♦—												
	CHEMICAL	BO	NDING									
1.	COVALENT BOND The strength of bonds by $2s - 2s$, $2p - 2p$ and $2p - 2s$ overlapping has the order :- (1)s - s > p - p > s - p (2) $s - s > p - s > p - p(3) p - p > s - p > s - s (4) p - p > s - s > p - s$	8.	Which of the following set is not correct:- (1) SO_3 , O_3 , NH_4^+ all have coordinate bonds (2) H_2O , NO_2 , ClO_2^- , all are 'V' shape molecules (3) I_3^- , ICl_2^- , NO_2^+ ; all are linear molecules (4) SF_4 , SiF_4 , XeF_4 are tetrahedral in shape									
2.	 Which is not characteristic of π-bond:- (1) π - bond is formed when a sigma bond already formed (2) π - bond are formed from hybrid orbitals (3) π - bond may be formed by the overlapping of p-orbitals (4) π-bond results from lateral overlap of atomic 	9. 10.	The shape of XeO ₂ F ₂ will be :- (1) Square planar (2) Tetrahedral (3) Pentagonal bipyramidal (4) See saw									
3.	orbitals Which compound of xenon is not possible (1) XeF_2 (2) XeF_4 (3) XeF_5 (4) XeF_6		 (1) 0 (2) 2 (3) 1 									
4.	Similarity of fluorine and oxygen may not be attributed to-(1) Their atomic and ionic radii are closely similar(2) The atom of both elements attain an octet of	11.	 (1) bent, sp (2) trigonal, sp² (3) octahedral, sp³d (4) tetrahedral, sp³ When the hybridization state of carbon atom changes from sp³, sp² and sp, the angle between the hybridized orbitals. (1) decrease considerably (2) increase progressively 									
	 electrons in their valence shell (3) Both of them are highly electronegative elements (4) Both form stable pπ – pπ multiple bonds with themselves 	12.										
	HYBRIDISATION	(3) decrease gradually(4) all of these										
5 .	Among the following species identify the isostructural pairs:- NF_3 , NO_3^- , BF_3 , H_3O^+ , HN_3 (1) $[NF_3, NO_3^-]$ and $[BF_3, H_3O^+]$ (2) $[NF_3, HN_3]$ and $[NO_3^-, BF_3]$ (3) $[NF_3, H_3O^+]$ and $[NO_3^-, BF_3]$ (4) $[NF_3, H_3O^+]$ and $[HN_3, BF_3]$ Which of the set of species have same	13.	 Molecular shapes of SF₄, CF₄ and XeF₄ are :- (1) The same, with 2, 0 and 1 lone pairs of electrons respectively (2) The same, with 1,1 and 1 lone pairs of electrons respectively (3) Different, with 0,1 and 2 lone pairs of electrons respectively (4) Different, with 1,0 and 2 lone pairs of electrons respectively Select the correct matching : 									
7.	hybridisation state but different shapes:- (1) NO_2^+ , NO_2^- , NO_2^- (2) CIO_4^- , SF_4 , XeF_4 (3) NH_4^+ , H_3O^+ , OF_2^- (4) SO_4^{-2} , PO_4^{-3} , CIO_4^- Which of the following elements can not exhibit sp ³ d hybridisation state:- (a) C (b) P (c) Cl (d) B		List IList II $A : XeF_4$ 1. Pyramidal $B : XeF_6$ 2. T-shape $C : XeO_3$ 3. Distorted octahedral $D : XeOF_2$ 4. Square planar A B C D D (1) 4 3 1 2									
	Correct answer is:- (1) a, c (2) a, d (3) b, c (4) b, d		$\begin{array}{cccccccccccccccccccccccccccccccccccc$									

15. The dipole moment of NH₃ is:-(1) Less than dipole moment of NCl₃ (2) Higher than dipole moment of NCl. (3) Equal to the diple moment of NCl₃ (4) None of these **16.** Which set of molecules is polar :-(2) PCl_5 , C_6H_6 , SF_6 (1) XeF_4 , IF_7 , SO_3 (4) CO_{2} , CS_{2} , $C_{2}H_{2}$ (3) SnCl₂, SO₂, NO₂ 17. Species having zero dipole moment :-(1) XeF₄ (2) 1,2,4 trichloro benzene (3) SF₄ $(4) CH_{2}Cl_{2}$ **18.** PCl_5 is non polar because :-(1) P – Cl bond is non-polar (2) Its dipole moment is zero (3) P - Cl bond is polar (4) P & Cl have equal electronegativity **19.** The correct order of dipole moment is : (1) $CH_4 < NF_3 < NH_3 < H_2O$ (2) $NF_3 < CH_4 < NH_3 < H_2O$ (3) $NH_3 < NF_3 < CH_4 < H_2O$ (4) $H_2O < NH_3 < NF_3 < CH_4$ **20.** Which of the following has the highest value of dipole moment : (2) HF (3) HI (1) HCl (4) HBr **MOLECULAR ORBITAL THEORY** 21. The ion that is isoelectronic with CO and having same bond order is :-(1) CN-(2) O_2^+ $(3) O_2^{-}$ (4) N_2^+ 22. Which of the following is paramagnetic:-(2) CN-(3) CO (4) NO+ (1) O_2^- The no. of antibonding electron pair in O_2^{-} is 23. (1) 4(2)3(3) 8(4) 1024. Which of the following ion has not bond order of 2.5? (3) N₂+ $(1) O_{2}^{-}$ (2) O_2^+ (4) N_0^{-} 25. In a homonuclear molecule which of the following set of orbitals are degenerate ? (1) σ_{2s} and σ_{1s} (2) $\pi_{2p_{\star}}$ and $\pi_{2p_{\star}}$ (4) $\sigma_{_{2p_z}}$ and $\pi^*_{_{2p_z}}$ (3) $\pi_{2p_{v}}$ and $\sigma_{2p_{z}}$

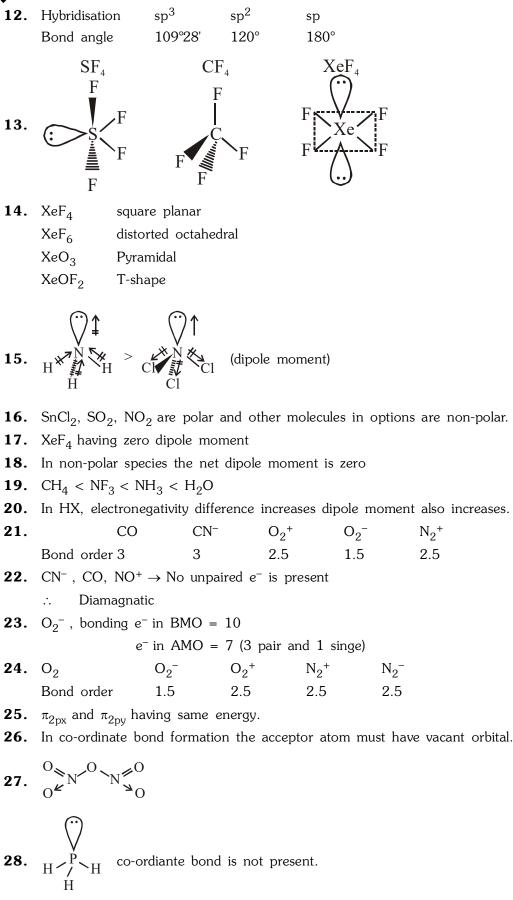
COORDINATE BOND 26. In Co-ordinate bond, the acceptor atoms must essentially contain in its valency shell an orbital:-(1) With paired electron (2) With single electron (3) With no electron (4) With three electron 27. The bonds present in N_2O_5 are :-(1) Only ionic (2) Covalent & coordinate (3) Only covalent (4) Covalent & ionic 28. Which of the following has no coordinate bond? (2) $P_{0}H_{c}^{+2}$ (3) $P_{0}H_{c}^{\oplus}$ (1) PH₂ (4) PH₄⁺ WEAK FORCES 29. In dry ice the bond present between two molecules is (1) Ionic bond (2) Covalent bond (3) Hydrogen bond (4) Vander Waal 30. Intermolecular hydrogen bonds are not present in:-(1) CH₃CH₂OH (2) CH₃COOH $(3) C_2 H_5 N H_2$ (4) CH₃OCH₃ In which of the following molecule, the shown 31. hydrogen bond is not possible:-·H (2) (3)(4) Cl-

♦											
32.	The incorrect order of decreasing boiling points		IONIC BOND								
	is	38.	Conditions for ionic bond formation is/are :								
	(1) $\text{NH}_3 > \text{AsH}_3 > \text{PH}_3$		(a) Small cation, large anion								
	(2) $H_2O > H_2Se > H_2S$		(b) Low IP of cation, high electron affinity of anion								
	(3) $\operatorname{Br}_2 > \operatorname{Cl}_2 > \operatorname{F}_2$		(c) Large cation, small anion and less charge								
	(4) $CH_4 > GeH_4 > SiH_4$		(d) Less lattice enrgy Correct answer is :								
33.	Acetic acid exists as dimer in benzene due to:-		(1) a, d (2) b, c and d								
	(1) Condensation reaction		(3) b and c (4) a, b								
	(2) Hydrogen bonding	39.	An ionic compound $A^{\scriptscriptstyle +}$ $B^{\scriptscriptstyle -}$ is most likely to be								
	(3) Presence of carboxyl group		formed when -								
	(4) None of the above		(1) Ionization energy of A is low								
34.	Maximum no. of hydrogen bonds formed by a		(2) Electron affinity of B is high								
	water molecule in ice is		(3) Electron affinity of B is low(4) Both (1) and (2)								
	(1) 4 (2) 3	40.	As compared to covalent compounds electrova-								
	(3) 2 (4) 1		lent compounds generally possess								
35.	Density of ice is less than that of water because		(1) High m.p. and high b.p.								
	of		(2) Low m.p. and low b.p.								
	(1) presence hydrogen bonding		(3) Low m.p. and high b.p.								
	(2) crystal modification of ice	41.	(4) high m.p. and low b.p.								
	(3) open porous structure of ice due to hydrogen		The most stable carbonate is (1) Li ₂ CO ₃ (2) BeCO ₃								
	bonding (4) different charges between of these		(1) $L_{2}^{2}CO_{3}^{2}$ (2) $BCOO_{3}^{2}$ (3) $CaCO_{2}^{2}$ (4) $BaCO_{2}^{2}$								
96	(4) different physical states of these	42.	CCl_4 is more covalent than LiCl because :								
36.	Which of the following compounds show in- tramolecular hydrogen bonding :		(1) There is more polarization of Cl in CCl_4								
	(A) o - nitrophenol	43.	 (2) There is more polarization of Cl in LiCl (3) CCl₄ has more weight (4) None of above 								
	(B) p - nitrophenol										
	(C) phenol										
	(D) salicylaldehyde		The correct order of decreasing polarisable ions is:								
			(1) Cl ⁻ , Br ⁻ , I ⁻ , F ⁻ (2) F ⁻ , I ⁻ , Br ⁻ , Cl ⁻								
			(3) F ⁻ , Cl ⁻ , Br ⁻ , I ⁻ (4) I ⁻ , Br ⁻ , Cl ⁻ , F ⁻								
07	(3) A & D (4) B & C	44 .	Ionic conductances of hydrated M^+ ions are in the order –								
37.	The pair of molecules forming strongest hydro- gen bonds are :										
	(1) SiH ₄ and SiF ₄		(1) $Li^{+}(aq) > Na^{+}(aq) > K^{+}(aq) > Rb^{+}(aq) > Cs^{+}(aq)$								
			(2) $Li^{+}(aq) > Na^{+}(aq) < K^{+}(aq) < Rb^{+}(aq) < Cs^{+}(aq)$ (3) $Li^{+}(aq) > Na^{+}(aq) > K^{+}(aq) > Rb^{+}(aq) < Cs^{+}(aq)$								
	(2) $CH_3 - C - CH_3$ and $CHCl_3$		(3) $\text{Li}^{+}(\text{aq}) < \text{Na}^{+}(\text{aq}) < \text{K}^{+}(\text{aq}) < \text{Rb}^{+}(\text{aq}) < \text{Cs}^{+}(\text{aq})$ (4) $\text{Li}^{+}(\text{aq}) < \text{Na}^{+}(\text{aq}) < \text{K}^{+}(\text{aq}) < \text{Rb}^{+}(\text{aq}) < \text{Cs}^{+}(\text{aq})$								
	U	45.	Which of the following halides has the highest								
	(3) H—C—OH and CH_3 —C—OH \parallel \parallel \parallel \square O		melting point -								
	Ö Ö		(1) NaCl (2) KCl								
	(4) H_2O and H_2		(3) NaBr (4) NaF								
			^								

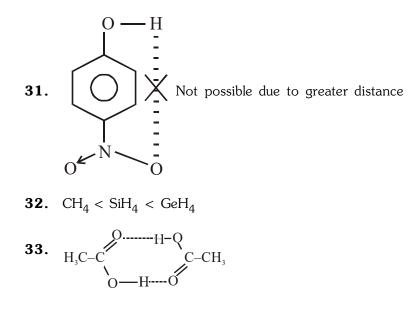
ANSWER KEY

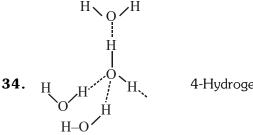
CHEMICAL BONDING																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	3	2	3	4	3	3	2	4	4	2	4	2	4	1	2	3	1	2	1	2
Que.	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
Ans.	1	1	2	1	2	3	2	1	4	4	3	4	2	1	3	3	3	3	4	1
Que.	41	42	43	44	45															
Ans.	4	1	4	4	4															

SOLUTION


CHEMICAL BONDING

1. Bond strength order


2s - 2s < 2s - 2p < 2p - 2p


- **2.** Hybrid orbital does not form π -bond.
- **3.** XeF₅ does not formed
- 5. NF_3 Pyramidal H_3O^+ Pyramidal shape
 - $\mathrm{NO_3^-}$ Trigonal planar $\mathrm{HN_3}$ bent shape
 - BF₃ Trigonal planar
- 7. C & B does not show sp^3d hybridisation due to non avalibility of 'd' orbital
- **8.** SF_4 is see saw
- **9.** XeO_2F_2 sp³d see saw
- 10. T- Shaped species is formed when two lone pair and 3σ bond is formed.

11. Si(CH₃)₄ sp³, Td
$$H_3CCH_3$$

H₃CH₃CH₃

29. dry ice $CO_2(solid)$ vander waal forces exist between CO_2 molecules **30.** CH₃OCH₃ – No hydrogen bonding

4-Hydrogen bond / Water molecules.

- 35. Ice having open cage like structure and having large voids.
- 36. p-nitrophenol and phenol show intermolecular H-bonding.
- **37.** Hydrogen bond exist between HCOOH & CH₃COOH
- **38.** Condition favour ionic bond formation.
 - (1) How IP of atom forming cation
 - (2) High EA of atom forming anion
 - (3) Greater LE of formed product
 - (4) Greater cation and small anion
- 39. See solution of 89
- 40. Electrovalent compound generally having high mp & bp.
- **41.** Ionic Character \uparrow Thermal stability \uparrow
- **43.** $F^- < Cl^- < Br^- < I^-$ (polarizibility)
- 44. If the charges are constant then greater the ionic mobility greater will be conductance
- **45.** NaF having greater ionic character among given species : greater m.p.