

π

(ab)	Moving Coil Galvanometer kI
NAB
φ

=

(ac)	 Magnetic field Intensity H, in vacuum is, 
0

BH =
µ

(ad)	Magnetic field Intensity H, in a medium is,
 r 0

BH =
µ µ

Y

B2
2B1

R

B1i

X

R1

R2

i i

Figure 21.52 

Figure 21.53 

Y

90
o

Ri

y=x

i

R(0, 0)
X

Figure 21.54
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JEE Main/Boards

Example 1: A uniform magnetic fields of 30 mT 
exists in the +X direction. A particle of charge +e and 
mass1.67 x 10-27 kg is projected into the field along the 
+Y direction with a speed of 4.8 x 106 m/s

(i) Find the force on the charged particle in magnitude 
and direction

(ii) Find the force if the particle were negatively charged.

(iii) Describe the nature of path followed by the particle 
in both the cases.

Sol: The force on the particle in external magnetic 

field is F q(v xB)=
  

. Take vector product of velocity and 
magnetic field vector, and solve for force.

y

x

z

v
�

F
�

B
�

(i) Force acting on a charge particle moving in the 
magnetic field

F q(v xB)=
  

Magnetic field B 30(mT) j=




Velocity of the charge particle 6V 4.8x10 (m / s) j=




( ) ( )( )19 6 3F 1.6x10 4.8x10 j x 30x10 i− − =   


 

F


=230.4 x 10-16( k̂− )N.

(ii) If the particle were negatively charged, the magnitude 
of the force will be the same but the direction will be 
along (+z) direction.

(iii) As v ⊥ B, the path describe is a circle

	 27 6mvR (1.67x10 ) (4.8x10 ) /
qB

−= = ⋅

	 19 3(1.6x10 ) (30x10 )− −⋅ = 1.67 m.

Example 2: A magnetic field of (4.0 x 10-3 k ) T exerts a 

force (4.0 i +3.0 j ) x 10-10N on a particle having a charge 

10-9C and moving in the x-y plane. Find the velocity of 
the particle.

Sol: The force on the particle in external magnetic 

field is F q(v xB)=
  

. Take vector product of velocity and 
magnetic field vector.

Given, ( )3 9B 4 x10 k T,q 10 C− −= =




and Magnetic force 10
mF (4.0i 3.0 j)10 N−= +


 

Let Velocity of the particle in x-y plane be, x yv i j= ν +ν


 

Then From the relation,	 Fm q(v xB)=
 

We have, 

( ) ( )10 9 3
x y(4.0i 3.0 j)x10 10 i j x 4x10 k− − − + = ν +ν  

    

= ( )12 12
y x4 X10 j 4 10 j− −ν − ν 

Comparing the coefficients of i and j  we have,

			   4 x 10-10= 12
y4 x10−ν

∴		  2
y 10 m / s 100m / sν = =

and 		 3.0 x 10-10= 12
y4 x10−ν 	

∴ x 75m / sν = − ; ∴ V 75i 100 j= − +


 

Example 3: Figure shows current loop having two 
circular arcs joined by two radial lines. Find the magnetic 
field B at the center O.

O

A B

CD

i

Sol: Find magnetic field at the center O of concentric 

arcs AB and CD by 0I
B

4 R
µ θ

=
π

 where θ is the angle 

subtended at the center.

Magnetic field at point O, due to wires CB and AD 

will be zero. Magnetic field due to wire BA will be,

0
1

i
B

2 2a
 µ θ

=    π  
Direction of field 1B


is coming out of 

the plane of the figure. Similarly, field at O due to arc 

Solved Examples
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DC will be, 0
2

i
B

2 2a
 µ θ

=    π  

Direction of field 2B


 is going into the plane of the 
figure. The resultant field at O is 

0
1 2

i (b a)
B B B

4 ab
µ θ −

= − =
π

Coming out of theplane,

Example 4: A current of 2.00 A exist in a square loop of 
edge 10.0 cm. Find the magnetic field B at the center of 
the square loop.

Sol: The center of the loop is equidistant from all 
the sides, and can be considered as a point on the 
perpendicular bisector of one side.The field at the point 
due to one side is 

o

2 2

Ia
B

2 d a 4d

µ
=

π +

The magnetic field at the center due to the four sides 
will be equal in magnitude and direction. The field due 
to one side will be

0
1 2 2

ia
B

2 d a 4d

µ
=

π +

Here, a=10 cm and d=a/2=5 cm.

Thus, 0
1 2 2

(2A) 10cm
B

2 (5cm) (10cm) 4(5cm)

 µ  =
 π + 

=2 x 10-7 T mA-1 x 2 A x 1

5 2 cm
= 5·66 x 10-6 T

Hence, the net field at the center of the loop will be  
4 x 5·66 x 10-6T=22·6x10-6 T.

Example 5: A particle of mass 1 x 10-26kg and charge  
1.6 x 10-19C travelling with a velocity 1.28 x 106 ms-1 
in the +x direction enters a region in which uniform 
magnetic field of induction B are present such that 
Ex=Ey=0, Ez = -102.4 kVm-1 and Bx = Bz=0. By=8 x 10-2.
The particle enters this region at the origin at time  
t = 0. Determine the location (x, y and z coordinates) 
of the particle at t= 5 x 10-6s. If the electric field is 
switched off at this instant (with the magnetic field still 
present), what will be the position of the particle at  
t = 7.45 x 10-6 s?

Sol: In presence of simultaneous electric and magnetic 
field, the Lorentz force is ( )F q E (v B)= + ×

   . Under action 

of uniform magnetic field only, the particle performs 

uniform circular motion of radius mvr
qB

= .

Let i , j  and k be unit vector along the positive directions 
of x, y and z axes. Q=charge on the particle=1.6 x 10-19C, 
v=velocity of the charged particle 

y

x

z

=(1.28 x 106)ms-1

E


= electric field intensity;

=(-102.4 x 103Vm-1)k B


=magnetic induction of the 
magnetic field = (8 x 10-2 Wbm-2) j

∴ eF


=electric force on the charge

=qE=1.6 x 10-19(-102.4x103)Nk 	= 163.84 x 10-16N(-k )

mF =magnetic force on the charge = qv x B

= [1.6x10-19(1.28x106)(8x10-2)N]( i x j )= (163.84x10-16N)
(k )

The two forces eF


 and mF


 are along z-axis and equal, 
opposite and collinear. The net force on the charge is 
zero and hence the particle does not get deflection and 
continues to travel along x-axis. (a) At time t=5x10-6s

x=(5 x 10-6)(1.28 x 106)=6.4m∴ Coordinates of the 
particle = (6.4 m,0,0)

(b) When the electric field is switched off, the particle 
is in the uniform magnetic field perpendicular to its 
velocity only and has a uniform circular motion in the 
x-z plane (i.e. the plane of velocity and magnetic force), 
anticlockwise as seen along+ y axis.

Now, 
2mv

r
=qvB where r is the radius of the circle.

∴ mvr
qB

= =
( )( )
( )( )

26 6

19 2

1x10 1.28x10
1

1.6x10 8x10

−

− −
=

The length of the arc traced by the particle in [(7.5-5) 
x 10-6s]

= (v)(T)=(1.28 x 1060)(2.45 x 10-6)=3.136m= πm= 1
2circumference

 ∴ The particle has the coordinates (6,4,0,2m) as (x,y,z).
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Example 6: The region between x=0 and x=L is filled 

with uniform, steady magnetic field B0k. A particle of 

mass m, positive charge q and velocity v0 î travels along 
x-axis and enters the region of magnetic field. Neglect 
gravity throughout the question.

(i) Find the value of L if it emerges from the region of 
magnetic field with its final velocity at an angle 30o to 
the initial velocity. 

(i) Find the final velocity of the particle and the time 
spent by it in the magnetic field, if the field now extents 
up to x=2. 1L.

Sol: The particle under action of uniform magnetic field 
performs uniform circular motion. The magnetic force 
acting on it provides the centripetal force. The radius of 
the circular orbit is mvr

qB
= .

(i) As the initial velocity of the particle is perpendicular 
to the field the particle will move along the arc of a 
circle as shown.

r

x=Lv i0

r

30
o

B k0

30
o

If r is the radius of the circle, then
2
0

0 0
mv

qv B
r

= Also from geometry, L=r sin 30°

r 2L⇒ = 	 or 0

0

mv
L

2qB
=

(ii) In this case 0

0

2.1mv
L r

2qB
= > Hence the particle will 

complete a semi-circular path and emerge from the 

field with velocity 0
ˆv i as shown. Time spent by the 

particle in the magnetic field 
0 0

r mT
v qB
π π

= =

L>r

v i0

The speed of the particle does not change due to the 
magnetic field.

Example 7: A uniform, constantmagnetic fieldB


is 
directed at an angle of 45° to the x-axis in the xy-plane. 
PQRS is a rigid, square wire frame carrying a steady 
current 0I , with its center at the origin. O. At time t=0, 
the frame is at rest in the position (shown the Figure) 
with its sides parallel to the x and y axes. Each side of 
the frame is of mass M and length L.

P Q

RS

O

y

x

(a) What is the torque τ about O acting on the frame 
due to the magnetic field?

(b) Find the angle by which the frame rotates under the 
action of this torque in a short interval of time t∆ , and 
the axis about which this rotation occurs. ( t∆ is so short 
that any variation i n the torque during this interval may 
be neglected). Given moment of any variation in the 
torque during this interval may be neglected). Given 
moment of inertia of the frame about an axis through 
its center perpendicular to its p late is (4/3) 2ML .

Sol: The torque acting on loop is M Bτ = ×
  .

d
dt I
ω τ

α = =  and

P Q

RS

O

y

x

�

I
0

45
o

dtθ = ω∫  (a) As magnetic field B is in x-y plane and 
subtends an angle of 45°with x-axis.

xB Bcos 45 B 2= ° =

and yB Bsin45 B 2= ° =

So in vector from

( ) ( )ˆB i B 2 j B 2= +


and 2
0 0

ˆ ˆM I Sk I L k= =

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so, 2
0

B Bˆ ˆ ˆM B I L k i jˆ
2 2

 
τ = × = × + 

 

 

i.e., ( )
2

0I L B ˆ ˆi jˆ
2

τ = × − +

i.e., torque has magnitude 2
0I L B  and is directed along 

line QS from Q to S.

(b) As by theorem of perpendicular axes, moment of 
inertia of the frame about QS,

2 2
QS z

1 1 4 2I I ML ML
2 2 3 3

 
= = = 

 

And as Iτ = α ,
2

0 0
2

I L B 3 I B3
1 2 M2L M

×τ
α = = =

As here α is constant, equations of circular motion are 
valid and hence from

2
0

1t t
2

θ = ω + α  with 0 0ω =  we have

( )22 20 0I B I B1 1 3 3t t t
2 2 2 M 4 M

 
θ = α = ∆ = ∆  

 

Example 8: In the figure shown the magnetic field at 
the point P.

y

z

(a, 0) (2a, 0)

P

i

(3a, 0)
x

i

Sol: The conductor forms two concentric semicircles 

and two straight wires. Find magnetic field at the center 

P due to concentric arcs by formula 0I
B

4 R
µ θ

=
π

, and fields 

due to straight wires by formula 0I
B

4 d
µ

=
π

and then add 

the fields due to individual parts.

Consider the figure.
y

z

3

a/2

P
x

3a/2

1

2

4

5

( ) ( ) ( ) ( ) ( )1 2 3 4 5P P P P P P
B B B B B B= + + + +

    

where 	 ( ) ( )0
1

P

i ˆB j
3a4
2

µ
= −

 
π 
 



(Semi-infinite wire)	 ( ) ( )0
2

P

i ˆB k
3a4
2

µ
= +

 
 
 


( )3

P
B 0=


 ;

( ) ( )0
4

P

i ˆB k
a4
2

µ
= −

 
 
 



0
P

i 1 1 1ˆ ˆB j 1 k
2a 3 3
µ     

⇒ = − + − −    π π    



0
P

2 i 1 ˆ ˆB j k
3a
µ  

⇒ = − π 


	 20

P
i

B 1
3 a
µ

⇒ = + π
π



Example 9: What is the smallest value of B that can 
be set up at the equator to permit a portion of speed 

710 m s to circulate around the earth?
6 27

pR 6.4 10 m,m 1.67 10 kg− = × = ×  .

Sol: Particle under action of force in uniform magnetic 
field, moves in circular orbit whose radius is given by 

mvr
Bq

= . For charged particle orbiting near earth with 

high velocity, the magnetic field can be obtained 
rearranging above formula.

From the relation mvr
Bq

=

We have mvB
qr

=

Substituting the values,we have
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( )( )
( )( )

27 7
8

19 6

1.67 10 10
B 1.6 10 T

1.6 10 6.4 10

−

−

×
= = ×

× ×

JEE Advanced/Boards

Example 1: A circular loop of radius R is bent along a 
diameter and given a shape as shown in figure. One of 
the semi-circle (KNM) lies in the x-z plane and the other 
one (KLM) in the y-z plane with their centers at origin. 
Current I is flowing through each of the semi-circles as 
shown in Figure.

y

z

x

L

M

N

K

i

i

A particle of charge q is released at the origin with a 
velocity 0

ˆV V i= − . Find the instantaneous force F in the 
particle. Assume that space is gravity free.

Sol: For wire bent as shown the magnetic field at the 

center is calculated as 0I( )
B

4 R
µ π

=
π

, where π is the angle 

subtended by the wire at center. The Lorentz force 
acting on particle is F q(v B)= ×

 

Magnetic field at the center of a circular wire of radius 

R carrying a current I is given by 0I
B

2R
µ

=

In this problem, current are flowing in two semi-circles, 
KLM in the y-z plane and KNM in the x-z plane. The 
centers of these semi-circles coincide with the origin of 
the Cartesian system of axes.

( )0
KLM

I1 ˆB i
2 2R
 µ

∴ = −  
 


( )0

KNM
I1 ˆB j

2 2R
 µ

∴ = −  
 



The total magnetic field at the origin is ( )0
0

I ˆ ˆB i j
4R
µ

= − +

It is given that a particle of charge q is released at the 

origin with a velocity 0
ˆV V i= − . The instantaneous force 

acting on this particle is given by

( ) ( )

( ) ( ) ( )

0
0

0 0 0 0

Iˆ ˆ ˆf q V B q V i i j
4R

qV I qV Iˆ ˆ ˆ ˆi i j k
4R 4R

 µ
 = × = − × − +  

 
 µ µ = − × − + = −     

( ) ( )

( ) ( ) ( )

0
0

0 0 0 0

Iˆ ˆ ˆf q V B q V i i j
4R

qV I qV Iˆ ˆ ˆ ˆi i j k
4R 4R

 µ
 = × = − × − +  

 
 µ µ = − × − + = −     

Example 2: A long horizontal wire AB, which is free to 
move in a vertical plane and carries a steady current of 
20 A, is in equilibrium at a height of 0.01 m over another 
parallel long wire CD which is fixed in a horizontal plane 
and carries a steady current of 30 A, as shown in figure 
Show that when AB is slightlydeed it executes simple 
harmonic motion. Find the period of oscillation.

A B

Sol: The current carrying wire AB, experiences force 
due to the magnetic field created by wire CD. Find the 
equation of motion of wire AB. If the force acting on 
wire AB is restoring in nature and directly proportional 
to its displacement from the equilibrium position, 
then we compare the equation of acceleration with 

the standard differential equation of SHM. Then time 

period of oscillation is given by T 2
g
ω

= π Let m be the 

mass per unit length of wire AB. At a height x about the 

wire AB will be given by

Fm

A
i =20A1

B

Fg

C i =30A2 D

X=d=0.01

0 1 2
m

i i
F (upwards)

2 x
µ

=
π

� … (i)

Wt. per unit of wire AB is gF =mg (downwards) At x=d, 
wire in equilibrium

i.e., 0 1 2
m g

i i
F F mg

2 d
µ

= ⇒ =
π

0 1 2
2

i i mg
d2 d

µ
⇒ =

π
	� …(ii)

When AB is deed, x decreases therefore, mF will increase, 
gF remains the same. Let

AB is displaced by dx downwards.

Differentiating equation (i) w.r. t.x, we get

0 1 2
m 2

i i
dF dx

2 x

µ
= −

π
� …(iii)

i.e., restoring force, F=d mF dx∝ −
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Hence the motion of wire is simple harmonic. From 
equation (ii) and (iii), we can write

m
mgdF .dx
d

 
= − 

 
	 (x=d)

gAcceleration of wire, a=- .dx
d

 
∴  

 

Hence period of oscillations

dx disp.T 2 2
a acc.

0.01T 2 d g 2 T 0.2s
9.8

= π = π

⇒ = π = π ⇒ =

Example 3: A straight segment OC (of length L meter) 
of a circuit carrying a current 1 amp is placed along the 
x-axis. Two infinitely long straight wire A and B, each 
extending z to= −∞ + ∞  are fixed at y=-a meter and 
y=+a meter respectively, as shown in the figure. If the 
wires A and B each carry a current 1 amp into the plane 
of the paper, obtain the expression for the force acting 
on segment OC. What will be the force on OC if the 
current in the wire B is reversed?

Y

B
i i C

O

A

i

(0,-a,0)Z

X

(0,a,0)

Sol: Find the net field due to wires A and B at any point 
on the wire OC.Find the force due to this field on a small 
current element of wire OC at that point. Then integrate 
this expression to find force on wire OC.

Magnetic field AB produced at P(x,0, 0) due to wire, 
A 0B I 2 R,= µ π B 0B I 2 R= µ π .

Components of AB and BB  along x-axis cancel, while 
those along y-axis add up to give total field.

( )
0 0 0

2 2

I 2 I Ix xB 2 cos
2 R 2 R R a x

 µ µ µ
= θ = =  π π π + 

(along – y direction)

The force dF acting on the current element is 

dF I(d xB)= 

2
0

2 2

I xdx
dF sin90 1

a x

µ
 = ∴ ° = π +

2 2L 2 2
0 0

2 2 2
0

I Ixdx a LF ln
2a x a

µ µ +
⇒ = =

π π+∫

If the current in B is reversed, the magnetic field due to 
the two wires would be only along 

Y

B

a

O

R

x

a

AZ
R BB

�

�
�

BA

�

P(x,0,0)
X

x- direction and the force on the current along 

x- direction will be zero.

Example 4: Two long wires a and b, carrying equal 
currents of 10.0 A, are placed parallel to each other 
with a separation of 4.00 cm between them as shown in 
figure. Find the magnetic field B at each of the points 
P, Q and R.

2.00 cm 2.00 cm 2.00 cm 2.00 cm

P a Q b R

Sol: Net field at a point will be the vector sum of the 
fields due to the two wires.

The magnetic field at P due to the wire a has magnitude

7 1
40

1 2

i 4 10 TmA 10AB 1.00 10 T.
2 d 2 2 10 m

− −
−

−

µ π× ×
= = = ×

π π× ×

Its direction will be perpendicular to the line shown and 
will point downward in the figure. The field at this point 
due to the other wire has magnitude

7 1
40

2 2

i 4 10 TmA 10AB 0.33 10 T.
2 d 2 6 10 m

− −
−

−

µ π× ×
= = = ×

π π× ×

Its direction will be the same as that of 1B . Thus, the 
resultant field will be 41.33 10 T−×  also along the same 
direction.

Similarly, the resultant magnetic field at R will be 
41.33 10 T−= × along the direction pointing upward in 

the figure.

The magnetic field at point Q due to the two wires will 
have equal magnitudes but opposite directions and 
hence the resultant field will be zero.
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Example 5: A coil of radius R carries current I. Another 
concentric coil of radius (r<<R) carries current i. Planes 
of two coils are mutually perpendicular and both the 
coils are free to rotate about a common diameter. Find 
maximum kinetic energy of smaller coil when both 
the coils are released, masses of coils are M and m 
respectively.

Sol: For rotating coils, kinetic energy is 21 I
2

ω . 

Each coil is a magnetic dipole and has a potential 
energy in magnetic field due to other coil. This potential 
energy is converted into kinetic energy as the dipole 
moment of the coil aligns itself with the magnetic field.

If a magnetic dipole having moment M be rotated 
through angle θ from equilibrium position in a uniform 
magnetic field B, work done on it is W MB(1 cos )= − θ . 
This work is stored in the system in the form of energy. 
When system is release, dipole starts to rotate to 
occupy equilibrium position and the energy converts 
into kinetic energy and kinetic energy of the system is 
maximum when stored energy is completely released.

Magnetic induction, at centers due to current in larger 

coil 0i
B

2R
µ

=
 

Magnetic dipole moment of smaller 

coil is 2i rπ . Initially planes of two coils are mutually 

perpendicular, therefore θ is 90°or energy of the 

system is ( ) ( )2U i r B 1 cos90= π − °
2

0Ii r
U

2R
µ π

=

When coils are released, both the coils start to rotate 
about their common diameter and their kinetic energies 
are maximum when they become coplanar.

Moment of inertia of larger coil about axis of rotation is 
2

1
1I mR
2

=  and that of smaller coil is 2
2

1I mr
2

= .

Since, two coils rotate due to their mutual interaction 
only, therefore, if one coil rotates clockwise then the 
other rotates anticlockwise.

Let angular velocities of larger and smaller coils be 
numerically equal to 1ω and 2ω respectively when they 
become coplanar,

According to law of conservation of angular momentum, 

1 1 2 2I Iω = ω

and according to law of conservation of energy,

2 2
1 1 2 2

1 1I I U
2 2

ω + ω =

From above equations, maximum kinetic energy of 
smaller coil,

( )
2

2 01
2 2 2 2

1 2

liMRrUI1 I
2 I I 2 MR mr

µ π
ω = =

+ +

Example 6: A wire loop carrying a current I is placed in 
the x-y plane as shown in Figure. 

(a) If a particle with charge q and mass m is placed at 
the centerP and given a velocity v along NP find its 
instantaneous acceleration. 

M

i
120

o

P

q

a

N

y

x

(b) If an external uniform magnetic induction ˆB Bi= is 
applied, find the force and torque acting on the loop.

Sol: Find the net magnetic field at the point P due to the 
arc and the straight wire and find the magnetic force on 
q by rules of vector cross product. The magnetic force 
on a current loop in uniform magnetic field is zero. 
The toque will be non-zero depending on the angle 
between field and the area vector of the loop.

(a) As in case of current-carrying straight conductor 
and arc, the magnitude of B is given by	

M

i
120

o P

q

a

N

y

xF

v
90

o
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( )0
1

i
B sin sin

4 d
µ

= α + β
π

 and 0
2

I
B

4 r
µ φ

=
π

So in accordance with right hand screw rule,

( ) ( )
0

W
1 ˆB 2sin60( k)

4 acos60
µ

= × −
π


and due to are 

( ) ( )0

MN

I 2 ˆB k
4 a 3
µ  

= × π + π  



and hence net B


at P due to the givenloop 

W AB B B= +
  

0 2I ˆB 3 ( k)
4 a 3
µ  π

⇒ = − − π  


	� …(i)

Now as force on charged particle in a magnetic fields 
is given by

( )F q v B= ×
  

So here, F qvBsin90= °


along PF

i.e. 0 2qvIF 3
4 a 3
µ  π

= − π  


 along PF

and so 7F 2qvIa 10 3
m a 3

−  π
= = − 

 




 along PF

(b) As dF IdL B, so F IdL B= × = ×∫
     

As here I and B


 are constant

F I dL B 0 as dL 0   = × = =   ∫ ∫

Further as area of coil,

2

2

1 1 ˆS a .2a sin 60 a cos 60 k
3 2

3 ˆa k
3 4

 
= π − °× ° 
 
 π

= − 
  



So 2 3 ˆM IS Ia k
3 4

 π
= = − 

  

 

and hence ( )2 3 ˆ ˆM B Ia B k i
3 4

 π
τ = × = − × 

  

  

i.e. 2 3 ˆIa B jN m
3 4

 π
τ = − − 

  


 as ( )ˆ ˆ ˆk i j× = .

Example 7: A disc of radius R rotates at an angular 
velocity ωabout the axis perpendicular to its surface 
and passing through its center. If the disc has a uniform 
charge density σ , find the magnetic induction on the 
axis of rotation at a 

Sol: The disc can be thought as made-up of elementary 
rings. When disc rotates about axis passing through 
center and perpendicular to plane of disc, then each 
elementary ring constitutes a current. The magnetic 
field along axis of rotation due to each elementary ring 
is to be considered.

At distance r from the center of disc consider a ring of 
radius r and width dr.

Charge on the ring, ( )dq 2 rdr= π σ

Current due to ring is dqdI
T

=
dq r dr

2
ω

= = σω
π

Magnetic field due to ring at point P on axis is 

( )
2

0
3 22 2

dlr
dB

2 r x

µ
=

+
	 or 

( )
R 3

0
3 22 20

r drB dB
2 r x

µ σω
= =

+
∫ ∫ � …(i)

Putting 2 2 2r x t+ =  and 2r dr=2t dt and integrating (i) 
we get

2 2
0

2 2

R 2xB 2x
2 R x

 µ σω +
= − 

 + 
.

Example 8: In the figure a charged sphere of mass m 
and charge q starts sliding from rest on a vertical fixed 
circular track of radius R from the position shown. There 
exists a uniform and constant horizontal magnetic field 
of induction B. The maximum force exerted by the track 
on the sphere.

m

q

X B
�

Sol: As the sphere moves along the circular track the 
vector sum of radial component of magnetic force, the 
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normal reaction and the radial component of weight of 
the sphere provide the necessary centripetal force.

mF qvB= , and directed radially outward. 
2mvN mgsin qvB

R
∴ − θ + =

2mvN mgsin qvB
R

⇒ = + θ −

Hence at 2θ = π

max
2mgR

N mg qB 2gR
R

⇒ = + −

3mg qB 2gR.= −

Example 9: What is the work done in transferring the 
wire from position (1) to position (2)?

Sol: While transfering wire from position 1 to position 
2 find the change in the potential energy of the loop in 
the field of the wire. This chage in potential energy will 
be equal to the work done.

The loop can be considered as the combination of the 
number of elementary loops. The net current in the 
dotted wires is 0 as current in the neighboring loops 
flowing through the same wire opposite in direction. 
Consider an elementary loop of width dr at a distance 
r from the wire

ma

A

N

mg

B

A
2 m/s

2

The 'd 'µ  magnetic moment of the elemental loop

2I ldr=

The B at that point due to straight wire 0 1I 2 r= µ π .

b

la a

l2
l1

1 2

0 1
2

I
dU B.d I ldr(cos )

2 r
µ

= − µ = − π
π

[As dµ is anti-parallel to B.]
b

0 1 2 0 1 2
1

a

I I l I I l1 aU du dr ln
2 r 2 b

µ µ  
= = =  π π  
∫ ∫

By symmetry, 2 1U U= −

U work done⇒ −∆ =

l2

l1

r

( ) 0 1 2
2 1

I I l bU U 2 ln
2 a

µ
= − − =

π
.

The work done in transferring the wire from

Position 1 to 2 0 1 2I I l bln
a

µ
=

π

Example 10: A long, straight wire carries a current i. A 
particle having a positive charge q and mass m, kept at 
a distance x0 from the wire is projected towards it with 
a speed v. Find the minimum separation between the 
wire and the particle.

Y

x0

i

O
P

X

Sol: At minimum separation the x-component of 
velocity of the particle will be zero. Find the acceleration 
of the particle due to the magnetic force and solve to 
get the expression for velocity and displacement.

Let the particle be initially at P. Take the wire as the y-axis 
and the foot of perpendicular from P to the wire as the 
origin. Take the line OP as the x-axis. We have, OP= X0. 
The magnetic field B at any point to the right of the 
wire is along the negative z-axis. The magnetic force 
on the particle is, therefore, in the x-y plane. As there 
is no initial velocity along the z-axis, the motion will be 
in the x-y plane. Also, its speed remains unchanged. As 
the magnetic field is not uniform, the particle does not 
go along a circle.

The force at time t is F qv B= ×
  

0
x y

i
q(iv jv ) k

2 x
 µ

= + × −  π 

  

0 0
x y

i i
jqv iqv .

2 x 2 x
µ µ

= −
π π

 
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Thus y y0x
x

qiF
a

m 2 m x x

µ µµ
= = − = −λ

π
� …(i)

Where 0qi
2 m
µ

λ =
π

.

Also, x x x x
x

dv dv v dvdxa
dt dx dt dx

= = = .� …(ii)

As 2 2 2
x yv v v+ = ,

x x y y2v dv 2v dv 0+ =

giving	 x x y yv dv v dv .= − � …(iii)

From (i), (ii) and (iii),

y y yv dv v

dx x

λ
= 	 or ydvdx .

x
=

λ

Initially 0x x= and yv 0= . At minimum separation 
from the wire, xv 0=  so that yv v= − .

Thus 
x v

y

x 00

dvdx
x

−

=
λ∫ ∫ 	or, 

0

x vln
x

= −
λ

or, 
2 mv

qiv 0
0 0x x e x e

π
−
µ− λ= =

Example 11: Figure shows a cross section of a large 
metal sheet carrying an electric current along its 
surface. The current in a strip of width dl is Kdl where K 

is a constant. Find the magnetic field at a point P at a 
distance x from the metal sheet.

P

x

Sol: Field due to the sheet will be symmetric. Field lines 
will be parallel to the sheet at points near it. Select a 
rectangular amperian loop and use Ampere’s Law to 
find the field.

Consider two strips A and C of the sheet situated 
symmetrically on the two sides of P.The magnetic field 
at P due to the strip A is aB  perpendicular to AP and 
that due to the strip C is cB  perpendicular to CP. The 
resultant of these two is parallel to the width AC of the 
sheet. The field due to the whole sheet will also be in 
this direction. Suppose this field has magnitude B.

The field on the opposite side of the sheet at the 
same distance will also be B but in opposite direction. 
Applying Ampere’s law to the rectangle shown in figure.

Ba

BC

P

C

O dl

x

B P

B

l
(a) (b)

x

x

02Bl Kl= µ 	or, 0
1B K
2

= µ Note that it is independent of x.

JEE Main/Boards

Exercise 1

Q.1 A circular coil of wire consisting of 100 turns, each 
of radius 8.0 cm carries current of 0.40 A. What is the 
magnitude of the magnetic field B at the center of the 
coil?

Q.2 A long straight wire carries a current of 35 A. What 
is the magnitude of the field B at a point 20 cm from 
the wire?

Q.3 A long straight wire in the horizontal plane carrier 
of 50 A in north to south direction. Give the magnitude 
and direction of Bat a point 2.5 m east of the wire.

Q.4 A horizontal overhead power line carries a current 
of 90 A in east west direction. What is the magnitude 
and direction of the magnetic field due to the current 
1.5 m below the line?

Q.5 What is the magnitude of a magnetic force per unit 
length on a wire carrying a current of 8 A and making an 
angle of 30°with the direction of a uniform magnetic 
field of 0.15 T?

Q.6 In a chamber, a uniform magnetic field of 6.5 
G(1G= 410− T) is maintained. An electron is shot into 
the field with a speed of 64.8 10× 1ms− normal to the 
field. Explain why the path of the electron is a circle. 
Determine the radius of the circular orbit.
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( )19 31
ee 1.6 10 C, m 9.1 10 kg− −= × = ×

Q.7 (i) A circular coil of 30 turns and radius 8.0 cm 
carrying a current of 6.0 A is suspended vertically in a 
uniform horizontal magnetic field of magnitude 1.0 T. 
The field lines make an angle of 60o with the normal of 
the coil. Calculate the magnitude of the counter torque 
that must be applied to prevent the coil from turning.

(ii) Would your answer change, if the circular coil in (a) 
were replaced by a planner coil of some irregular shape 
that encloses the same area? (All other particulars are 
also unaltered.)

Q.8 Two concentric circular coils X and Y radii 16 cm 
and 10 cm, respectively, lie in the same vertical plane 
containing the north to south direction. Coil X has 20 
turns and carries a current 16 A; coil Y has 25 turns and 
carries a current of 18 A. The sense of the current in 
X is anticlockwise, and clockwise in Y, for an observer 
looking at the coils facing west. Give the magnitude 
and direction of the net magnetic field due to the coils 
at their center.

Q.9 A straight horizontal conducting rod of length 0.45 
m and mass 60 g is suspended by two vertical wires at 
its ends. A current of 5.0 A is set up in the rod through 
the wires.

(a) What magnetic field should be set up normal to the 
conductor in order that the tension in the wire is zero?

(b) What will be the total tension in the wires if the 
direction of current is reversed keeping the magnetic 
field same as before?

Q.10 The wires which connect the battery of an 
automobile to its starting motor carry a current of 300 
A (for a short time). What is the force per unit length 
between its wires if they are 70 cm long and 1.5 cm 
apart? Is the force attractive of repulsive?

Q.11 A uniform magnetic field of 1.5 T exists in a 
cylindrical region of radius10.0 cm, its direction parallel 
to the axis along east to west. A wire carrying current 
of 7.0 A in the north to south direction passes through 
this region. What is the magnitude and direction of the 
force on the wire if, 

(a) The wire intersects the axis,

(b) The wire is turned from N-S to northeast-northwest 
direction,

(c) The wire in the N-S direction is lowered from the axis 
by a distance of 6.0 cm?

Q.12 A circular coil of N turns and radius R carries a 
current I. It is unwound and rewound to make another 
coil of radius R/2. Current I remaining the same. 
Calculate the ratio of the magnetic moments of the 
new coil and the original coil.

Q.13 A circular coil of 20 turns and radius 10 cm is 
placed in a uniform magnetic field of 0.10 T normal to 
the plane of the coil. If the current in the coil is 5.0 A, 
what is the

(a) Total torque on the coil,

(b) Total force on the coil

(c) Average force on each electron is the coil due to the 
magnetic field?

(The coil is made of copper wire of cross-sectional area 
510− 2m , and the free electron density in copper is 

given to be about 29 310 m− .)

Q.14 State the Biot-Savart law for the magnetic field 
due to a current-carrying element. Use this law to 
obtain a formula for magnetic field at the center of a 
circular loop of radius a carrying a, steady current I.

Q.15 Give the formula for the magnetic field produced 
by a straight infinitely long current-carrying wire. 
Describe the lines of field B in this case.

Q.16 How much is the density B at the center of a long 
solenoid?

Q.17 A proton shot at normal to magnetic field describe 

a circular path of radius R. If a deuteron ( )2
1H is to 

move on the same path, what should be the ratio of the 
velocity of proton and the velocity of deuteron?

Q.18 State the principle of cyclotron.

Q.19 A charge q is moving in a region where both the 
magnetic field B and electric field E are simultaneously 
present. What is the Lorentz force acting on the charge?

Q.20 A charged particle moving in a straight line enters 
a uniform magnetic field at an angle of 45° . What will 
be its path?

Q.21 A current of 1A is flowing in the sides of an 
equilateral triangle of side 24.5 10 m.−× Find the 
magnetic field at the centroid of the triangle.
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r
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o
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o

O

Q.22 The radius of the first electron orbit of a hydrogen 
atom is 0.5 Å. The electron moves in this orbit with a 
uniform speed of 6 12.2 10 ms−× . What is the magnetic 
field produced at the center of the nucleus due to the 
motion of this electron?

Q.23 A solenoid is 2 m long and 3 cm in diameter. It 
has 5 layers of windings of 1000 turns each and carries 
a current of 5 A. What is the magnetic field at itscenter? 
Use the standard value of 0µ .

Q.24 A proton entersa magnetic field of flux density 2.5 

T with a velocity of 7 11.5 10 ms−× at an angle of 30°with 
the field. Find the force on the proton.

Q.25Two parallel wires one meter apart carry currents of 
1A and 3 respectively in opposite directions. Calculate 
the force per unit length acting between these wires.

Q.26 A solenoid of length 0.4, and having 400 turns 
of wire carries a current of 3 A. A thin coil having 10 
turns of wire and radius 0.01 m carries a current 0.4 A. 
Calculate the torque required to hold the coil in the 
middle of the solenoid with its axis perpendicularto the 
axis of the solenoid.

Q.27 In a circuit shown in figure a voltmeter reads 
30 V, when it is connected across 400ohm resistance. 
Calculate what the same voltmeter will read when 
connected across the 300Ω resistance?

300�

v

400�

60v

Q.28 Two long straight parallel wires are 2m apart, 
perpendicular to the plane of the paper. The wire A 
carries a current of 9.6 ampere directed into the plane 
of the paper. The wire B carries a current such that the 
magnetic field induction at the point P, at a distance of 

10
11

m from the wire B, is zero. Calculate 

(i) the magnitude and direction of current in B (ii) the 
magnitude of magnetic field induction at S 

(ii) the force per unit length of the wire B.

Exercise 2 

Q.1 A current 1 ampere is flowing through each of 
the bent wires as shown figure. The magnitude and 
direction of magnetic field at O is

R’

R

O

(A) 0i 1 2
4 R R
µ  

+ ′ 
	 (B) 0i 1 3

4 R R
µ  

+ ′ 

(C) 0i 1 3
8 R 2R
µ  

+ ′ 
	 (D) 0i 1 3

8 R R
µ  

+ ′ 

Q.2 Net magnetic field at the center of the circle O 
due to a current carrying loop as shown in figure is 
( )180θ < °

i i O�

(A) Zero

(B) Perpendicular to paper inwards

(C) Perpendicular to paper outwards

(D) Is perpendicular to paper inwards if θ ≤ 90° and 
perpendicular to paper outwards if 90 180° ≤ θ < °

Q.3 A charge particle A of charge q=2C has velocity 
v=100 m/s. When it passes through point A and 
has velocity in the direction shown. The strength of 
magnetic field at point B due to this moving charge is 
(r=2 m). B

A

v

r
30

o

(A) 2.5 Tµ 	 (B) 5.0 Tµ

(C) 2.0 Tµ 	 (D) None
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Q.4 Three rings, each having equal radius R, are placed 
mutually perpendicular to each other and each having 
its center at the origin of co-ordinates system. If current 
is flowing through each ring then the magnitude of the 
magnetic field at the common center is

y

z

x

(A) 0I
3

2R
µ

	 (B) Zero	

(C) ( ) 0I
2 1

2R
µ

− 	 (D) ( ) 0I
3 2

2R
µ

−

Q.5 Two concentric coils X and Y of radii 16 cm and 
10 cm lie in the same vertical plane containing N-S 
direction. X has 20 turns and carries 16 A. Y has 25 turns 
& carries 18 A. X has current in anticlockwise direction 
and Y has current in clockwise direction for an observer, 
looking at the coils facing the west. The magnitude of 
net magnetic field at their common center is

(A) 45 10 T−π×  towards west

(B) 413 10 T−π×  towards east

(C) 413 10 T−π×  towards west

(D) 45 10 T−π×  towards east

Q.6 Equal current i is flowing in three infinitely long 
wires along positive x, y and z directions. The magnetic 
field at a point (0, 0, -a) would be:

(A) ( )0i ˆ ˆj i
2 a
µ

−
π

	 (B) ( )0i ˆ ˆi j
2 a
µ

+
π

	

(C) ( )0i ˆ ˆi j
2 a
µ

−
π

	 (D) ( )0i ˆ ˆ ˆi j k
2 a
µ

+ +
π

Q.7 An electron is moving along positive x-axis. A 
uniform electric field exists towards negatively y-axis. 
What should be the direction of magnetic field of 
suitable magnitude so that net force of electron is 
zero.

(A) Positive z-axis	 (B) Negative z-axis

(C) Positive y-axis	 (D) Negative y-axis

Q.8 A particle of charge q and mass m starts moving 
from the origin under the action of an electric field 

0 0
ˆ ˆE E i and B B i= = with velocity 0

ˆv v j=


. The speed of 

the particle will become 2 0v after a time

(A) 02mv
t

qE
= 	 (B) 

0

2Bqt
mv

= 	

(C) 
0

3Bq
t

mv
= 	 (D) 03mv

t
qE

=

Q.9 An electron is projected with velocity 0v in a uniform 
electric field E perpendicular to the field. Again it is 
projected with velocity 0v perpendicular to a uniform 
magnetic field B. If 1r is initial radius of curvature just 
after entering in the electric field and 2r in initial radius 
of curvature just after entering in magnetic field then 
the ratio 1 2r r is equal to 

(A) 
2Bv 0

E
	 (B) B

E
	 (C) 0Ev

B
	 (D) 0Bv

E

Q.10 A uniform magnetic field 0
ˆB B j=  exists in a space. 

A particle of mass m and charge q is projected towards 
negative x-axis with speed v from the point (d, 0, 0). 
The maximum value v for which the particle does not 
hit y-z plane is

(A) 02B q
dm

	 (B) 0B q
m

	 (C) 0B q
2dm

	 (D) 0B qd
2m

Q.11 Two protons move parallel to each other, keeping 
distance r between them, both moving with same 
velocity v. Then the ratio of the electric and magnetic 
force of interaction between them is.

(A) c2/v2	 (B) 2c2/v2

(C) c2/2v2	 (D) None

Q.12 Three ions H ,He+ + and 2O+ having same kinetic 
energy pass through a region in which there width is a 
uniform magnetic field perpendicular to their velocity, 
then:

(A) H+  will be least deflected.

(B) He+  and 2O+  will be deflected equally.

(C) 2O+ will be deflected most.

(D) all will be deflected equally.

Q.13 An electron having kinetic energy T is moving in 
a circular orbit of radius R perpendicular to a uniform 



21.48  |   Moving Charges and Magnetism

magnetic induction B. If kinetic energy is doubled and 
magnetic induction tripled, the radius will become.

(A) 3R
2

	 (B) 3 R
2

(C) 2 R
9

	 (D) 4 R
3

Q.14 A charged particle moves in magnetic field 
ˆB 10i=  with initial velocity u 5i 4 j= +


  .

The path of the particle will be.

(A) Straight line	 (B) Circle

(C) Helical	 (D) None

Q.15  A electron experiences a force ( ) 13ˆ ˆ4.0i 3.0 j x10 N−+

in a uniform magnetic field when its velocity is
7 12.5k 10 ms−× .When the velocity is redirected and 

becomes ( ) 7 1ˆ ˆ1.5i 2.0 j x10 ms−− , the magnetic force 

of the electron is zero. The magnetic field vector B is :

(A) ˆ ˆ0.075i 0.1 j− + 	 (B) ˆ ˆ0.1i 0.075 j+

(C) ˆ ˆ ˆ0.075i 0.1 j k+ + 	 (D) ˆ ˆ0.075i 0.1 j+

Q.16 An electron moving with a velocity 1
ˆV 2im / s=  

at a point in a magnetic field experiences a force 

1
ˆF 2 j N= − . If the electron is moving with a velocity 

2
ˆV 2 j m / s=  at the same point, it experiences a force

2
ˆF 2i N=+ . The force the electron would experience if it 

were moving with a velocity 3
ˆV 2km / s=  at the same 

point is 

(A) Zero	 (B) ˆ2k N

(C) ˆ2k N− 	 (D) Information is insufficient

Q.17 The direction of magnetic force on the electron as 
shown in the diagram is along

y

x

i

e

(A) y-axis	 (B) –y-axis	 (C) z-axis	 (D) –z-axis

Q.18 A block of mass m & charge q is released on a 
long smooth inclined plane magnetic field B is constant, 
uniform, horizontal and parallel to surface as shown. 
Find the time from start when block loses contact with 
the surface.

(A) mcos
qB

θ 	 (B) mcosec
qB

θ

(C) mcot
qB

θ 	 (D) None

Q.19 A metal ring of radius r=0.5m with its plane normal 
to a uniform magnetic field B of induction 0.2T carries 
a current I=100A. The tension in Newton developed in 
the ring is:

q

m
B

�

(A) 100	 (B) 50

(C) 25	 (D) 10

Q.20 In the shown a coil of single turn is wound on a 
sphere of radius R and mass m. The plane of the coil is 
parallel to the plane and lies in the equatorial plane of 
the sphere. Current in the coil is i. The value of B if the 
sphere is in equilibrium is 

B

�

(A) mgcos
iR

θ
π

	 (B) mg
iRπ

(C) mg tan
iR

θ
π

	 (D) mgsin
iR

θ
π

Q.21 The magnetic moment of a circular orbit of radius 
‘r’ carrying a charge ‘q’ and rotating with velocity v is 
given by

(A) qvr
2π

	 (B) qvr
2

(C) qv rπ 	 (D) 2qv rπ
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Previous Years’ Questions 

Q.1 Two very long straight parallel wires carry steady 
currents I and –I respectively. The distance between the 
wires is d. At a certain instant of time, a point charge q is 
at a point equidistant from the two wires in the plane of 
the wires. Its instantaneous velocity V


 is perpendicular 

to this plane. The magnitude of the force due to the 
magnetic field acting on the charge at this instant is 
� (1998)

(A) 0Iqv
2 d
µ

π
	 (B) 0Iqv

d
µ

π

(C) 02 Iqv
d

µ

π
	 (D) Zero

Q.2 An infinitely long conductor PQR is bent to form a 
right angle as shown in Figure. A current I flows through 
PQR. The magnetic field due to this current at the point 
M is H1. Now, another infinitely long straight conductor 
QS is connected at Q, so that current is I/2 in QR as well 
as in QS, the current in PQ remaining uncharged. The 
magnetic field at M is now H2. The ratio H1/H2 is given 
by � (2000)

M

l Q
��

P 90
o

90
o

S
�

��

R

(A) 1/2	 (B) 1

(C) 2/3	 (D) 2

Q.3 Two long parallel wire are at a distance 2d apart. 
They carry steady equal currents flowing out of the 
plane of the paper as shown. The variation of the 
magnetic field B along the line XX’ is given by� (2000)

x x’

d d

x

d d

x

(a) (b)

x x’

d d

x x’
d d

(a) (b)

x x’

d d

x

d d

x

(a) (b)

x x’

d d

x x’
d d

(a) (b)

Q.4 A non-planar loop of conducting wire carrying a 
current I is placed as shown in the figure. Each of the 
straight section of the loop is of length 2a. The magnetic 
field due tothis loop at the point P(a,0,a) points in the 
direction� (2001)z

y

x

(A) ( )1 ˆ ˆj k
2

− + 	 (B) ( )1 ˆ ˆ ˆj k i
3

− + +

(C) ( )1 ˆ ˆ ˆi j k
3

+ + 	 (D) ( )1 ˆ ˆi k
2

+

Q.5 A coil having N turns is wound tightly in the form of 
a spiral with inner and outer radii a and b respectively. 
When a current I passes through the coil, the magnetic 
field at the center is � (2001)

(A) 0NI
b

µ
	 (B) 02 NI

a
µ

(C) 0NI blog
2(b a) a
µ

− 	 (D) 
N

0I blog
2(b a) a
µ  

 −  

Q.6 Two particles A and B of masses Am and Bm  
respectively and having the same charge are moving in 
a plane. A uniform magnetic field exists perpendicular 
to this plane. The speeds of the particles are AV and 

BV  respectively and the trajectories are as shown in the 
figure. Then� (2001)

A

B

(A) A A B Bm v m v< 		  (B) A A B Bm v m v>

(C) A B A Bm m and v v< <  (D) A B A Bm m and v v= =
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Q.7 A long straight wire along the z-axis carries a current 
I in the negative z-direction. The magnetic vector field 
B


 at a point having coordinate (x,y) on the z=0 plane is 
� (2002)

(A) 
( )0

2 2

ˆ ˆI yi xj

2 (x y )

µ −

π +
	 (B) 

( )0

2 2

ˆ ˆI xi yj

2 (x y )

µ −

π +

(C) 
( )0

2 2

ˆ ˆI xj yi

2 (x y )

µ −

π +
	 (D) 

( )0

2 2

ˆ ˆI xi yj

2 (x y )

µ −

π +

Q.8 A particle of mass m and charge q moves with a 
constant velocity v along the positive x-direction. It 
enters a region containing a uniform field B directed 
along the negative z-direction, extending from x=a 
to x=b. the minimum value of v required so that the 
particle can just enter the region x>b is � (2002)

(A) qbB
m    

(B) ( )q b a B

m

−

	   
(C) qaB

m
     (D) ( )q b a B

2m

+

Q.9 For a positively charged particle moving in a x-y 
plane initially along x-axis, there is a sudden change 
in its path due to presence of electric and/or magnetic 
fields beyond P. The curved path is shown in the x-y 
plane and is found to be non-circular.

Which one of the following combinations is possible?
� (2003)

x

y

O
P

(A) ˆ ˆE 0;B bj ck= = +
 

	 (B) ˆ ˆ ˆE ai; B ck ai= = +
 

(C) ˆ ˆE 0;B cj bk= = +
 

	 (D) ˆ ˆ ˆE ai; B ck bj= = +
 

Q.10 A current carrying loop is placed in a uniform 
magnetic field in four different orientations, I, II, III and 
IV, arrange them in the decreasing order of potential 
energy � (2003)

n
�

n
�

B B

(I) (II)

(III) (IV)

n
�

n
�

B B

(A) I > III > II > IV	  (B) I > II > III > IV

(C) I > IV > II > III	  (D) III > IV > I > II

Q.11 An electron moving with a speed u along the 
position x-axis at y=0 enters a region of uniform 

magnetic field 0
ˆB B k= −


 which exists to the right of 

y-axis. The electron exits from the region after sometime 
with the speed v at coordinate y, then� (2004)

x

y

e- u

(A) v>u, y<0	 (B) v=u, y>0

(C) v>u, y>0	 (D) v=u, v<0

Q.12 A magnetic field 0
ˆB B j= −


 exists in the region 

a<x<2a and 0
ˆB B j= −


, in the region 2a<x<3a, where B0 

is a positive constant. A positive point charge moving 

with a velocity 0
ˆv v i= −

 , where v0 is a positive constant, 

enters the magnetic field at x=a. 

B0

-B0

0
a 2a 3a

x

The trajectory of the charge in this region can be like
� (2007)

z

a 2a 3a
x(A)

z

a 2a 3a
x(B)

z

a 2a 3a
x

(  )C

z

a 2a 3a
x

(D)
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Q.13 Which of the field patterns given in the figure 
is valid for electric field as well as for magnetic field? 
� (2011)

(A) (B)

(  )C (D)

Q.14 A long insulated copper wire is closely wound as a 
spiral of N turns. The spiral has inner radius a and outer 
radius b. The spiral lies in the X-Y plane and a steady 
current I flows through the wire. The Z-component of 
the magnetic field at the center of the spiral is	� (2011)

(A) 0NI bln
2(b a) a
µ  

 −  
		      (B) 0NI b aln

2(b a) b a
µ  +

 − − 

(C) 0NI bln
2b a
µ  

 
 

		      (D) 0NI b aln
2b b a
µ  +

 − 

Q.15 Proton, Deuteron and alpha particle of the same 
kinetic energy are moving in circular trajectories in a 
constant magnetic field. The radii of proton, deuteron 
and alpha particle are respectively rp, rd and ra. Which 
one of the following relations is correct? 	� (2012)

(A) p dr r rα = =
		       (B) p dr r rα = <

(C) d pr r rα > >
	        (D) d pr r rα = >

Q.16 Two short bar magnets of length 1 cm each have 
magnetic moments 1.20 Am2 and 1.00 Am2 respectively. 
They are placed on a horizontal table parallel to each 
other with their N poles pointing towards the South. 
They have a common magnetic equator and are 
separated by a distance of 20.0 cm. The value of the 
resultant horizontal magnetic induction at the mid 
- point O of the line joining their centres is close to 
(Horizontal component of earth’s magnetic induction is 

5 23.6 10 Wb / m−× )� (2013)

(A) 4 22.56 10 Wb / m−× 	 (B) 4 23.50 10 Wb / m−×

(C) 4 25.80 10 Wb / m−× 	 (D) 5 23.6 10 Wb / m−×

Q.17 The coercivity of a small magnet where the 
ferromagnet gets demagnetized is 3 13 10 Am−× . The 
current required to be passed in a solenoid of length 10 
cm and number of turns 100, so that the magnet gets 
demagnetized when inside the solenoid, is:� (2014)

(A) 3A         (B) 6A	 (C) 30 mA	 (D) 60 mA

Q.18 A rectangular loop of sides 10 cm and 5 cm carrying 
a current I of 12 A is placed in different orientations as 
shown in the figures below:

z

B

I

I I

I

y

x

I
I

I

I

y

x

z

B

x

y

z

B

I

I
I

I

I

y

x

z

B

(A) (  )C

(B) (D)

z

B

I

I I

I

y

x

I
I

I

I

y

x

z

B

x

y

z

B

I

I
I

I

I

y

x

z

B

(A) (  )C

(B) (D)

If there is a uniform magnetic field of 0.3 T in the positive 
z direction , in which orientations the loop would be 
in (i) stable equilibrium and (ii) unstable equilibrium?	
� (2015)

(A) (a) and (c), respectively   

(B) (b) and (d), respectively

(C) (b) and (c), respectively   

(D) (a) and (b), respectively
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Exercise 1

Q.1 A system of long four parallel conductors whose 
sections with the plane of the drawing lie at the vertices 
of a square there flow four equal currents. The directions 
of these currents are as follows:

I
2

I
1

Those marked ⊗  point away from the reader, while 
those marked with a dot point towards the reader. 
How is the vector of magnetic induction directed at the 
center of the square?

Q.2 A long straight wire carriers a current of 10A directed 
along the negative y-axis as shown in figure. A uniform 
magnetic field B0 of magnitude 10-6T is directed parallel 
to the x-axis. What is the resultant magnetic field at the 
following points?

x

y
z

i

(a) x=0, z=2m ;	

(b) x=2m, z=0

(c) x=0, z=-0.5m

Q.3 Find the magnetic field at the center P of square of 
side a shown in figure.

ii

P

Q.4 What is the magnitude of magnetic field at the 
center ‘O’ of loop of radius 2 m made of uniform wire 

when a current of 1amp enters in the loop and taken 
out of it by two long wires as shown in the figure.

O

45
o

1amp

1amp
90

o

�

�

Q.5 Find the magnetic induction at the origin in the 
figure shown.

x

z

i

i
i

iA

y

Q.6 Find themagnetic induction at point O, if the current 
carrying wire is in the shape shown in the figure.

I

O

r

r

Q.7 Find the magnitude of the magnetic induction 
B of a magnetic field generated by a system of thin 
conductors along which a current I is flowing at a point 
A(O,R,O), that is the center of a circular conductor of 
radius R. The ring is in the yz plane.

X

Y

R

RR R

Z

R

I

Q.8 A cylindrical conductor of radius R carriers a current 
along its length. The current density J, however, is not 
uniform over the cross section of the conductor but is 
a function of the radius according to J=br, where b is a 
constant. Find an expression for the magnetic field B.

(a) at 1r R< (b) at distance 2r R< , measured from the 
axis

JEE Advanced/Boards
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R

i

Q.9 Electric charge q is uniformly distributed over a rod 
of length L. The rod is placed parallel to a long wire 
carrying a current I. The separation between the rod 
and the wire is a. Find the force needed to move the rod 
along its lengths with a uniform velocity V.

Q.10 An electron moving with a velocity 6 1ˆ5x10 ms j−  

in the uniform electric field of 7 1ˆ5x10 Vm j− . Find the 
magnitude and direction of a minimum uniform 
magnetic field in tesla that will cause the electron to 
move undeviated along it original path.

Q.11 A charged particle (charge q, mass m) has velocity 
V0 at origin in +x direction. In space there is a uniform 
magnetic field B in –z direction. Find the y coordinate of 
the particle when it crosses y axis.

Q.12 A proton beam passes without deviation through 
a region of space where there are uniform transverse 
mutually perpendicular electric and magnetic field with 
E and B. Then the beam strikes a grounded target. Find 
the force imparted by a beam on the target if the beam 
current is equal to I.

Q.13 A conducting circular loop of radius r carriers a 
constant current i. It is placed in a uniform magnetic 
field B0 such that B0 is perpendicular to the plane of the 
loop. Find the magnetic force acting on the loop.

Q.14 An arc of a circular loop of radius R is kept in the 
horizontal plane and a constant magnetic field B is 
applied in the vertical direction as shown in the figure. 
If the carries current I then find the force on the arc.

�
B

x x x x x x

x x x x x x

x x x x x x

x x x x x x

x x x x x x

90
o

I

x x x x x x

Q.15 A rectangular loop of wire is oriented with the 
left corner at the origin, one edge along X-axis and 
the other edge along. Y-axis as shown in the figure. A 
magnetic field is into the page and has a magnitude 

that is given by yβ = α where α  is constant. Find the 
total magnetic force on the loop if it carries current i.

a
Y

B
a

X

Q.16 A particle of charge +q and mass m moving 
under the influence of a uniform electric field E î  and a 
magnetic field B k̂  enters in I quadrant of a coordinate 
system at a point (0, a) with initial velocity v î  and leaves 
the quadrant at a point (2a, 0) with velocity ˆ2v j− . Find 
Magnitude of electric field

(a) Rate of work done by the electric field at point

(b) (0, a) Rate of work done by both the fields at.

(c) (2a, 0).

Q.17 A square current carrying loop made of thin wire 
and having a mass m=10g can rotate without friction 
with respect to the vertical axis IOO , passing through 
the center of the loop at right angles to two opposite 
sides of the loop. The loop is placed in a uniform 
magnetic field with an induction B=10-1T directed at 
right angles to the plane of the drawing. A current 
I=2A is flowing in the loop. Find the period of small 
oscillations that the loop performs about its position of 
stable equilibrium.

BO

i

O1

Q.18 An infinitely long straight wire carries a 
conventional current I as shown in the figure. The 
rectangular loop carries a conventional current I’ in 
the clockwise direction. Find the net force on the 
rectangular loop.

a

b

ci’
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Q.19 3 Infinitely long thin wires each carrying current i 
in the same direction, are in the x-y plane of a gravity 
free space. The central wire is along the y-axis while 
the other two are along x d.= ± (i) Find the locus of the 
points for which the magnetic field B is zero.

(ii) If the central wire is displaced along the Z-direction 
by a small amount & released, show that it will execute 
simple harmonic motion. If the linear density of the 
wires is λ , find the frequency of oscillation.

Q.20 Q charge isuniformly distributed over the same 
surface of a right circular cone of semi-vertical angle 
θ  and height h. The cone is uniformly rotated about 
its axis at angular velocityω . Calculated associated 
magnetic dipole moment.

h
�

�

Q.21 Four long wires each carrying current I as shown 
in the figure are placed at the point A, B, C and D. Find 
the magnitude and direction of 

Y

D(-a,a) A(a,a)+

C(-a,a) B(a,-a)+

X

(i) Magnetic field at the center of the square.

(ii) Force per metre acting on wire at point D.

Q.22 A wire loop carrying current I is placed in the X-Y 
plane as shown in the figure.

I

a

P

a

I

1
2
0

o

M

N

V

X

Y

(a) If a particle with charge +Q and mass m is placed at 
the center P and given a velocity along NP (see figure). 
Find its instantaneous acceleration.

(b) If an external uniformmagnetic induction field 
ˆB Bi= is applied, find the torque acting on the loop 

due to the field.

Q.23 (a) A rigid circular loop of radius r & mass m lies in 
the xy plane on a flat table and has a current I flowing 
in it. At this particular place, the earth’s magnetic field 
is x y

ˆ ˆB B i B j= + . How large must I be before one edge 
of the loop will lift from table?

(b) Repeat if, x z
ˆ ˆB B i B k.= +

Q.24 A conductor carrying a current is placed parallel 
a current per unit width j0 and width d, as shown in the 
Figure. 

z

hj0
� yd

Find the force per unit length on the conductor.

Q.25 The figure shows a conductor of weight 1.0N and 
length L= 0.5m placed on a rough inclined plane making 
an angle 300 with the horizontal so that conductor is 
perpendicular to a uniform horizontal magnetic field 
of induction B=0.10 T. The coefficient of static friction 
between the conductor and the plane is 0.1. A current 
of I=10A flows through the conductor inside the plane 
of this paper as shown. What is the force that should be 
applied parallel to the inclined plane for sustaining the 
conductor at rest?

Q.26 An electron gun G emits electron of energy 2kev 
traveling in the (+) ve x-direction. The electron are 
required to hit the spot S where GS=0.1m & line GS 
makes an angle of 600 with the x-axis, as shown in the 
figure. A uniform magnetic field B parallel to GS exists 
in the region outside to the electron gun. Find the 
minimum value of B needed to make the electron hit S.

S

Gun X

B
60

o

B
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Q.27 Two coils each of 100 turns are held such that one 
lies in the vertical plane with their centers coinciding. 
The radius of the vertical coil is 20cm and that of the 
horizontal coil is 30cm. How would you neutralize the 
magnetic field of the earth at their common center? 
What is the current to be passed through each coil? 
Horizontal component of earth’s magnetic induction = 
3.49 x 10-5T and angle of dip=300.

Q.28 An infinite wire, placed along z-axis, has current 
i1 in positive z-direction. A conducting rod placed in 
xy plane parallel to y-axis has current i2 in positive 
y-direction. The ends of the rod subtend +300 and -600 
at the origin with positive x-direction. The rod is at a 
distance a from the origin. Find net force on the rod.

Q.29 A square loop of wire of edge a carries a current i.

(a) Show that B for a point on the axis of the loop and a 
distance x from its center is given by, 

( )( )
2

0
1/22 2 2 2

4 ia
B

4x a 4x 2a

µ
=
π + +



(b) Can the result of the above problem be reduced to 
give field at x=0?

Q.30 A straight segment OC (of length L meter) of a 
circuit carrying a current I amp is placed along the 
x-axis. Two infinitely line straight wires A and B, each 
extending from z to= −∞ + ∞ , are fixed by y=−a  
meter and y=+a meter respectively, as shown in the 
Figure. 

y

O

B

C

A

x

z

If the wires A and B each carry a current I amp into 
plane of the paper. Obtain the expression for the force 
acting on the segment OC. What will be the force OC if 
current in the wire B is reversed?

Exercise 2 

Single Correct Choice Type

Q.1 Two very long straight parallel wires, parallel to -y 
direction, respectively. The wire are passes through the 
x-axis at the point (d, 0, 0) and (-d, 0, 0)respectively. The 
graph of magnetic field z-component as one moves 
along the x-axis from x=-d to x=+d, is best given by

(A)
o

x

o x
(B)

(  )C (D)
o xo

Q.2 A long thin walled pipe of radius R carries a current 
I along its length. The current density is uniform over 
the circumference of the pipe. The magnetic field at the 
center of the pipe due to quarter portion of the pipe 
shown, is 

(A) 0
2

I 2

4 R

µ

π
	 (B) 0

2

I

R

µ

π

(C) 0
2

2 I 2

R

µ

π
	 (D) None

Q.3 An electron (mass=9.1 x 10-31; charge=-1.6 x 10-19C) 
experiences no deflection if subjected to an electric field 
of 3.2 x 105 V/m and a magnetic field of 2.0 x 10-3 Wb/
m2. Both the fields are normal to the path of electron 
and to each other. If the electric field is removed, then 
the electron will revolve in an orbit of radius:

(A) 45m	 (B) 4.5m	 (C) 0.45m	 (D) 0.045m

Q.4 A particle of specific charge (charge/mass) α  starts 
moving from the origin under the action of an electric 
field 0

ˆE E i=  and magnetic field 0
ˆB B k= . Its velocity at

( ) ( )0 0,
ˆ ˆx , y 0 is 4i 3 j− . The value of x0 is:

(A) 0

0

E13
2 B
α

	 (B) 0

0

16 B
E
α

(C) 
0

25
2 Eα

	 (D) 
0

5
2B
α
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Q.5 A particle of specific charge (q/m) is projected from 
the origin of coordinates with initial velocity [ui-vj]. 
Uniform electric magnetic field exist in the region along 
the +y direction, of magnitude E and B. The particle will 
definitely return to the origin once if

(A) vB / 2 E π  is an integer

(B) ( )1/22 2u v B / E + π   is an integer

(C) vB / E π   in an integer

(D) uB / E π   is an integer.

Q.6 Two particles of charges +Q and –Q are projected 
from the same point with a velocity v in a region of 
uniform magnetic field B such that the velocity vector 
makes an angle θ  with the magnetic field. Their masses 
are M and 2M, respectively. Then, they will meet again 
for the first time at a point whose distance from the 
point of projection is 

(A) 2 Mv cos / QBπ θ 	 (B) 8 Mv cos / QBπ θ

(C) Mv cos QBπ θ 	 (D) 4 Mv cos / QBπ θ

Q.7 A particle with charge +Q and mass m enters a 
magnetic field of magnitude B, existing only to the 
right of the boundary YZ. The direction of the motion 
of the particle is perpendicular to the direction of B. Let

2 MT
QB
π

= . The time spent by the particle in the field 

will be 

(A) T θ 	 (B) 2T θ

(C) 2T
2

 π + θ
 π 

	 (D) 2T
2

 π − θ
 π 

m
+Q

Y
B

Z

�

x

x

x

x

x

Q.8 In the previous question, if the particle has-Q 
charge, the time spend by the particle in the field will 
be

(A) T θ 	 (B) 2T θ

(C) 2T
2

 π + θ
 π 

	 (D) 2T
2

 π − θ
 π 

Q.9 A conducting wire bent in the form of a parabola 
2y 2x=  carriers a current i=2A as shown in figure. This 

wire is placed in a uniform magnetic field ˆB 4k= −  Tesla. 
The magnetic force on the wire is (in newton).

y(m) A

B

2 x(m)

(A) ˆ16i− 	 (B) ˆ32i

(C) ˆ32i− 	 (D) ˆ16i

Q.10 A semicircular current carrying wire having radius 
R is placed in x-y plane with its center at origin ‘O’. 
There is non-uniform magnetic field

oB x ˆB k
2R

=


 (here oB is +ve constant) is existing in the 

region. The magnetic force acting on semicircular wire 

will be along
Y

(-R,0,0) (+R,0,0)

i

X

Z

(A) –x-axis	 (B) +y-axis

(C) –y-axis	 (D) +x-axis

Q.11 A square loop ABCD, carrying a current I, is placed 
near and coplanar with a long straight conductor XY 
carrying a current I, the net force on the loop will be

B C

L

A D

i

LL/2

(A) 02 Ii
3
µ

π
	 (B) 0Ii

2
µ

π 	
(C) 02 Iil

3
µ

π
	 (D) 0Iil

2
µ

π

Q.12 A conducting ring of mass 2kg and radius 0.5m is 
placed on a smooth horizontal plane. The ring carries 
a current i=4A. A horizontal magnetic field B=10T is 
switched on at time t=0 as shown in figure. The initial 
angular acceleration of the ring will be
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B
�

(A) 240 rad / sπ 	 (B) 220 rad / sπ

(C) 25 rad / sπ 	 (D) 215 rad / sπ

Q.13 In the following hexagons, made up of two 
different material P and Q, current enters and leaves 
from points X and Y respectively. In which case the 
magnetic field at its center is not zero.

Q

Q

P

P

Y

Q

P
X

Q

Q

P
P

Y

Q

P
X

Q

P

P
Y

Q

P
X

Q
Q

P

P
Y

Q

P
X

Q

(A) (B)

(  )C (D)

Q.14 Current flows through uniform, square frames as 
shown. 

In which case is the magnetic field at the center of the 
frame not zero?

(A) (B)

(  )C (D)

Q.15 In a region of space, a uniform magnetic field 
B exists in the y-direction. A proton is fired from the 
origin, with initial velocity v making a small angle α
with the y-direction in the yz plane. In the subsequent 
motion of the proton, z

B

v

y
B

�
O

x

(A) Its x-coordinate can never be positive

(B) Its x- and z-coordinates cannot both be zero at the 
same time.

(C) Its z-coordinate can never be negative.

(D) Its y-coordinate will be proportional to the square 
of its time of flight.

Multiple Correct Choice Type

Q.16 Which of the following statements is correct:

(A) A charged particle enters a region of uniform 
magnetic field at an angle 850 to magnetic lines of 
force. The path of the particle is a circle.

(B) An electron and proton are moving with the same 
kinetic energy along the same direction. When they 
pass through uniform magnetic field perpendicular to 
their direction of motion, they describe circular path.

(C) There is no change in the energy of a charged 
particle moving in a magnetic field although magnetic 
force acts on it.

(D) Two electrons enter with the same speed but in 
opposite direction in a uniform transverse magnetic 
field. Then the two describe circle of the same radius 
and these move in the same direction.

Q.17 Consider the magnetic field produced by a finitely 
long current carrying wire.

(A) The lines of field will be concentric circles with 
centers on the wire.

(B) There can be two points in the same plane where 
magnetic fields are same.

(C) There can be large number of points where the 
magnetic field is same.

(D) The magnetic field at a point is inversely proportional 
to the distance of the point from the wire.

Q.18 A long straight wire carriers a current along the 
x-axis. Consider the points A(0,1,0), B(0,1,1), C(1,0,1) 
and D(1,1,1). Which of the following pairs of points will 
have magnetic field of the same magnitude?

(A) A and B   (B) A and C	    (C) B and C	 (D) B and D

Q.19 Consider three quantities x=E/B, 0 0y 1 /= µ ε  

and 1z
CR

= . Here, l is the length of a wire, C is a 

capacitance and R is a resistance. All other symbols 

have standard meanings.
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(A) x,y have the same dimensions

(B) y, z have the same dimension

(C) z, x have the same dimensions

(D) None of the three pairs have the same dimensions.

Q.20 Two long thin, parallel conductors carrying equal 
currents in the same direction are fixed parallel to the 
x-axis, one passing through y=a and the other through 
y=-a. The resultant magnetic field due to the two 
conductors at any point is B. Which of the following 
are correct?

z

y

x

-a

i
O

i

a

(A) B=0 for all points on the x-axis

(B) At all points on the y-axis, excluding the origin, B 
has only a z-component.

(C) At all points on the z-axis, excluding the origin, B 
has only an x-component.

Q.21 An electron is moving along the positive X-axis. 
You want to apply a magnetic field for a short time so 
that the electron may reverse its direction and move 
parallel to the negative X-axis. This can be done by 
applying the magnetic field along.

(A) Y-axis	 (B) Z-axis

(C) Y-axis only	 (D) Z-axis only

Q.22 Two identical charged particles enter a uniform 
magnetic field with same speed but at angles 300 and 
600 with field. Let a, b and c be the ratio of their time 
periods, radii and pitches of the helical paths then

(A) abc=1	 (B) abc > 1

(C) abc < 1	 (D) a=bc

Q.23 Consider the following statements regarding 
a charged particle in a magnetic field. Which of the 
statement are true :

(A) Starting with zero velocity, it accelerates in a 
direction perpendicular to the magnetic field.

(B) While deflecting in magnetic field its energy 
gradually increases.

(C) Only the component of magnetic field perpendicular 
to the direction of motion 

of the charged particle is effective in deflecting it.

(D) Direction of deflecting force on the moving charged 
particle is perpendicular to its velocity.

Assertion Reasoning Type

(A) Statement-I is true, statement-II is true and 
Statement-II is correct explanation for Statement-I.

(B) Statement-I is true, statement-II is true and statement-
II is NOT the correct explanation for statement-I.

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true.

Q.24 Statement-I: A charged particle can never move 
along a magnetic field line in absence of any other 
force.

Statement-II: Force due to magnetic field is given by 

( )F q v xB=
  .

Q.25 Statement-I : It is not possible for a charged 
particle to move in a circular path around a long 
straight uncharged conductor carrying current under 
the influence of its magnetic field alone.

Statement-II: The magnetic force (if nonzero) on a 
moving charged particle is normal to its velocity.

Q.26 Statement-I: For a charged particle to pass through 
a uniform electro-magnetic field without change in 
velocity, its velocity vector must be perpendicular to 
the magnetic field.

Statement-II: Net Lorentz force on the particle is given 
by F q E v xB = + 



Q.27 Statement-I: Two long parallel conductors 
carrying current in the same direction experience a 
force of attraction.

Statement-II: The magnetic fields produced in the 
space between the conductors are in the same direction.

Q.28 Statement-I: Ampere law can be used to find 
magnetic field due to finite length of a straight current 
carrying wire.
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Statement-II: The magnetic field due to finite length 
of a straight current carrying wire is symmetric about 
the wire.

Q.29 Statement-I: A pendulum made of a non-
conducting rigid massless rod of length   is attached to 
a small sphere of a mass m and charge q. The pendulum 
is undergoing oscillations of small amplitude having 
time period T. Now a uniform horizontal magnetic field 
out of plane of page is switched on. As a result of this 
change, the time period of oscillations will change.

B
�

�

m,q

Statement-II: In the situation of statement-I, after the 
magnetic field is switched on the tension in string will 
change (except when the bob is at extreme position).

Comprehension Type 

Paragraph 1: Magnetic field intensity (B) due to current 
carrying conductor can be calculated by use of Biot-
Savart law. Which is 

0
3

Idlxr
B

4 r

µ
=

π
, 

R

O�I

I

R

�
�

where dB is magnetic field due current element Idl at 
a position r from current element. For straight wire 
carrying current magnetic field at a distance R from 
wire is 

( )0 IB sin sin
4 R
µ

= α + β
π

And magnetic field due to a circular arc at its center is 

0I
B .

4 R
µ

= θ
π

 

where θ  angle of circular arc at center, R is radius of 
circular arc.

Q.30 The magnetic field at C due to curved part is 

(A) 0I
6
µ

α
, directed into the plane of the paper

(B) 0I
6
µ

α
, directed towards you

(C) 0I
3
µ

α
, directed towards you

(D) 0I
3
µ

α
, directed up the plane of the paper

Q.31 A wire loop carrying a current I is shown in figure. 
The magnetic field induction at C due to straight part 
is

I

a

C

a

I

1
2
0

o

(A)	 03 I
2
µ

πα
, directed up the plane of the paper

(B)	 0I
6
µ

α
, directed into the plane of the paper

(C)	 0I
6
µ

α
, directed towards you

(D)	 0I 3 1
2 3

 µ
−  α π 

 towards you

Q.32 The net magnetic field at C due to the current 
carrying loop is directed into the plane of the paper

(A) Zero	 (B) 0Iµ

α

(C) 0I
9
µ

α
	 (D) 0 0I 3 I

B
6a 2 a
µ µ

= − +
π

, 

Paragraph 2: A current carrying coil behave like short 
magnet whose magnetic dipole moment M=nIA. Where 
direction of M is taking along the direction of magnetic 
fields on its axis and n is no of turns A is area of coil and 
I is current flowing through coil. When such a coil is put 
in magnetic field (B) magnetic torque ( )τ acts on it as 

MxBτ = − and potential energy of the current loop in 
the magnetic field is u=-M.B.
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Q.33 A current of 3A is flowing in a plane circular coil of 
radius 1cm and having 20 turns. The coil is placed in a 
uniform magnetic field of 0.5 Wbm-2. Then, the dipole 
moment of the coil is 

(A) 23000Am 	 (B) 20.3Am

(C) 275Am 	 (D) 2 21.88x10 Am−

Q.34 A current of 3A is flowing in a plane circular coil 
of radius 1cm and having 20 turns. The coil is placed 
in a uniform magnetic field of 0.5 Wbm-2. Then, the 
P.E. of the magnetic dipole in the position of stable 
equilibrium is 

(A) -1500 J	 (B) -9.4 mJ

(C) +0.15 J	 (D) +1500 J

Q.35 In above question, to hold the current-carrying 
coil with the normal to its plane making an angle of 900 
with the direction of magnetic induction, the necessary 
torque is

(A) 1500 Nm	 (B) 9.4 x 10-3 Nm

(C) 15 Nm	 (D) 150 Nm

Match the Column

Q.36 Two wires each carrying a steady current I are shown in four configuration in column I. Some of the resulting 
effects are described in column II. Match the statement in column I with the statements in column II and indicate 
your answer by darkening appropriate bubbles in the 4 x 4 matrix given in the ORS.

Column I Image Column II

(A) Point P is situated midway 
between the wires P

(p) The magnetic fields (B) at P due to 
the currents in the wires are in the same 
direction. 

(B) Point P is situated at the mid-
point of the line joining the centers 
of the circular wires, which have 
same radii. P

(q) The magnetic fields (B) at P due to 
the current in the wires are in opposite 
directions.

(C) Point P is situated at the 
mid-point of the line joining the 
centers of the circular wires, which 
have same radii.

P
(r) There is no magnetic field at P.
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Q.37 Six point charges, each of the same magnitude q, are arranged in different manners as shown in column II. In 
each case, a point M and a line PQ passing through M are shown. Let E be the electric field and V be the electric 
potential at M (potential at infinity is zero) due to the given charge distribution when it is at rest. Now, the whole 
system is set into rotation with a constant angular velocity about the line PQ. Let B be the magnetic field at M and 
µ  be the magnetic moment of the system in this condition. Assume each rotating charge to be equivalent to a 
steady current.

Column-I Image Column-II

(A)	  E=0

M

Q

P + -

+

-+

-

Charges are at the corners of a regular 
hexagon. M is the center of the hexagon. PQ 
is perpendicular to the plane of the hexagon.

(B)	 V ≠ 0 P

Q

+- - + - +

M

Charges are on a line perpendicular to PQ at 
equal intervals. M is the midpoint between 
the two innermost charges.

(C)	 B=0

Q

M

P

+ +
-

- -

+

Charges are placed at the corners of a 
rectangle of sides a and 2a and at the mid 
points of the longer sides. M is at the center 
of the rectangle. PQ is parallel to the longer 
sides.

(D)	 0µ ≠

P

M

+

- + -

- -

Q

Charges are placed at the corners of a 
rectangle of sides a and 2a and at the mid 
points of the longer sides. M is at the center 
of the rectangle. PQ is parallel to the longer 
sides.
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Previous Years’ Questions

Q.1 Statement I: The sensitivity of a moving coli 
galvanometer is increased by placing a suitable 
magnetic material as a core inside the coil. � (2008)

Statement II: Soft iron has a high magnetic permeability 
and cannot be easily magnetized or demagnetized.

(A) Statement-I is true, statement-II is true and 
Statement-II is correct explanation for Statement-I.

(B) Statement-I is true, statement-II is true and statement-
II is NOT the correct explanation for statement-I.

(C) Statement-I is true, statement-II is false.

(D) Statement-I is false, statement-II is true.

Passage: (Q.2-Q.3)

Electrical resistance of certain material, known as 
superconductors, changes abruptly from a non-zero 
value to zero as their temperature is lowered below 
a critical temperature ( )CT 0 . An interesting property 
of superconductors is that their critical temperature 
becomes smaller than ( )CT 0 if they are placed in a 
magnetic field i.e., the critical temperature ( )CT B is a 
function of the magnetic strength B. The dependence 
of ( )CT B on B is shown in the Figure.

T (B)C

T (0)C

BO

Q.2 In the graphs below, the resistance R of a 
superconductor is shown as a function of its temperature 
T for two different magnetic fields 1B (solid line) and 

2B (dashed line). If 2B  is larger than 1B , which of the 
following graphs shows the correct variation of R with 
T in these fields?� (2010)

R

O B2 B1
T

R

O T

B1

B2

R

O T

B2B1

R

O T

B1
B2

(A) (B)

(  )C (D)

Q.3 A superconductor has TC(0)=100K . When a 

magnetic field of 7.5 Tesla is applied, its CT decreases to 
75K. For this material one can definitely say that when 
(Note: T=Tesla)  � (1987)

(A) B=5T, TC(B)=80K 

(B) B=5T, 75K < TC(B) < 100K 

(C) B=10T, 75K < TC(B) < 100K 

(D) B=10T, TC(B)=70K 

Q.4 A proton moving with a constant velocity passes 
through a region of space without any change in its 
velocity. If E and B represent the electric and magnetic 
fields respectively. Then, this region of space may have	
� (1985)

(A) E=0, B=0	 (B) E=0, B≠0

(C) E≠0, B=0	 (D) E≠0, B≠0

Q.5 A particle of charge y

E
�

vP

a

2a 2v

Q
x

B
�

+q and mass m moving 
under the influence of a 
uniform electric field ˆEi
and uniform magnetic 
field ˆBk  follows a 
trajectory from P to Q as 
shown in Figure. The 
velocities at P and Q are 

ˆ ˆvi and 2 j− . Which of the following statement (s) is/are 
correct?� (1991)

(A) 
23 mvE

4 qa

 
=  

  

(B) Rate of work done by the electric field at P is 
23 mv

4 a

 
 
  

(C) Rate of work done by the electric field at P is zero

(D) Rate of work done by both the fields at Q is zero

Q.6 2H ,He and O+ + + all having the same kinetic energy 
pass through a region in which there is a uniform 
magnetic field perpendicular to their velocity. The 
masses of 2H ,He and O+ + + are 1 amu, 4 amu and 16 
amu respectively. Then� (1994)

(A) H+ will, be deflected most

(B) 2O + will be deflected most

(C) 2He and O+ + will be deflected equally

(D) All will be deflected equally
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Q.7 Which of the following statement is (are) correct in 
the given Figure?� (2006)

C
B

l2
O

D
A

O’

l1

infinitely long wire kept perpendicular

to the paper carrying current inwards

(A) Net force on the loop is zero.

(B) Net torque on the loop is zero.

(C) Loop will rotate clockwise about axis OO' when 
seen from O

(D) Loop will rotate anticlockwise about OO’ when seen 
from O

Q.8 A particle of mass m and charge q. moving with 
velocity v enters Region II normal to the boundary as 
shown in the Figure. Region II has a uniform magnetic 
field B perpendicular to the plane of the paper. The 
length of the Region II is l. Choose the correct choice 
(s). � (2008)

v

x x x x

x x x x

x x x x

x x x x

x x x x

l

Region I Region II Region III

(A) The particle enters Region III only if its velocity> qlB
m

.

(B) The particle enters Region III only if its velocity  

v< qlB
m

.

(C)Path length of the particle in Region II is maximum 

when velocity v= qlB
m

.

(D) Time spent in Region II is same for any velocity v as 
long as the particle returns to Region I.

Q.9 An electron and a proton are moving on straight 
parallel paths with same velocity. They enter a semi-
infinite region of uniform magnetic field perpendicular 
to the velocity. Which of the following statement(s) is/
are true?� (2011)

(A) They will never come out of the magnetic field 
region

(B) They will come out travelling along parallel axis

(C) They will come out at the same time

(D) They will come out at different times.

Q.10 Consider the motion of a positive point charge in 
a region where there are simultaneous uniform electric 
and magnetic fields 0

ˆE E j=


 and 0
ˆB B j=


. At time t = 

0, this charge has velocity v
  in the x-y plane, making 

an angle θ  with the x-axis. Which of the following 
option(s) is(are) correct for time t > 0 ?� (2012)

(A) If o0θ = , the charge moves in a circular path in the 
x-z plane.

(B) If o0θ = , the charge undergoes helical motion with 
constant pitch along the y-axis.

(C) If o10θ = , the charge undergoes helical motion 
with its pitch increasing with time, along the y-axis

(D) o90θ = , the charge undergoes linear but accelerated 
motion along the y-axis.

Q.11 A cylindrical cavity of diameter a exists inside 
a cylinder of diameter 2a as shown in the figure. 
Both the cylinder and the cavity are infinitely long. A 
uniform current density J flows along the length. If the 
magnitude of the magnetic field at the point P is given 

by 0
N aJ
12

µ , then the value of N is � (2012)

P O
a

2a

Q.12 A loop carrying current I lies in the x-y plane as 
shown in the figure. The unit vector k̂ is coming out of 
the plane of the paper. The magnetic moment of the 
current loop is -� (2012)

y

a

a

x

I
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(A) 2 ˆa I k 	 (B) 2 ˆ1 a I k
2

 π
+ 

 

(C) 2 ˆ1 a I k
2

 π
− + 
  	

(D) 2 ˆ(2 1)a I kπ +

Q.13 An infinitely long hollow conducting cylinder with 
inner radius R/2 and outer radius R carries a uniform 
current density along its length. The magnitude of the 
magnetic field, | B |


 as a function of the radial distance 

r from the axis is best represented by � (2012)

RR/2

B
�

r

B
�

R/2 R

B
�

R/2 R

B
�

R

(A) (B)

(  )C
(D)

RR/2

B
�

r

B
�

R/2 R

B
�

R/2 R

B
�

R

(A) (B)

(  )C
(D)

RR/2

B
�

r

B
�

R/2 R

B
�

R/2 R

B
�

R

(A) (B)

(  )C
(D)

RR/2

B
�

r

B
�

R/2 R

B
�

R/2 R

B
�

R

(A) (B)

(  )C
(D)

Q.14 A particle of mass M and positive charge Q, moving 
with a constant velocity 1

1
ˆu 4ims−= , enters a region of 

uniform static magnetic field normal to the x-y plane. 
The region of the magnetic field extends from x = 0 
to x = L for all values of y. After passing through this 
region, the particle emerges on the other side after 10 
milliseconds with a velocity 1

2
ˆ ˆu 2( 3i j)m / s−= +

 . The 
correct statement(s) is (are) � (2013)

(A) The direction of the magnetic field is -z direction.

(B) The direction of the magnetic field is +z direction.

(C) The magnitude of the magnetic field 50 M
3Q
π  units.

(D) The magnitude of the magnetic field is 100 M
3Q
π  

units

Q.15 Two bodies, each of mass M, are kept fixed with a 
separation 2L. A particle of mass m is projected from the 
midpoint of the line joining their centres, perpendicular 
to the line. The gravitational constant is G. The correct 
statement(s) is (are)� (2013)

(A) The minimum initial velocity of the mass m to escape 

the gravitational field of the two bodies is GM4
L

(B) The minimum initial velocity of the mass m to escape 

the gravitational field of the two bodies is GM2
L

(C) The minimum initial velocity of the mass m to escape 

the gravitational field of the two bodies is 2GM
L

(D) The energy of the mass m remains constant.

Q.16 Two parallel wires in the plane of the paper are 
distance X0 apart. A point charge is moving with speed 
u between the wires in the same plane at a distance X1 
from one of the wires. When the wires carry current of 
magnitude I in the same direction, the radius of curvature 
of the path of the point charge is R1. In contrast, if the 
currents I in the two wires have directions opposite to 
each other, the radius of curvature of the path is 2R . 

If 0

1

X
3

X
= , the value of 1

2

R
R

 is� (2014)

Q.17 When d ≈ a but wires are not touching the loop, 
it is found that the net magnetic field on the axis of the 
loop is zero at a height h above the loop. In that case	
� (2014)

(A) Current in wire 1 and wire 2 is the direction PQ and 
RS, respectively and h a≈

(B) Current in wire 1 and wire 2 is the direction PQ and 
SR, respectively and h a≈

(C) Current in wire 1 and wire 2 is the direction PQ and 
SR, respectively and h 1.2a≈

(D) Current in wire 1 and wire 2 is the direction PQ and 
RS, respectively and h 1.2a≈
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Q.18 Consider d >> a, and the loop is rotated about its 
diameter parallel to the wires by 30° from the position 
shown in the figure. If the currents in the wires are in 
the opposite directions, the torque on the loop at its 
new position will be (assume that the net field due to 
the wires is constant over the loop)� (2014)

(A) 
2 2

0I a
d

µ

	
(B) 

2 2
0I a
2d

µ

(C) 
2 2

03 I a
d
µ

	
(D) 

2 2
03 I a

2d
µ

Q.19 A conductor (shown in the figure) carrying constant 
current I is kept in the x-y plane in a uniform magnetic 
field B


. If F is the magnitude of the total magnetic force 

acting on the conductor, then the correct statement(s) 
is (are).� (2015)

y

x

R R

�/6 �/4I

L R LR

(A) If B


 is along ẑ, F (L R)∝ +

(B) If B


 is along x̂, F 0=

(C) If B


 is along ŷ, F (L R)∝ +

(D) If B


 is along ẑ, F 0=

Q.20 Consider two different metallic strips (1 and 2) of 
the same material. Their lengths are the same, widths 
are w1 and w2 and thicknesses are d1 and d2, respectively. 
Two points K and M are symmetrically located on the 
opposite faces parallel to the x-y plane (see figure). V1 
and V2 are the potential differences between K and M 
in strips 1 and 2, respectively. Then, for a given current I 
flowing through them in a given magnetic field strength 
B, the correct statement(s) is(are) � (2015)

(A) If w1 = w2 and d1 = 2d, then V2 = 2V1 

(B) If w1 = w2 and d1 = 2d2, then V2 = V1

(C) If w1 = 2w2 and d1 = d2, then V2 = 2V1 

(D) If w1 = 2w2 and d1 = d2, then V2 = V1

Q.21 Consider two different metallic strips (1 and 2) 
of same dimensions (lengths  , with w and thickness 
d) with carrier densities n1 and n2, respectively. Strip 
1 is placed in magnetic field B1 and strip 2 is placed 
in magnetic field B2, both along positive y-directions. 
Then V1 and V2 are the potential differences developed 
between K and M in strips 1 and 2, respectively. 
Assuming that the current I is the same for both the 
strips, the correct option(s) is(are)� (2015)

(A) If B1 = B2 and n1 = 2n2, then V2 = 2V1 

(B) If B1 = B2 and n1 = 2n2, then V2 = V1

(C) If B1 = 2B2 and n1 = n2, then V2 = 0.5V1 

(D) If B1 = 2B2 and n1 = n2, then V2 = V1
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JEE Main/Boards

Exercise 1
Q.1 4 410 T 3.1 10 T− −π× ≈ × 		  Q.2 53.5 10 T−×

Q.3 64 10 T,−× vertically up		  Q.4 51.2 10 T,−× towards south

Q.5 0.6N 1m− 			   Q.6 4.2cm

Q.7 (i) 3.1 Nm, (ii) No		  Q.8 4 35 10 T 1.6 10 T− −π× = × towards west

Q.9 (a) A horizontal magnetic field to magnitude 0.26T normal to the conductor in such a direction that Fleming’s 
left-hand rule gives a magnetic force upward. (b) 1.176N

Q.10 1.22N 1m−

Q.11 (a) 2.1 N vertically downwards (b) 2.1N vertically downwards (c) 1.68N vertically downwards

Q.12 2:1

Q.13 (a) Zero (b) Zero (c) Force on each electron in evB=IB(nA)= 255 10 N−× . 

Note: Answer (c) Denotes only the magnetic force.

Q.14 0I
B

2R
µ

= 			   Q.15 0I
B

2 R
µ

=
π

Q.16 0B I= µ N where N is the number of turns per unit length and I is the current flowing through the solenoid.

Q.17 2:1			   Q.19 F qE q(v B)= + ×
   

Q.20 Circle			   Q.21 54 10 T−×

Q.22 B=14.1 Wb			   Q.23 21.57 10 T−×

Q.24 123 10−× 			   Q.25 7 16 10 Nm− −×

Q.26 65.9 10 N m−× 			  Q.27 22.5V

Q.28 (i) 8A (ii) 73 10 T−×  (iii) 6 1–7.68 10 Nm−×

Exercise 2 
Q.1 D	 Q.2 C	 Q.3 A	 Q.4 A	 Q.5 A	 Q.6 A

Q.7 B	 Q.8 D	 Q.9 D	 Q.10 B	 Q.11 A	 Q.12 B

Q.13 C	 Q.14 C	 Q.15 A	 Q.16 A	 Q.17 A	 Q.18 C

Q.19 D	 Q.20 B	 Q.21 B

Previous Years’ Questions 
Q.1 D	 Q.2 C	 Q.3 B	 Q.4 D	 Q.5 C	 Q.6 B

Q.7 A	 Q.8 B	 Q.9 B	 Q.10 C	 Q.11 D	 Q.12 A

Q.13 C	 Q.14 A	 Q.15 B	 Q.16 A	 Q.17 A	 Q.18 B

Answer Key
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JEE Advanced/Boards

Exercise 1
Q.1 In the plane of the drawing from right to left

Q.2 (a) 0	 (b) 61.41 10 T,45−× ° in xz plane, 	 (c) 65 10 T−× , +x-direction

Q.3 0(1 2 2) I
k̂

a
− µ

π
			   Q.4 zero	

Q.5 0I 3 1ˆ ˆk j
4R 4
µ  

+ π 
			  Q.6 0i 3 1

4 R 2
µ  

π + π  

Q.7 ( )20i
B 2 2 2 1

4 R
µ

= π − π +
π

		  Q.8 
2 3

0 1 0
1 2

2

br br
B , B

3 3r
µ µ

= = 	

Q.9 
iqv

2 a
οµ

π 			 
Q.10 ˆ10k 	

Q.11 02mv
qB

			   Q.12 mEI
Be

	

Q.13 Zero			   Q.14 ˆ2 IRB j

Q.15 2 ˆF a ij= α 			   Q.16 (a) 
23mv

4qa
, (b) 

33mv
4a

, (c) zero	

Q.17 0
mT 2 0.57s
6IB

= π = 		  Q.18 0I I'c 1 1 to the left
2 a b

µ  
− π  

	

Q.19 (i) z=0, dx
3

= ±  (ii) 0I
2 d

µ

π πλ 		
Q.20 2 2Q

h tan
4
ω θ

Q.21 (i) 0 4I
4 a
µ  

 π  
along Y-axis,   (ii) 

2
40 I 110,tan

4 2a 3

 µ  
+ π    π   

with positive axis

Q.22(a) 0Qv I 3 3 1
m 6a

 µ
−  π 

  (b) 23 ˆBI a j
3 4

 π
τ = −  

 


	

Q.23 (a)
( )1/22 2

x y

mgI
r B B

=
π +

 

(b)
x

mgI
rB

=
π 	

Q.24 ( )10 0iJ d ˆtan k
2h

−µ  
− π  

	

Q.25 0.62N<F<0.88N		  Q.26 3
minB 4.7 10 T= ×

Q.27 i 1 20.1110A,i 0.096A= = 		  Q.28 0 1 2I I
4

µ

π
In (3) along –ve z direction

Q.29 (b) Yes			   Q.30 
2 2

0
2 2

I aF In ,zero
2 L a

 µ
=   π + 

Exercise 2 

Single Correct Choice Type

Q.1 C	 Q.2 A	 Q.3 C	 Q.4 C	 Q.5 C	 Q.6 D
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Q.7 C	 Q.8 D	 Q.9 B	 Q.10 A	 Q.11 A	 Q.12 A

Q.13 A	 Q.14 C	 Q.15 C

Multiple Correct Choice Type

Q.16 B, C	 Q.17 A	 Q.18 B, D	 Q.19 A, B, C	 Q.20 A, B, C, D	 Q.21 A, B

Q.22 A, D	 Q.23 C, D 

Assertion Reasoning Type

Q.24 D	 Q.25 B	 Q.26 D	 Q.27 C	 Q.28 D	 Q.29 D	

Comprehension Type

Paragraph 1:

Q.30 A	 Q.31 A	 Q.32D	

Paragraph 2:

Q.33D	 Q.34 B	 Q.35 B

Matric Match Type or Match the Column

Q.36 A → q, r; B→  p; C → q, r; D → q, or; A → q, r; B→  p; C → q, r; D→  q, s

Q.37 A → p, r, s; B→  r, s; C → p, q; D→  r,s

Previous Years’ Questions 
Q.1 C	 Q.2 C	 Q.3 B	 Q.4 A, B, D	 Q.5 A, B, D	 Q.6 A, C

Q.7 A, C	 Q.8 A, C, D	 Q.9 B, D	 Q.10 C, D	 Q.11 5	 Q.12 B

Q.13 D	 Q.14 A, C	 Q.15 B	 Q.16 3	 Q.17 C	 Q.18 B

Q.19 A, B, C	 Q.20 A, D	 Q.21 A, C

JEE Main/Boards

Exercise 1

Sol 1: B = 0NI
2R
µ

 = 0
2

100 0.4

2 8 10−

µ × ×

× ×
= 3.1 × 10–4T

Sol 2: B = 0I
2 r
µ

π
 = 0 35

12
5

µ ×

π×
= 3.5 × 10–5T

Sol 3: B = 0I
k̂

2 r
µ

π
 = 0 50

k̂
52
2

µ ×

π×
= 4 × 10–6T,

vertically upward.

Sol 4: B = 0 90
32
2

µ ×

π×
 = 0 30

µ
×

π
 = 1.2 × 10–5T, 

towards south.

Sol 5: F =I ×B = 8 × 1 × 0.15 × 1
2

= 0.6 Nm–1

Sol 6: F = 0

2 2
2 2

I a·
a a4 x x
4 2

µ

π + +

Since force is always perpendicular to velocity so path 
will be a circle

R = mv
qB

 = 
31 6

19 4

9.1 10 4.8 10
1.6 10 6.5 10

−

− −

× × ×

× × ×
 = 4.2 cm

Solutions
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Sol 7: (i) τ  = M × B;	M = INA

τ  = 6 × 30 × π (0.08)2 ×1 × sin60º = 3.1 Nm

(ii) No

Sol 8: B = 0 20 16
162

100

−µ × ×

×
 + 0 25 18

102
100

µ × ×

×

= 5 π× 10–4T toward west

Sol 9: For tension to be zero

(a) F = I ×B = mg

= 5 ×0.45 × B = 2mKE
qB

B = 0.6
5 0.45×

 = 0.26 T

(b) By force equilibrium

2T = Mg + F 

= 0.06 × 9.8 + 0.06 × 9.8 = 1.176 N

Sol 10: I = 300A; Force per unit length = F

F = 0 1 2i i
2 d
µ

π
= 

2
0

2

(300)
32 10
2

−

µ ×

π× ×
= 1.2 Nm–1

Since the direction of the current is in opposite direction 
in the wire, the force will be repulsive in nature.

Sol 11: B = 1.5T; r = 0.1m

B = 1.5 T

7A

(a) F = i B×




= 7 × 0.2 ×1.5= 2.1 N vertically downwards.

(b)

�

F = i 1 B×




= i 1Bsinθ




= i B × 20
100
 
 
 

= 7 × 0.2 × 1.5= 2.1 N vertically downwards.

(c) 
10 6

8 8

Effective length of wire is 16 cmin the magnetic field so

F = i B×




= 7 × 0.16 ×1.5

= 1.68 N downwards 

Sol 12: Length of wire = N × 2 πR

Final no. of turns = N 2 R
R2
2

× π

π
= 2N

Magnetic moment µ= INA

1

2

µ
µ

 = 1 1

2 2

N A
N A

= 
2

2

N R

R2N
2

× π

 
× π 

 

 = 2
1

Sol 13: N = 20

r = 0.1 m

B = 0.1 T

I = 5 A

(a) τ  = M ×B


= MB sin0º = 0

(b) F = i B×




F = Total force is zero as 

  is zero for a closed loop

(c) Force on each electron = q v B×


= eVB = IB
nA

 = 5 × 10–25 N

Sol 14: Refer page 21.11 to 21.14

Sol 15: Refer page 21.11 and 21.12

Sol 16: B at the centre is B = 0NIµ

N - number of turns

I - current
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Sol 17: R = mv
qB

v = RqB
m

p

d

v

v
 = d

p

mRqB 2
m RqB

=

Sol 18: Refer page 21.25 to 21.26

Sol 19: F = qE


 + q v
 ×B



Sol 20: Its path will be a circle.

Sol 21: Magnetic field due to side BC is BBC

BBC = 0I 3 3
4 R 2 2

 µ
+  π  

; BBC = 03 3 I
4 R
µ

π

Magnetic field due to all sides will be equal so

Bnet = 03 3 I
4 R
µ

π

Sol 22: Electron moving in a circle will act like a loop 
carrying current I.

So,I = q
t

 = q
2
ω
π

= qv
2 Rπ

So magnetic field at centre = B = 0I
2R
µ

 = 0
2

qv

4 R

µ

π

Thus
( )

9 19 6

210

9 10 1.6 10 2.2 10B 14.1 Wb
0.5 10

−

−

× × × × ×
= =

×

Sol 23: B = 0µ ni

= 4 π× 10–7 × 5000
2

 × 5 = 1.57 ×10–2T

Sol 24: B = 2.5 T

v = 1.5 × 107 m/s

F = qv B×
 = q × 1.5 × 107× 2.5 × 1

2
= 1.6 × 10–19 ×1.5 ×107 × 2.5

2
× 3 × 10–12

Sol 25: Force per unit length

F = 
2

0i
2 d
µ

π
 = 6 × 10–7 N/m

Sol 26: Magnetic field inside the solenoid is

B = 0NIµ  = 0µ × 400
0.4

×3

= 4 π  ×10–7 ×3 ×1000 = 12 π× 10–4 T

Torque on the coil is τ  = M × B


 = MB

= 0.4 × 10 × π (0.01)2 × 12 π× 10–4  =5.9 ×10–6 Nm

Sol 27: Let the resistance of the voltmeter be R

Voltage across 300Ω  = 60 – 30 V= 30 V

I = 30
300

 = 0.1 A

Let equivalent resistance of voltmeter and 400Ω be Req

IReq = 30V

0.10 Req = 30 V

Req = 300Ω  = R 400
R 400
×
+

3R + 1200 = 4R

Resistance of voltmeter = R = 1200Ω

When voltmeter is connected to 300Ω

Req = 1200 300
1500
×  = 240Ω

i = 60 6A A
640 64

=

Voltage measured = 6
64

×240 = 22.5 V

Sol 28: (i) i = 9.6A

⊗ ⊙
2m

10
m

11

B at 10
11

m from wire B is

B = 0 09.6 I
0

1012 22
1111

µ × µ
− =

  π×π 
 
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I = 9.6 10
12
×  = 8A

(ii) Force per unit length F = 0 1 2i i
2 2
µ

π×

= 0 9.6 8
4

µ × ×

π
 = 7.68 × 10–6 Nm-1

Exercise 2

Sol 1: (D) Total magnetic field at point O

0 03 1B
2R' 4 2R 4
µ µ

= +
 

0 3 1
8 R' R
µ  

= + 
 



Sol 2: (C) 

�
R

Magnetic field B = 0I ˆ( k)
2R 2
µ  θ

− π 

Sol 3: (A) B


 = 0
3

q V r
4 r

µ ×
π

 

= 0
2

qVsin
4 r

µ θ
π

= 0 2 100 sin30º
4 4
µ × ×

×
π  

= 710 25− × =2.5mT

Sol 4: (A) Magnetic field at the common centre is 

0 0 0I I Iˆ ˆ ˆi j k
2R 2R 2R
µ µ µ

+ +

= 0I
3

2R
µ

Sol 5: (A) Magnitude of magnetic field at the centre

= + 0 0
2 2

20 16 25 18

2 16 10 2 10 10− −

µ × × µ × ×
−

× × × ×

= – 3
0 10µ ×  + 0 2250µ ×

= 0µ × 1250= 0 5000
4
µ

× π
π

= 45 10 T−π×

Sol 6: (A) 

z

y

x

a

Magnetic field = B = – 0 0i iˆ ˆi j
2 a 2 a
µ µ

+
π π

Sol 7: (B) 1
ˆE K j= −


;		

K1 is some constant

2
ˆV K i=



F = q V B qE× +
  

= 0

⇒ V B×
 

 = E−

⇒ B


 = k̂−

Sol 8: (D) Final velocity of the particle 

= v =
2

2
0

qEtv
m

 
+  
 

 = 2v0

2
2
0

qEtv
m

 
+  
 

 = 4 2
0v

2
qEt
m

 
 
 

 = 2
03v ⇒ t = 03mv

qE

Sol 9: (D) 

qE

•

V0

When electric field is applied
2
0

1

mv
R

 = qE

R1 = 
2
0mv

qE
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When magnetic field is applied

R2 = 0mv
qB

1

2

R
R

 = 
2
0

0

mv qB
qEmv

= 0v B
E

Sol 10: (B) 

(d, 0, 0)

V

B0

For the particle to not hit y-z plane radius of the particle 
should be less than equal to d

R = 
0

mv
qB

≤ d

vmax = 0qB d
m

Sol 11: (A) Electric force Fe= 1 2
2

kq q

r
 = 

2

2

kq
r

Magnetic force = qv 0
2

qv
4 r

 µ
×  π 

Fm= q2v2
0

4
 µ
  π  2

1
r

m

Fe
F

 = 
2 0

k

v
4

 µ
  π 

 = 
2

0 0

1
v ε µ

 = 
2

2

c
v

Sol 12: (B) R = mv
qB

= 2mKE
qB

p

H

2KE 1 m
R

eB+

× ×
= 	(mp = mass of proton)

p

He

2KE 4 m
R

eB+

× ×
=

p
2O

2KE 16 m
R

2eB+

× ×
=

So,	 2He O
R R+ +=

Sol 13: (C) R = 
mv
qB  = 2mKE

qB

R’ = 
2m(2KE)
q(3B)

= 2R
9

Sol 14: (C) 

Vx = 5

Vy = 4

B =10

Y-component of velocity will make the particle to move 
in circle whereas x-component of velocity will make 
particle move along x-axis.
So motion is helical.

Sol 15: (A) Force on a particle moving in magnetic field 

is qv B×
 .

13ˆ ˆ(4i 3 j) 10−+ ×  =1.6 × 10–19× 2.5 ×107 (K B)×
 

Force will be zero if direction of magnetic field and 
velocity is same.

So B


 = (0.6 î  × –0.8 ĵ ) B

⇒  (4 î  + 3 ĵ ) = 1.6 × 25 ( k̂  × (0.6 î  – 0.8 ĵ ) B

⇒ B


= –0.075 î  + 0.1 ĵ

Sol 16: (A) Force acting on particle = q. v
 ×B



⇒  q.2 î  ×B


 = –2 ĵ

⇒ B


 is in +ve z direction ( k̂ )

Electric force on the particle is zero.

So when v3 =2 k̂ , force is zero.

Sol 17: (A) Magnetic field is in (– k̂ ) direction

So direction of force

F


 = q v
 ×B



F̂  = –[– î ×(– k̂ )]= ĵ

Sol 18: (C) 
F

mgcos �
mgsin �
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F = qVB

Particle will leave the inclined plane when

F = mgcos θ ⇒  qvB = mgcos θ

v = mgcos
qB

θ

Time taken to reach v is t

v = gsin θ t

t = v
gsinθ

 = mgcot
qgB

θ  = mcot
qB

θ

Sol 19: (D) 

x

y

T T

⊗

F = I d B×∫




= I (2r î )× (–0.2 k̂ ) = 20 ĵ

Magnetic force is in +ve y direction

So balancing force on semi-circular ring we get

2T = 20 ⇒ T = 10N

Sol 20: (B) 

B

�
B

�
B

�
B

Torque due to magnetic field will be balanced by gravity.

mgsin θ R = I× πR2× B sin θ

B = mg
iRπ

Sol 21: (B) Magnetic field = I × A

2q. rM
t
π

=

t = 2π
ω

 = 2 r
v
π

2q. r v qrvM
2 r 2
π

= =
π

Previous Years’ Questions

Sol 1: (D) Net magnetic field due to both the wires will 
be downward as shown in the figure. 

y
z

x
–II

d

�
B

�
v

×

Since, angle between v
→

 and B
→

 is 180°.

Therefore, magnetic force 

mF
→

= q ( v
→

× B
→

) = 0

Sol 2: (C) H1 = Magnetic field at M Due to PQ + 
magnetic field at M due to QR

But magnetic field at M due to QR = 0

∴ Magnetic field at M due to PQ (or due to current I 
in PQ)= H1

Now H2 = Magnetic field at M due to PQ  
(current I) + magnetic field at M due to  QS (current I/2) 
+ magnetic field at M due to QR

=H1 + 1H
2

 + 0 = 3
2

H1 ; 
1

2

H
H

 = 2
3

Note: Magnetic field at any point lying on the current 
carrying straight conductor is zero. 

i

B=0
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Sol 3: (B) If the current flows out of the paper, the 
magnetic field at points to the right of the wire will be 
upwards and to the left will be downwards as shown in 
figure.

i
�
B

�
B

�
B

Now, let us come to the problem.

Magnetic field at C = 0

Magnetic field in region BX’ will be upwards (+ve) 
because all points lying in this region are to the right of 
both the wires. 

X X’
BC

A

Magnetic field in region AC will be upwards 
(+ve),because points are closer to A, compared to B. 
Similarly magnetic field in region BC will be downwards 
(–ve).

Graph (B) satisfies all these conditions. Therefore, 
correct answer is (B). 

Sol 4: (D) The magnetic field at P(a, 0, a) due to the 
loop is equal to the vector sum of the magnetic fields 
produced by loops ABCDA and AFEBA as shown in the 
figure.

P(a, 0, a)

B

A

D

C

E

F

k̂

î

ĵ

Magnetic field due to loop ABCDA will be along î  and 
due to loop AFE BA, along k̂ . Magnitude of magnetic 
field due to both the loops will be equal. Therefore, 

direction of resultant magnetic field at P will be 1

2  ( î  + k̂ ).

Note: This is a common practice, when by assuming 
equal currents in opposite directions in an imaginary 
wire (here AB) loops are completed and solution 
becomes easy.

Sol 5: (C) Consider an element of thickness dr at a 
distance r from the centre. The number of turns in this 

element,dN = N
b – a
 
 
 

dr

Magnetic field due to this element at the centre of the 
coil will be 

dB = 0(dN)I
2r

µ
 = 0I

2
µ N

b – a
. dr

r

∴ B = 
r b

r a

dB
=

=
∫  = 0NI

2(b – a)
µ

ln b
a

 
 
 

dr

r

b

a

Note: The idea of this question is taken from question 
number 3.245 of IE Irodov.

Sol 6: (B) Radius of the circle = mv
Bq

or radius ∝ mv if B and q are same.

(Radius)A> (Radius)B; ∴ mAvA> mBvB

Sol 7: (A) Magnetic field at P is B
→

, perpendicular to OP 
in the direction shown in figure. 

�
�r

P(x, y)

y

i
o
×

�
B x
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So, B
→

 = B sin θ î  – B cos θ ĵ

Here, B = 0I
2 r
µ

π

sin θ = y
r

 and cos θ = x
r

∴ B
→

 = 0I
2
µ

π
. 

2

1
r

 (y î – x ĵ ) = 0
2 2

ˆ ˆI(yi – xj)

2 (x y )

µ

π +

(as r2 = x2 + y2)

Sol 8: (B) If (b – a) ≥ r

(r = radius of circular path of particle)

The particle cannot enter the region x > b.

So, to enter in the region x > b 

r > (b – a)or mv
Bq

> (b – a)or v > q(b – a)B
m

Sol 9: (B) Electric field can deviate the path of the 
particle in the shown direction only when it is along 
negative y-direction. In the given options E

→
 is either 

zero or along x-direction. Hence, it is the magnetic field 
which is really responsible for its curved path. Options 
(a) and (c) cannot be accepted as the path will be 
circular in that case. Option (d) is wrong because in that 
case component of net force on the particle also comes 
in k̂  direction which is not acceptable as the particle is 
moving in x-y plane. Only in option (b) the particle can 
move in x-y plane. 

In option (d) netF
→

 = q E
→

 + q ( v
→

 × B
→

)

Initial velocity is along x-direction. So, let

		  v
→

=v î

netF
→

 = qa î  + q [(v î ) × (c k̂  + b ĵ )] 

= qa î  – qvc ĵ  + qvb k̂

In option (b) netF
→

 = q (a î ) + q[(v î ) × 

(c k̂  + a î )]= qa î  – qvc ĵ

Sol 10: (C) U
→

 = – MB
→→

 = – MB cos q

Here, M
→

 = magnetic moment of the loop 

θ = angle between M
→

 and B
→

U is maximum when θ = 180° and minimum when θ = 0°. 
So, as θ decreases from 180° to 0° its PE also decrease. 

Sol 11: (D) Magnetic force does not change the speed 
of charged particle. Hence, v = u. Further magnetic field 
on the electron in the given condition is along negative 
y-axis in the starting. Or it describes a circular path in 
clockwise direction. Hence, when it exits from the field, 
y < 0. 

Therefore, the correct option is (D)

Sol 12: (A) mF
→

= q ( v
→

× B
→

)

∴ Correct option is (A)

Sol 13: (C) Correct answer is (C), because induced 
electric field lines (produced by change in magnetic 
field) and magnetic field lines form closed loops.

Sol 14: (A) If we take a small strip of dr at distance r 
from centre, then number of turns in this strip would 

be, dN = N
b – a
 
 
 

dr

Magnetic field due to this element at the centre of the 
coil will be 

dB = 0(dN)I
2r

µ
= 0NI dr

(b – a) r
µ

∴ B = 
r b

r a

dB
=

=
∫  = 0NI

2(b – a)
µ

 ln 
bn
a

 
 
 

 		

Sol 15: (B)

2mKr
Bq

=
 
⇒ mr

q
∝

p dr r rα = <

Sol 16: (A) net M M H1 2
B B B B= + +

0 1 0 2
H3 3

M M
B

4 x 4 x

µ µ
= + +

π π

0
1 2 H3

(M M ) B
4 x

µ
= + +

π

7
5

3

10 2.2 3.6 10
10

−
−

−
= × + ×

4 22.56 10 Wb / m−= ×
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Sol 17: (A) 0 0H niµ = µ

3 1003 10 i i 3A
0.1

× = × ⇒ =

Sol 18: (B) Since B


is uniform, only torque acts on a 
current carrying loop. (IA) Bτ = ×

 

A Ak=


 for (b) and A Ak= −


 for (d).

0∴ τ =
  for both these cases.

The energy of the loop in the B


 field is: U IA B= − ⋅
 

, 
which is minimum for (b).

JEE Advanced /Boards

Exercise 1

Sol 1: I1 = I2 = I3 = I4
⇒  F1 = F2 = F3 = F4 = F

⇒  2F

2F

2 2 F
45º

45º

2F

Resultant force will be 2 2 F  from right to left

Sol 2: Let magnetic field due to wire be Bw

(a)x = 0, z = 2m;

B = B0 + Bw = – 0
ˆI i

2 2
µ

π×
 + 10–6 î

= –10–7 ×10 î + 10–6 î

= 0

(b)x = 2m, z = 0

B = B0 + Bw = 0I
k̂

2 2
µ

π×
 + 10–6 î

B = 10–6 k̂  + 10–6 î  = 2 ×10–6 T

(c)x=0, z=–0.5m

B= B0 + Bw

= 10–6 î  + 0 10
12
2

µ ×

π×

= 10–6 î  + 4 × 10–7 × 10 î

= 5 ×10–6 î  T

Sol 3: Magnetic field can be found as the super position 
of both given below.

y

z

x

I
45º45º

a

a/2

Magnetic field due to loop = Bl

0I 1 1 ˆ– 4k
a 2 24
2

 
 µ   = + ×     π  

  

⊗ ⊗

⊙ ⊙

1 2

4 3

I1 I2

Fres

F2+F4

F1+F3

45º

45º

= – 0I
2 a
µ

π
× 2 ×4 k̂

 = 02 2 I
k̂

a
µ

−
π

Magnetic field due to infinite length wire = Bw = 0
ˆIk
a2
2

µ

 
π 
 

 

= 0I
k̂

a
µ

π

Net magnetic field = 0(1 2 2) I
k̂

a
− µ

π
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Sol 4: 

2

45º

1

1

i2

1amp

y

z

x

i1 = 2 1
2

π

×
π

 = 1 amp
4

i2 = 1 – 1
4

 = 3
4

 amp

Magnetic field due to i1 = B1 =–
0

1 3
4 2 k̂

22 2

   πµ       
π  

 
			   = 0 3 k̂

48 2

µ
− ×

Magnetic field due to i2 = B2 = 
0

3
4 2

k̂
22 2

   π
µ    

   
π

				    = 03 1 k̂
48 2

µ
×

Magnetic field due to wire in x-direction = B3

B3 = 0 1 ˆ(sin(–45º ) sin90º ) k
4 1
µ ×

+
π×

B3 = 0 1 ˆ1 k
4 2

µ  
− 

π  

1
�
1 2

�
1

1m

1amp

Magnetic field due to wire in negative y-direction =By

By = – 0 1 ˆ(sin(–45º ) sin90º ) k
4 1

 µ ×
+  π× 

= 0 1 ˆ1 k
4 2

µ  
− − 

π  

Net magnetic field = B = B1 + B2 + B3 + B4= 0

Sol 5: Magnetic Induction

0 0 0I I I1 1ˆ ˆ ˆk k j
2(2R) 4 2R 4 4 R
µ µ µ   

+ +    π   


B =

0I 3 1ˆ ˆk j
4R 4
µ  

+ π 
=

Sol 6: Magnetic Induction

0 0
3I I2 ˆ ˆk k

2R 2 4 R

 π
 µ µ

+ 
π π  

 


B =

0 0I I3 ˆ ˆk k
2R 4 4 R
µ µ

× +
π

=
 

0I 3 ˆ1 k
4 R 2
µ  π

+ π  
=

Sol 7: Magnetic Induction

0 0 0I I Iˆ ˆ ˆi – i – k
2R 4 R 4 R
µ µ µ

π π


B =

0 0I Iˆ ˆ[2 1] i – k
4 R 4 R
µ µ

π −
π π

=

20I
4 1 4 1

4 R
µ  π + − π + π

=

( )20I
2 2 2 1

4 R
µ

π − π +
π

=

Sol 8: We will find magnetic field B by ampere’s law.

0 INB.dl I= µ∫


�

r

(a)For r1< R

B×2 π r1 = ( )0 JdAµ ∫

=μ0

r1

0

br2 r dr
 
 π
 
 
∫

B×2 π r1 = 
3
1

0
2 br

3
π

µ

2
0 1br

B
3

µ
=
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(b) 

�0

By ampere’s law

B×2 π r2 = 0 (JdA)µ ∫ =
r0

0
0

br2 r dr
 
 µ π
 
 
∫

B×2 π r2 = 
3
0

0
r

2 b
3

µ π

B = 
3

0 0

2

br
3r

µ

Sol 9: 

a

i

Magnetic Force = qVB = 0I
qV

2 a
 µ
  π 

Sol 10: 

E= 5× 10
7

V= 5× 10
6
m/s

y

z

x

Magnetic force = qVB

Electric force = qE

When both forces are equal in magnitude and opposite 
in direction then net force on charged particle is zero.

qVB = qE

B = E
V

 = 
7

6

5 10
5 10
×

×
 = 10 T

and direction is in positive k̂ direction

Sol 11: 

Vq, m
x

y

y coordinate is equal to twice the radius of the circle

y = 2R

R = 0mV
qB  

⇒ y = 02mV
qB

Sol 12: We know that velocity of charged particle = v 

= E
B

Force = Change in momentum per sec= mv
t

I = e
t  

⇒ F = mEI
B·e

Sol 13: Force acting on a wire carrying current

F = I d B×∫




SinceB


 is uniform so

F = I ( d ) B∫ ×




For a loop d 0∫ =



So F = 0

Sol 14: 

R R
I

x B
�

�
�

2Ri

�

�

k

j

�

i

�

=

Force = I d B×∫




SinceB


 is constant so

F = I ( d ) B∫ ×




F = I · B×



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F = ( )ˆ ˆI 2Ri ( Bk)× −

= ˆI 2RBj  = ˆ2IRBj

Sol 15: F = F1 + F2 + F3 + F4

= i∫(d 1 ×B1)+ i∫ (d  2×B2) + i∫ (d  3×B3) +

				    i∫ (d  4×B4)

=
a a

0 0

ˆ ˆ ˆ ˆ ˆ ˆi dyj ( y)( k) i(ai y( k)) i dyj ( y)k I 0
 
 × α − + ×α − + × α + ×
 
 
∫ ∫

F1 =
2 2

2a aˆ ˆ ˆi i i a j i i
2 2

α
− α + α + = 2ˆi a jα

Sol 16: 

2v
2a

a

E î

x x x x

x x x x

x x x x

B

(a) Work done by Electric Field = Change in Kinetic 
Energy

∫F.dx = 2 21 1m(2v) mv
2 2

−

qE × 2a= 23mv
2

E = 
23mv

4qa

(b) Rate of work done = F.v = qE.v= 33 mv
4a

(c) Work done by magnetic field is always zero.

Work done by electric field = ˆF.v


 = qE î . (–2v ĵ )= 0

Sol 17: 

P

S

O

Q B
�

R

i

O1

�

�

Consider a loop PQRS placed in uniform magnetic 
field B in such a way that the normal to coil subtends 
an angle θ to the direction of B when a current I flows 
through the loop clockwise.

The sides PQ and RS are perpendicular to the field 
and equal and opposite forces of magnitude I and B 
act upwards and downwards respectively. Equal and 
opposite forces act on sides QR and PS towards right 
and left of coil.

The resultant force is zero but resultant torque is not 
zero. The forces on sides PQ and RS produce a torque 
due to a single turn which is given by

2I Bsinτ θ=

for small θ , sin θ  ≈ θ
2I Bτ θ= � ... (i)

Iτ α=

= 
2 2m m2 2

4 12 4 4

 
× + × α  

 

 

= 2 1 1m
24 8
 

+ α 
 

 = 
2 2m 4 m

8 3 6
 

= 
 

  � ... (ii)

By (i) and (ii)

I 2 Bθ = 
2m

6
α



α  = 6IB
m

θ

2ω = 6IB
m

Time period = m2
6IB

π = 
2

1

102
6 2 10

−

−
π

× ×

			   = 12
120

π = 0.57 sec

Sol 18: Net force acting on the loop = F

F = 0 0I I'c I I'c
2 a 2 b
µ µ

−
π π

 = 0I I'c 1 1
2 a b

µ  
− π  

This loop will experience attractive forces.
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Sol 19: (i)

y

i

d

x

d

Net Force at some point x, y is

Fnet = 0I
2 (x d)

µ

π +
+ 0I

2 x
µ

π
 + 0I

2 (x d)
µ

π −
= 0

⇒
1

n d+
 + 1

x
 + 1

x d−
 = 0

2 2

2x
x d−

 + 1
x

 = 0

2 2 2

2 2

2x x d
x(x d )
+ −

−
 = 0⇒  3x2 = d2

x = d
3

±

Net force will be zero only in x–y plane

i.e. when z = 0 and x = d
3

±

(ii) z

x⊗⊗

⊗ z

Let the middle wire is displaced by z distance in positive 
z-direction.

Attractive force acting on wire is F

z

d

θ
FF

2 2

zcos
d z

θ =
+

F = 
2

0

2 2

i

2 d z

µ

π +



Resultant force is downward

Fnet = –2 Fcos θ = 
2

0

2 2 2 2

2 i z·
2 d z d z

− µ

π + +



Fnet = 
2

0
2 2

i z

(d z )

−µ

π +



For small z

Fnet = 
2

0
2

i z

d

−µ

π


 = λa

ω  = 
2

0
2

i

d

µ

λπ



F = 
2
ω
π

 = 
2

0
2

i1
2 d

µ

π λπ
= 0i

2 d
µ

π λπ

Sol 20: l cos θ = h

y

�

h

h tan �

θ
�

Take a ring at distance y from the top point of the cone.

Magnetic moment M = IA

dM=

22 ydy tanQ · · (y tan )
h cos 2(htan )

cos

 
 π θ ω

π θ 
θ π π θ θ 

= 
h 3

3
2

0

Q tan · y dy
h tan
ω θ

θ∫ = 
2 4

2

Q tan h·
4h

ω θ
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= 2 21 Q tan h
4

ω θ

Sol 21: (i)BC= BA = BB = BD = B

B = 0I 2

2 2 a

µ ×

π

⊗

⊗

⊙

⊙

y

x
45º

BD + BB

BC + BA

Net magnetic field is

Bnet = B 2  = 0I 2
2 a
µ ×

π
along y-axis

(ii) 

C B

AD

F2

F1

F1

F1 = 
2

0I
2 (2a)
µ

π



F2 = 
2

0I

2 (2 2a)

µ

π



Fx = F1 + 2F

2
= 

2
0I 11
4 a 2
µ λ  

+ π  
 = 

2
03 I

8 a
µ λ

π

Fy = F1 – 2F

2
= 

2
0I 11
4 a 2
µ λ  

− π  
 = 

2
0I
8 a
µ λ

π

Net force = 
2

20I
1 3

8 a
µ

+
π


; 1=

	 = 
2

0 I 10
4 2a

  µ
     π   

Radius = R = a

Sol 22: (a) 

60º60º

R

R

2

v

v
 = v 1 3ˆ ˆi j

2 2

 
+  

 

B = 0 0

2
I I 3 33 k̂

4 R2R 2 2 2
2

  π
    µ µ
 − +    ππ        

B = 0 0I 3 I
k̂

6R 2 R

 µ µ
 −
 π 

= 0I 1 3 k̂
2R 3

 µ
− 

π  

Force = qv×B = ( ) 0Iqv 1 3ˆ ˆ ˆi 3 j k
2 2R 3

  µ
 + × −  π   

 = Qv
m

0I 3 3 1
6a

 µ
− 

π  

(b)Net Torque = M B×
 

= I AB ĵ

= I 
2

2 3a ˆa B j
3 4

 π
−  

 

= B I 23 ˆa j
3 4

 π
−  

 

Sol 23: (a) Net Torque on the loop is

τ  = – MBx ĵ  + MBy î  = 2 2 2
x yr B BΙπ + 	� ...(i)

By Torque balance mgr = τ 	�  ...(ii)

By (i) and (ii)

I = 
2 2
x y

mg

r B Bπ +

(b) Net Torque is τ= –MBx ĵ

| |τ  = 2
xI r Bπ

By torque balance

mgr = t ⇒ mgr = Iπr2 Bx

I = 
x

mg
rBπ
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Sol 24: Magnetic field due to sheet of width d and 
infinite length at a distance h is given by

B = –10 0
dj 2 ˆtan i
h

 µ  
 π  
 

  = ĵ

F = i B×




F = 10 0i j d ˆtan (–k)
2n

−µ  
 π  

Sol 25: 

I

R

Force= I B×


 = 10 × 0.5 × 0.1

Force = 1
2

N upward on inclined plane

1
mg N

2
�

� �1
mg

2

2

�

33

2 2
�

33

4

3

4

F

� mgcos �

.1 Fµ + = 3
4  

⇒ F = 3
4

– 3 3
40

Fmin = 3
4

31
10

 
− 

  
 = 0.62 N

F = 3
4

 + 3 3
40

Fmax = 0.88 N

Sol 26: 

v 3

2

S

0.1m

v

2

G v

Electron will move in helical path with pitch = 0.1 m. For 
minimum value of B particle should reach at point S in 
a single revolution.

Time period T = 2 m
qB
π

So 0.1 = v
2

T

0.1 = v ·2 m
2·qB

π

B’ = 20 mv
2q
π

=
31 19

19

20 2 9.1 10 2000 1.6 10

2 1.6 10

− −

−

π × × × × ×

× ×

= 
31

19

2 9.1 10 2000
10

1.6 10

−

−

× × ×
π

×

B = 410 2.275 10−π ×

B = 4.7 × 10–3 T

Sol 27: To neutralize the magnetic field, current in 
vertical ring should be such that the magnitude of 
magnetic field is 3.49×10–5 T and current in horizontal 
ring should be such that the magnitude of magnetic 

field is 51 3.49 10
3

−× ×

For vertical ring

B = 0NI
2r

µ
= 0 100 I

2 0.2
µ × ×

×

3.49×10–5 = 0 250 Iµ ×
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I = 
5

0

3.49 10
250

−×
µ ×

 = 
5

7

3.49 10
4 10 250

−

−

×

π× ×
 = 0.111 A

For horizontal ring

B = 0NI
2r
µ

⇒ 51 3.49 10
3

−× × = 0 100 I
2 0.3

µ ×

×

⇒  I = 0.096 A

Sol 28: 

x
(a, 0 , 0)

y

⊙

dB
�

�
dy

y
�
dB

R30º x

y

60º (a, 0 , 0)

z

i1

x
(a, 0 , 0)

y

⊙

dB
�

�
dy

y
�
dB

R30º x

y

60º (a, 0 , 0)

z

i1

Force on dy element in x direction is

dF∫  = 2i dy Bsinθ∫

F = 0 1
2

iRdi · sin
cos 2 R

µθ
θ

θ π∫

= 
30

0 1 2

60

i i
tan d

2 −

µ
θ θ

π ∫

301 2
60

i i
F [log cos]

2 −

µ
=

π

1 2 1 2i i i i
log 3 log3

2 4
µ µ

= =
π π

Sol 29: (a) |B1| = |B2| = |B3| = |B4|

x

2

4

1 3 a
i

Q

P

R

B3B1

B13

a

2

�
Q

�

2
2 a

x
4

�

P

Q

R

a

2

a

2

2
2 a

x
2

�

2
2 a

x
2

�

2
2 a

x
4

�
yz

x

B1 = 0

2 2 2
2 2 2

I a a

a a a4 x 2 x 2 x
4 2 2

 
 µ  + 
 π + + +
  

B1 = 0

2 2
2 2

I a·
a a4 x x
4 2

µ

π + +

Resultant of B1 and B3 is B13 = 2B1cos θ

B13 = 
0

2 2 2
2 2 2

a
2 I a 2·

a a a4 x x x
4 2 4

×µ

π + + +
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= 
2

0
1

2 2 2
2 2

Ia

a a4 x x
4 2

µ

  
π + +    
  

 

B13 = 
2

0
1

2 2
2 2 2

I a

a(4x a ) x
2

µ

 
π + +  

 

Similarly B24 = 
2

0
1

2 2
2 2 2

Ia

a(4x a ) x
2

µ

 
π + +  

 

Net resultant = B13 + B24

	 = 
2

0
1

2 2
2 2 2

2 Ia

a(4x a ) x
2

µ

 
π + +  

 

(b) Yes

Sol 30: Bres = 2Bcos θ

Fres = resI d B×∫



= 02 IR d
I cos

sin 2 R
µθ

× θ
θ π∫ ;

2 2

asin
L a

α =
+

⊗

R B

⊗ �
R

�
dx

�

x

B

L

�

�

a

= 
2

0

2

I
cot d

α

π

µ
θ θ

π ∫  = 
2

0
90

I
ln(sin )α

µ
θ

π

=
2

0

2 2

I aln 1
2 L a

 µ
 −
 π + 

If direction of current in B is reversed then resultant 
magnetic field will become horizontal and so net force 
will be zero.

Exercise 2

Single Correct Choice Type

Sol 1: (C) Magnetic field at some x is given by

(d, 0, 0)(–d, 0, 0)

4 I

I

0 0(4 I) Iˆ ˆk k
2 (d x) 2 (d x)
µ µ

+
π − π +

= 0I 4 1
2 d x d x
µ  

+ π − + 
 = 0

2 2

I 5d 3x
2 d x

µ  +
 π − 

It corresponds to graph (c)

Sol 2: (A) Magnetic field at the centre due to Rdθ 
component is

�
�

By

Bx
B

� d� Rd�

Bx = xdB∫ =
0

I ·Rd
2 R

cos
2 R

 
µ θ π  θ

π∫ = 0
2

I

4 R

µ

π

By = ydB∫ =
0

I ·Rd
2 R

sin
2 R

 
µ θ π  θ

π∫ = 0
2

I

4 R

µ

π
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B = 0
2

I

4 R

µ

π
1 1+

Sol 3: (C) V = E
B

 for no deflection to occur

V = 
5

3

3.2 10
2 10−

×

×
 = 1.6 × 108 m/s

R = mv
qB

= 
31 8

19 3

9.1 10 1.6 10
1.6 10 2 10

−

− −

× × ×

× × ×
 = 0.45 m

Sol 4: (C) q
m

 = α

Work done by electric field = qE0x0=
1
2

m(25–0)

x0 = 
0

25m
2qE

= 
0

25
2 Eα

Sol 5: (C) Particle is moving in helix along y-axis. So 
the time taken by particle to reach in x-z plane should 
be integral multiple of time taken to complete one 
revolution.

x

y

z

Helical motion of the particle

⇒ 2mv
qE

 = 2 m n
qB

 π
 
 

n = Bv
Eπ

So Bv
E

 
 π 

should be an integer

Sol 6: (D) Both particles will move in helix. They will 
meet for the first time when mass m will complete two 
revolutions and mass 2m will complete one revolution.
Time taken to complete one rotation.

1 2
2 2 M 2 2Mt ; t

QB QB
× π π

= =

Distance from the point of projection = tv cosθ

4 Mv cos4 Mv cos
QB QB

π θπ
= θ =

Sol 7: (C) 

�V

� � �2

�
�

V

�
R

Time taken = 2 π + θ
 ω 

= 2 T
2

 π + θ
 π 

Sol 8: (D) 

�

�

�
V

V

� � �2

�

Time taken = 2 π − θ
 ω 

 = 2 T
2

 π − θ
 π 

Sol 9: (B) 

(2, 2)

(2, –2)

��

Magnetic force is given by

dFm = i ∫d B×


  = i∫d (– ĵ ) × (–4 k̂ ) = 4i∫d  î
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since   and B are perpendicular so

dfm = 8∫dl î = 8 × 4 î = 32 î

Sol 10: (A) 

x

y

z

(R,0,0)(–R,0,0)

I

d �

�

F = I∫Rdθ(sin θ î  + cos θ ĵ ) × 0B
2R

(–R cos θ ) k̂

= 0

0

IB R ˆ ˆ ˆ(sin i cos j) ( cos k) d
2

π

θ + θ × − θ θ∫

= 2

0

ˆ ˆ(sin cos j – cos i) d
π

θ θ θ θ∫

= 
0

ˆ ˆsin2 j (1 cos2 )i– d
2 2

π  θ + θ
θ  

 
∫

= 
0 0 0

cos2 sin2ˆ ˆ ˆj i i
4 2 4

π π π
     − θ θ θ

− −     
     

= 0 – î 0
2
π

− = – î
2
π

Sol 11: (A) Refer Q.18 Exercise-I JEE Advanced.

Sol 12: (A) Torque on the ring due to magnetic field is

B

τ  = MBsin θ

τ  = I × πR2 × B = Iα

I πR2 × B = 
2MR

2
α

α  = 2 4 10
2

× × π×

= 40 π  rad/sec2

Sol 13: (A) Let us assume that resistance of p material 
is ρ and that of Q is q.

i1 = 2 q
i

3( q)
ρ +
ρ +

,	 i2 = 2q
i

3( q)
+ ρ

ρ +

1

2

i
i

 = 2 q
2q
ρ +
+ ρ

I

IIX

Y

P

P i2

i1

i

P

Q

Q

Q

We know that B∝ i

SoB1 = magnetic field due to I part

B2 = magnetic field due to II part

For the magnetic field to be zero B1 = –B2 should hold.

But i

i

B

B
∝ 1

2

i
i

 = 2 q
2q
ρ +
+ ρ

≠ –1

So magnetic field will not be zero at centre.In (B), (C) 
and (D) i1 = i2 so magnetic field is zero at centre.

Sol 14: (C) 
I

II

i1

i2

i i

In (A)

i1 = 3 i
4

	 ;	 i2 = i
4
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B = 0 1
1 2

i
(sin sin )

4
2

−µ
θ + θ

π
l

 + 0 2
1 2

3 i
(sin sin )

4
2

µ
θ + θ

π


(B) 

i2

i1

i

i

By symmetry i1 = i2and magnetic field will be cancelled 
out by both the parts.

(C) 	

i2

i1

L

45º 45º

i1 = 3 i
4

;	 i2 = i
4

Let magnetic field due to sides of square be Bs

Bs = 
0 1

3 i 1 14 k̂
L 2 24
2

−µ  
+ 

 π
 + 

0
i3 1 14

L 2 24
2

µ  
+ 

 π

Bs = 0

But magnetic field due to 2 infinitely long wires is not 
zero so net magnetic field is zero.

(D)	

i2

i1

i

i

i

By symmetry i1 = i2 = i
2

So magnetic field due to four sides of square will cancel 
out. Magnetic field due to two infinitely long wires will 
also cancel out as they are equal in magnitude and 
opposite in direction.

So net magnetic field is zero.

Sol 15: (A) So its x coordinate cannot be positive.

y

x

z

�

V

v cos �

v sin �
B

B

y

x

z

Its x- and z- coordinate will be zero when particle will 
complete one revolution.

y - Coordinate = vcosα t

Multiple Correct Choice Type

Sol 16: (B, C) (A)Motion is helical in nature

(B) They will follow circular path with radius

		  R = 2mKE
qB

(C) Work done by magnetic force is always zero.

(D)	

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

x x x x x x x x x

V

V

B

Sol 17: (A, B, C) B = 0I
2 r
µ

π
(sin 1θ + sin 2θ )
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i

By ampere’s law magnetic field on a ring with centre as 
wire is same.

1B /
r

∝  as 1θ  and 2θ  are also dependent on r.

Sol 18: (B, D) Magnetic field

A(0,1,0)

x

z

(0,1,1)B

y

D(1,1,1)

C(1,0,1)

at A = BA = 0I
2 1
µ

π×
;BB = 0I

2 2

µ

π

BC = 0I
2 1
µ

π×
;BD = 0I

2 2

µ

π×

Sol 19: (A, B, C) 2

0 0

1 c=
µ ε

Sodimension of y is m/s

v = E
B

 when E and B are both perpendicular and 

perpendicular to velocity

So dimension of x m/s 

Dimension of RC = sec

So	 Z = 
CR
  has dimension m/s

So	 x, y, z have same dimensions.

Sol 20: (A, B, C, D) On x-axis

(A) B = 0I
2 a
µ

π
– 0I

2 a
µ

π
 = 0

(B) On y-axis say at (y, 0, 0)

B = 0 0I Iˆ ˆk k
2 (a y) 2 (a y)
−µ µ

+
π + π −

So except at origin, B has only z-components

(C)	

O

B1

B2

Bnet

z

y

x

1

2

(D) B cannot has x-component as B is perpendicular to 
direction of I.

Sol 21: (A, B) This can be done by applying magnetic 
field in y-axis or z-axis.

x

z

y

x

z

y

Sol 22: (A, D) 	

30º

60º

V

B

V

Time period T = 2 m
qB
π ;		  a = 1

2

T
T

 = 1
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radiiR = mv sin
qB

θ

1

2

R
R

 = sin(30º )
sin(60º )

 = 1

3

pitch = v cosα t

1

2

P
P

 = v cos(30º )
v cos(60º )

 = 3

abc = 1;		  a = bc

Sol 23: (C, D) If velocity is zero, then magnetic force is 
zero.Energy cannot increase in magnetic field as work 
done by magnetic force is zero.

F = q v B×
 ;So force is perpendicular to its velocity.

Assertion Reasoning Type

Sol 24: (D) If initially velocity of charged particle is in 
the direction of magnetic field then force acting on it 
is zero and particle will continue to move in the same 
direction. So statement 1 is false.

Sol 25: (B) Magnetic field at any point is in tangential 
direction. So it is not possible for a particle to move in 
tangential direction by the action of magnetic force.

B

Sol 26: (D) It’s velocity vector must be perpendicular to 
both magnetic field and electric field.

Sol 27: (C) F = I d B×∫




So force acting is attractive

1 2

i1 i2

d

• P
r

Consider a point P in space between two wires at a 
distance r from one wire. The magnetic force due to 
wire 1 is in positive z-axis direction whereas due to wire 
2 is in negative z-axis direction.

Sol 28: (D) Statement 1 is false as Ampere’s circuital 
law holds good for a closed path of any size and shape 
around a current carrying conductor only if the relation 
is independent of distance.

Sol 29: (D) Since angular acceleration of the mass will 
not change so time period will also remain the same.

mgcos �mgsin �

�

mg

F =q

�

Comprehension Type 

Paragraph 1

Sol 30: (A) Magnetic field due to curved part is

B = 0I 2
4 a 3
µ  π

 π  
= 0I

6a
µ

Sol 31: (A) 

60º

60º

a

B = 0I
(sin60º sin60º )

a4
2

µ
+

π
 = 03 I

2 a
µ

π

Sol 32: (D) Net magnetic field at C is

B = – 0I
6a
µ

+ 03 I
2 a
µ

π
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Paragraph 1

Sol 33: (D) I = 3A

r = 0.04m

N = 20

B = 0.5 T

Dipole moment M = INA= 3× 20 × π (0.01)2

= 1.88 × 10–2 Am2

Sol 34: (B) PE = –1.88 ×10–2 × 1
2

= –9.4mJ

Sol 35: (B) Torque, oin AB sin 90τ =

2
13 20 0.5 1

100
 

= × × π× × × 
 

33 3.14 10 Nm−= × ×  
39.4 10 Nm−= ×

Match the Columns

Sol 36: A → q, r; B→  p; C → q, r; D → q, or; A → q, r; 
B→  p; C → q, r; D→  q, s

 τ  = MB sin 90º= 9.4 ×10–3 Nm

(A) Magnetic field is in opposite direction. Since current 
is in same direction so they will attract each other. 
Magnetic field is equal in magnitude at P so magnetic 
field at P is zero.

(B)	

BB

P

Magnetic field at P is in the same direction.

Wires will attract as the current is in the same direction.

(C) Magnetic field at P is in opposite direction due to 
two wires and has same magnitude. So net magnetic 
field is zero at P. Wires will attract each other as current 
is in the same direction.

(D) Magnetic field will be in opposite direction and wires 
will repel each other as current is in opposite sense.

Sol 37: A → p, r, s; B→  r, s; C → p, q; D→  r, s 

Electric field is zero at point M

Electric potential = 3Kq 3Kq
r r

−  = 0

Magnetic field is zero as current due to rotating charge 
is zero.

+

+

+

–

–

–
M

•
F

F

F

r

Magnetic moment= INA= 0 × NA = 0

2 2 2 2 2 2

Kq Kq Kq Kq Kq KqE 0
5a 5a 3a 3a a a
2 2 2 2 2 2

= − − + + − − ≠
           
           
           

–+– –+ +

Q

P

Ma

Kq Kq Kq Kq Kq KqV 0
5a 5a 3a 3a a a
2 2 2 2 2 2

= − + − + − =

B = 0 as current due to rotating charge is zero.

µ= 0 as current due to rotating charge is zero.

M

•

F

P

a

–

•–
•–

+•

Q

+ •

b

+
•

E = 0

Electric field will cancel out due to symmetry

V = – Kq
a

 × 3 + Kq
b

 × 3 ≠ 0

B is not zero as current due to rotating charge is non-
zero.
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µ  = INA

as I ≠ 0⇒ µ  ≠ 0

P Q

––

– –

+

+

Electric field is zero.By symmetry electric field will 
cancel out each other.

V = 
Kq Kq4 2 0

a5 a
22

−
× + × ≠

 
  
 

Let I be the current due to moving charge

So B = 0I
2a
µ

 – 
( )

2
0

3
2 2

2x Ia
0

2 2a

µ
≠

µ  = INA
µ  = 2× Ia2 – Ia2= Ia2

Previous Years’ Questions

Sol 1: (C) cφ = BINA

∴ φ = 
BNA I

c
 
 
 

Sol 2: (C) If B2> B1, critical temperature, (at which 
resistance of semiconductors abruptly becomes zero) 
in case 2 will be less than compared to case1.

Using iron core, value of magnetic field increases. So, 
deflection increases for same current. Hence, sensitivity 
increases. 

Soft iron can be easily magnetized or demagnetized.

Sol 3: (D) With increase in temperature, TC is decreasing. 

TC(0) = 100 K 

TC = 75 K at B = 7.5 T

Hence, at B = 5 T, TC should lie between 75 K and 100 K. 

Hence, the correct option should be (b).

Sol 4: (A, B, D) If both E and B are zero, then eF
→

 and 

mF
→

 both are zero. Hence, velocity may remain constant. 
Therefore, option (a) is correct.

If E = 0, B ≠ 0 but velocity is parallel or antiparallel 

to magnetic field, then also eF
→

 and mF
→

 both are zero. 
Hence, option (b) is also correct.

If E ≠ 0, B ≠ 0 but eF
→

+ mF
→

 = 0, then also velocity may 
remain constant or option (d) is also correct.

Sol 5: (A, B, D) Magnetic force does not do work. From 
work-energy theorem:

FeW


= ∆KE or (qE)(2a) = 1
2

m[4v2 – v2]

or E = 3
4

2mv
qa

 
  
 

At P, rate of work done by electric field 

= eF
→

. v
→

 = (qE)(v) cos 0°

= q
23 mv

4 qa

 
  
 

 v = 3
4

3mv
a

 
  
 

Therefore, option (b) is also correct. Rate of work done 

at Q: of electric field = eF
→

. v
→

 = (qE)(2v)cos 90° = 0 and 
of magnetic field is always zero. Therefore, option (d) is 
also correct.

Note that eF
→

= qE î

Sol 6: (A, C) r = mv
Bq

 = P
Bq

 = 2km
Bq

i.e., r ∝ m
q

If K and B are same. 

i.e.,
H
r + : 

He
r + : 2O

r + = 1
1

: 4
1

: 16
2

 = 1 : 2 : 3

Therefore, He+ and O2+ will be deflected equally but H+ 
having the least radius will be deflected most.
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Sol 7: (A, C) BAF
→

 = 0, because magnetic lines are 
parallel to this wire.

CDF
→

 = 0, because magnetic lines are antiparallel to this 
wire. 

CBF
→

 is perpendicular to paper outwards and ADF
→

 is 
perpendicular to paper inwards. These two forces 
(although calculated by integration)cancel each other 
but produce a torque which tend to rotate the loop in 
clockwise direction about an axis OO’.

Sol 8: (A, C, D) v = BqI
m

v
→

⊥ B
→

 in region II. Therefore, path of particle is circle 
in region II. 

X X

X X

X X

X X

Particle enters in region III if, radius of circular path, r >l

or mv
Bq

>l

or v> BqI
m

If v = BqI
m

, r = mv
Bq

 = I, particle will turn back and path 

length will be maximum. If particle returns to region I, 

time spent in region II will be:

t = T
2

 = m
Bq
π , which is independent of v. 

Sol 9: (B, D) r = mv
Bq

 or r ∝ m 

∴ re< rp as me< mp

Further, T = 2 m
Bq
π  or T ∝ m

×

–

X X X

X X X

∴ Te< Tp, te = eT
2

 and tp = pT

2

or te< tp

Sol 10: (C, D)       Y

v
E , B0 0

�
X

If o0 or 10θ =

then particle moves in helical path with increasing pitch 
along Y-axis.

If o90θ =  then magnetic force on the particle is 
zero and particle moves along Y-axis with constant 
acceleration.

Sol 11: (5)

P O

a
a/2

2I J a= × π

2 2
0 0J a J aB

3a2 a 42
2

µ × π µ × π
= − ×

π π×

⇒ 0
1 1B Ja
2 12
 

= µ − 
 

⇒ 0
5B Ja

12
= µ ×
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Sol 12: (B) M I= ×  Area of loop k̂

2
2 2a ˆ ˆI a 4 k I a 1 k

4 2 2

   π π
= × × × = × +   ×    

Sol 13: (D)�

R/2
Rr ; B 0
2

< =

RB at r
2

=

⇒ 0 0JR JR
B 0

2 2 2 2
µ µ

= − =
× ×

RB at r
2

>

⇒ 
2

0 0JR J RB
2 2 r 4

µ µ × π
= − ×

π

2
0L RB r
2 4r

 µ
= − 

  

If we put Rr
2

= , B = 0

∴  B is continuous at r = R/2

Sol 14: (A, C) So magnetic field is along –ve, z-direction.

Time taken in the magnetic field 1 M10 10
6QB

− π
= × =

3

M 1000 MB
60Q60 10 Q−

π π
= =

×  

50 M
3Q
π

=

�

x4i

30
o

�

30
o

y
2 3i + j

�

( (

Sol 15: (B)

22GMm 1 mv 0
L 2

−
+ =

GMv 2
L

⇒ =

Note: The energy of mass ‘m’ means its kinetic energy 
(KE) only and not the potential energy of interaction 
between m and the two bodies (of mass M each) – 
which is the potential energy of the system.

Sol 16: (3) Case – I

Case-I

X
0

X /3
0

P

I I

Case-II

X
0

X /3
0

P

I I

0
1

0

1 3IB
2 2 x

  µ
=     π  

1
1

mvR
qB

=

Case - II

Case-I

X
0

X /3
0

P

I I

Case-II

X
0

X /3
0

P

I I

1
2

mvR
qB

=

1 2

2 1

R B 1 / 3 3
R B 1 / 9

⇒ = = =

Sol 17: (C) The net magnetic field at the given point 
will be zero if.

wires loop| B | | B |=
 

2
0 0

2 2 3/22 2 2 2

I Iaa2
2(a h )2 a h a h

µ µ
⇒ × =

+π + +

h 1.2a⇒ ≈

The direction of magnetic field at the given point due 
to the loop is normally out of the plane. Therefore, the 
net magnetic field due the both wires should be into 
the plane. For this current in wire I should be along PQ 
and that in wire RS should be along SR.

Sol 18: (B)
2 2

2 o0 0I I a
MB sin I a 2 sin 30

2 d 2d
µ µ

τ = θ = π × × =
π
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Sol 19: (A, B, C) ˆ ˆF 2I(L R)[i B]= + ×


.
2(L+R)

Sol 20: (A, D) 1 2I I=

1 1 2 2neA v neA v⇒ =

1 1 1 2 2 2d w v d w v⇒ =

Now, potential difference developed across MK

V = Bvw

1 1 1 2

2 2 2 1

V v w d
V v w d

⇒ = =

Sol 21: (A, C) As 1 2I I=

1 1 1 1 2 2 2 2n w d v n w d v=

Now 2 2 2 2 2 2 1 1 1 2 1

1 2 1 1 1 1 2 2 2 1 2

V B v w B w n w d B n
V B v w B w n w d B n

  
= = =    

  


