Circles

If the equation of a circle is $ax^2 + (2a - 3)y^2 - 4x - 1 = 0$ then its centre is

Choose the appropriate option (a, b, c or d).

Q 1.

	(a) (2, 0)	(b) (2/3, 0)	(c) (-2/3, 0)	(d) none of these			
Q 2.	If $2x^2 + \lambda xy + 2y^2 + (\lambda - (\lambda$	4)x + 6y - 5 = 0 is the eq	quation of a circle then it	s radius is			
these	(a) 3√2	(b) $2\sqrt{3}$	(c) 2√2	(d) none of			
Q 3.	The equation $x^2 + y^2 - 2x + 4y + 5 = 0$ represents						
	(a) a point		(b) a pair of straight lines				
	(c) a circle of nonzero r	adius	(d) none of these				
Three sides of a triangle have the equations $L_r \equiv y = m_r x - c_r = 0$; $r = 1, 2, 3$. Then $\lambda L_2 L_2 = 0$, where $\lambda \neq 0$, $\mu \neq 0$, $\nu \neq 0$, is the equation of the circumcircle of the triangle if							
	(a) $\lambda(m_2 + m_3) + \mu(m_3 +$	$(m_1) + v(m_1 + m_2) = 0$	(b) $\lambda(m_2m_3-1) + \mu(m_3m_1-1) + \nu(m_1m_2-1) = 0$				
	(c) both (a) and (b) hold	l together	(d) none of these				
Q 5. The number of integral values of λ for which							
	$x^2 + y^2 + \lambda x + (1 - \lambda)y + 5 = 0$						
	is the equation of a circle whose radius cannot exceed 5, is						
	(a) 14	(b) 18	(c) 16	(d) none of these			
Q 6.	If $2(x^2 + y^2) + 4\lambda x + \lambda^2 =$ of λ is	the range of real values					
	(a) R	(b) (0, +∞)	(c) (-∞, 0)	(d) none of these			
Q 7.	If a circle passes through the points of intersection of the lines $2x - y + 1 = 0$ and $x + \lambda y - 3 = 0$ with the axes of reference then the value of λ is						
	(a) 1/2	(b) 2	(c) 1	(d) -2			
Q 8.	The equation of the circle passing through the point (1, 1) and having two diameters along the pair lines $x^2 - y^2 - 2x + 4y - 3 = 0$ is						
	(a) $x^2 + y^2 - 2x - 4y + 4$	1 = 0	(b) $x^2 + y^2 + 2x + 4y - 4 = 0$				
	(c) $x^2 + y^2 - 2x + 4y + 4$	+ = 0	(d) none of these				
Q 9.	Two vertices of an equilateral triangle are $(-1, 0)$ and $(1, 0)$, and its third vertex lies above the x-axis. The equation of the circumcircle of the triangle is						

(a)
$$x^2 + y^2 = 1$$
 (b) $\sqrt{3}(x^2 + y^2) + 2y - \sqrt{3} = 0$ (c) $\sqrt{3}(x^2 + y^2) - 2y - \sqrt{3} = 0$ (d) none of these A triangle is formed by the lines whose combined equation is given by $(x + y - 4)(xy - 2x - y + 2) = 0$. The equation of its circumcircles is (a) $x^2 + y^2 - 5x - 3y + 8 = 0$ (b) $x^2 + y^2 - 3x - 5y + 8 = 0$ (c) $x^2 + y^2 - 3x - 5y - 8 = 0$ (d) none of these If the centroid of an equilateral triangle is $(1, 1)$ and its one vertex is (a) $x^2 + y^2 - 2x - 2y - 3 = 0$ (b) $x^2 + y^2 + 2x - 2y - 3 = 0$ (c) $x^2 + y^2 + 2x + 2y - 3 = 0$ (d) none of these The equation of the circle whose one diameter is PQ, where is ordinates of P, Q are the roots of the equation $x^2 + 2x - 3 = 0$ and the abscissa are the roots of the equation $y^2 + 4y - 12 = 0$, is (a) $x^2 + y^2 + 2x + 4y - 15 = 0$ (b) $x^2 + y^2 - 4x - 2y - 15 = 0$ (c) $x^2 + y^2 + 4x + 2y - 15 = 0$ (d) none of these

The maximum number of points with rational coordinates on a circle whose centre is ($\sqrt{3}$, 0) is Q 13.

(a) one

Q 12.

(b) two

(c) four

(d) infinite

Q 14. A circle touches the y-axis at (0, 2) and has an intercept of 4 units on the positive side of the xaxis. Then the equation of the circle is

(a)
$$x^2 + y^2 - 4(\sqrt{2}x + y) + 4 = 0$$

(b)
$$x^2 + y^2 - 4(x + \sqrt{2}y) + 4 = 0$$

(c)
$$x^2 + y^2 - 2(\sqrt{2}x + y)$$

(d) none of these

C₁ is a circle of radius 1 touching the x-axis and the y-axis. C₂ is another circle of radius > 1 and Q 15. touching the axes as well as the circle C1. Then the radius of C2 is

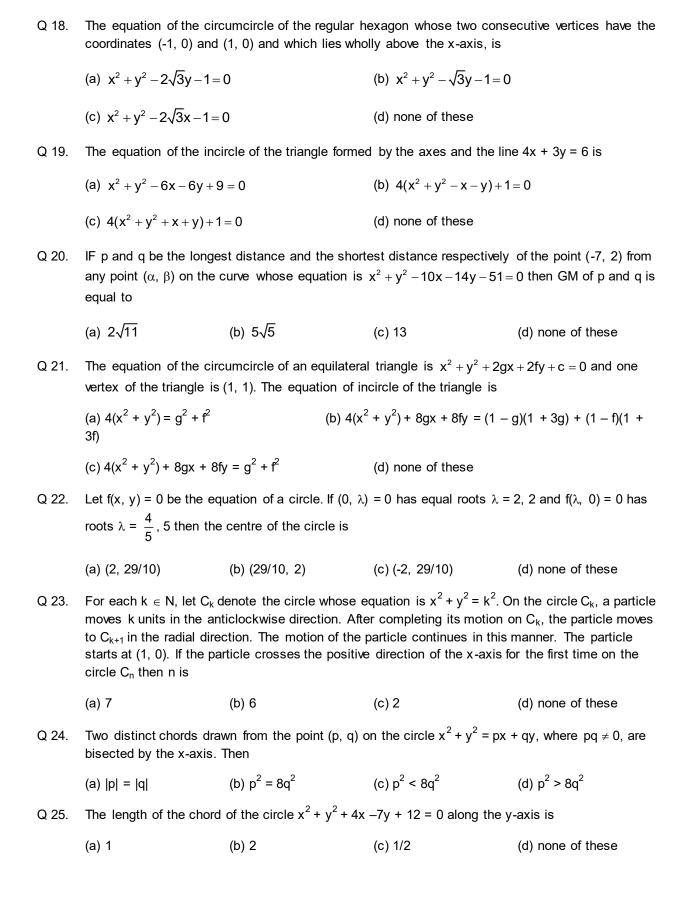
(a) $3-2\sqrt{2}$

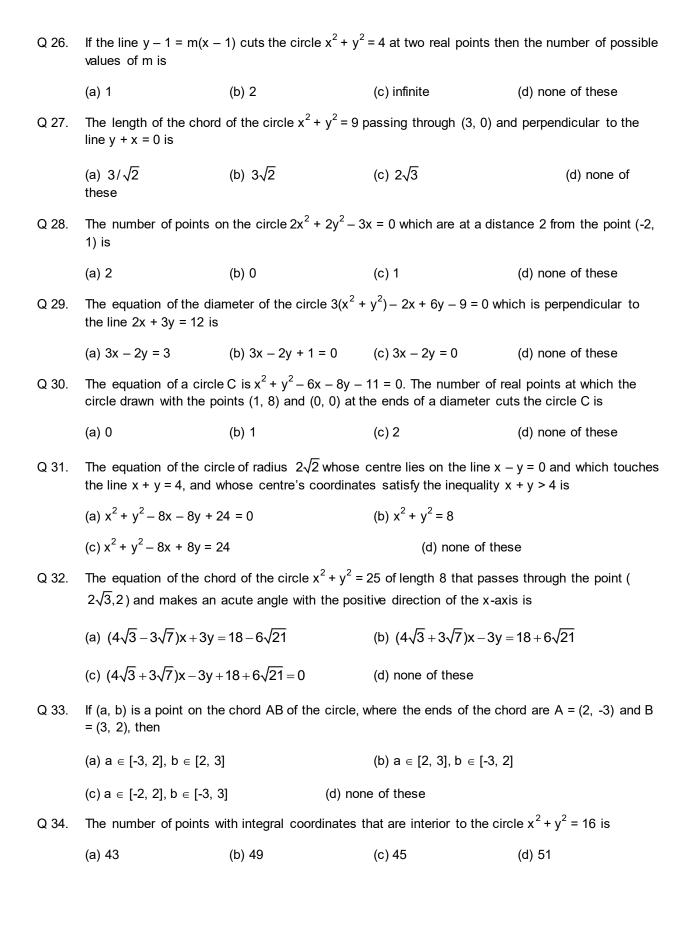
(b) $3 + 2\sqrt{2}$

(c) $3 + 2\sqrt{3}$

(d) none of these

The intercept on the line y = x by the circle $x^2 + y^2 - 2x = 0$ is AB. The equation of the circle with Q 16. AB as a diameter is


(a)
$$x^2 + y^2 + x + y = 0$$

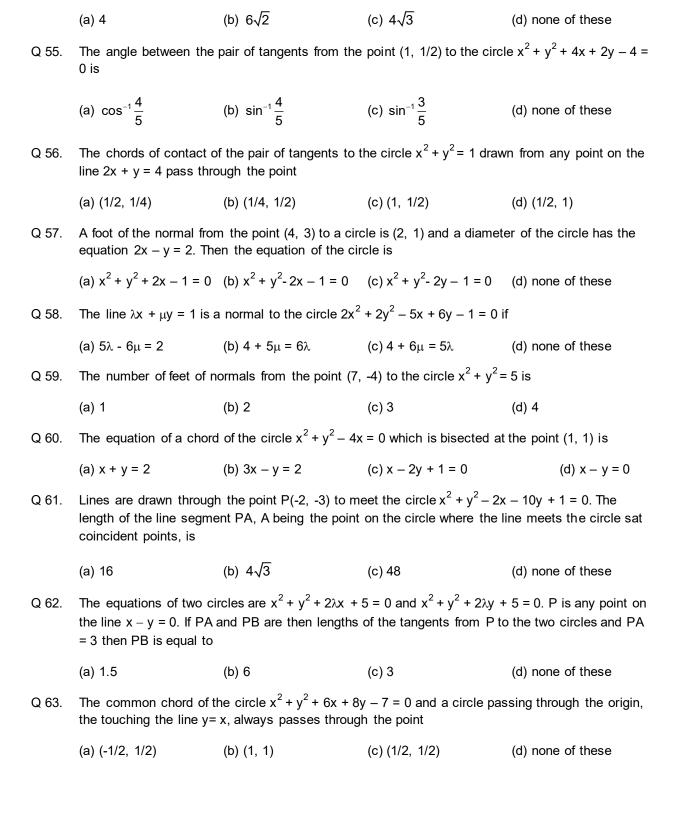

(a) $x^2 + y^2 + x + y = 0$ (b) $x^2 + y^2 = x + y$ (c) $x^2 + y^2 - 3x + y = 0$ (d) none of these

Two circles, each of radius 5, have a common tangent at (1, 1) whose equation is 3x + 4y - 7 = 0. Q 17. Then their centres are

(d) none of

these

Q 35.	The range of values of a for which the point (a, 4) is outside the circles $x^2 + y^2 + 10x = 0$ and $x^2 + y^2 - 12x + 20 = 0$ is						
	(a) (-∞, -8) ∪ (-2, 6) ∪ (6, +∞)	(b) (-8, -2)				
	(c) (- ∞ , -8) \cup (-2, + ∞)		(d) none of these				
Q 36.	A region in the x-y plane is bounded by the curve $y = \sqrt{25 - x^2}$ and the line y = 0. If the point + 1) lies in the interior of the region then						
	(a) $a \in (-4, 3)$	(b) $a \in (-\infty, -1) \cup (3, +\infty)$	(c) $a \in (-1, 3)$	(d) none of these			
Q 37.	7. If (2, 4) is a point interior to the circle $x^2 + y^2 - 6x - 10y + \lambda = 0$ and the circle does not cut the axes at any point then λ belongs to the interval						
	(a) (25, 32)	(b) (9, 32)	(c) (32, +∞)	(d) none of these			
Q 38.	3. The range of values of $\theta \in [0, 2\pi]$ for which $(1 + \cos \theta, \sin \theta)$ is an interior point of the circle $x = 1$ is						
	(a) (π/6, 5π/6)	(b) (2π/3, 5π/3)	(c) (π/6, 7π/6)	(d) (2π/3, 4π/3)			
Q 39.	The range of the values of r for which the point $\left(-5 + \frac{r}{\sqrt{2}}, -3 + \frac{r}{\sqrt{2}}\right)$ is an interior point of the major						
	segment of the circle $x^2 + y^2 = 16$, cut off by the line $x + y = 2$, is						
	(a) $(-\infty, 5\sqrt{2})$	(b) $(4\sqrt{2} - \sqrt{14}, 5\sqrt{2})$	(c) $(4\sqrt{2}-\sqrt{14},4\sqrt{2}+\sqrt{14})$	14) (d) none of these			
Q 40.		ere are two circles whose equations are $x^2 + y^2 = 9$ and $x^2 + y^2 - 8x - 6y + n^2 = 0$, $n \in \mathbb{Z}$. If two circles have exactly two common tangents then the number of possible values of n is					
	(a) 2	(b) 8	(c) 9	(d) none of these			
Q 41.	1. The number of common tangents to the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 6x - 8y = 24$ is						
	(a) 0	(b) 1	(c) 3	(d) 4			
Q 42.	The number of common tangents to the circles $x^2 + y^2 + 2x + 8y - 23 = 0$ and $x^2 + y^2 - 4x - 10 = 0$ is						
	(a) 1	(b) 2	(c) 3	(d) 4			
Q 43.	If the circles $x^2 + y^2 + 2a$	$ax + c = 0$ and $x^2 + y^2 + 2$	2by + c = 0 touch each of	ther then			
	(a) $a^{-2} + b^{-2} = c^{-1}$	(b) $a^{-2} + b^{-2} = c^{-2}$	(c) a + b = 2c	(d) $\frac{1}{a} + \frac{1}{b} = \frac{2}{c}$			
Q 44.	The number of common tangents to the circles one of the which passes through the origin and cuts off intercepts 2 from each of the axes, and the other circle has the line segment the origin and the point (1, 1) as a diameter, is						


The range of values of λ for which the circles $x^2 + y^2 = 4$ and $x^2 + y^2 - 4\lambda x + 9 = 0$ have two common tangents, is						
$(a) \in \left[-\frac{13}{8}, \frac{13}{8}\right]$	(b) $\lambda > \frac{13}{8} \text{ or } \lambda < -\frac{13}{8}$	(c) $1 < \lambda < \frac{13}{8}$	(d) none of these			
The number of common tangents to the circles $x^2 + y^2 - 6x - 14y + 48 = 0$ and $x^2 + y^2 - 6x - 14y + 48 = 0$						
(a) 1	(b) 2	(c) 0	(d) 4			
Two circles have the equations $x^2 + y^2 - 4x - 6y - 8 = 0$ and $x^2 + y^2 - 2x - 3 = 0$. Then						
(a) they cut each other		(b) they touch each other				
(c) one circle lies inside	e the other	(d) one circle lies wholly outside the other				
The equations of two circles are $x^2 + y^2 - 26y + 25 = 0$ and $x^2 + y^2 = 25$. Then						
(a) they touches each of	other	(b) they cut each other orthogonally				
(c) one circle is inside t	he other circle	(d) none of these				
A tangent is drawn to the circle $2(x^2 + y^2) - 3x + 4y = 0$ and it touches the circle at point A. The tangent passes the point P(2, 1). Then PA is equal to						
(a) 4	(b) 2	(c) 2√2	(d) none of			
Q 50. If the points A(1, 4) and B are symmetrical about the tangent to the circles $x^2 + y^2$ the origin then coordinates of B are						
(a) (1, 2)	(b) $(\sqrt{2}, 1)$	(c) (4, 1)	(d) none of these			
The range of values of m for which the line $y = mx + 2$ cuts the circle $x^2 + y^2 - x + y = 0$ at the origin then coordinates of B are						
(a) (1, 2)	(b) $(\sqrt{2}, 1)$	(c) (4, 1)	(d) none of these			
The range of values of m for which the line $y = mx + 2$ cuts the circles $x^2 + y^2 = 1$ at distinct or coincident points is						
(a) $(-\infty, -\sqrt{3}] \cup [\sqrt{3}, +\infty]$	∞)	(b) $[-\sqrt{3}, \sqrt{3}]$				
(c) [$\sqrt{3}$, + ∞)		(d) none of these				
The equation of any tangent to the circle $x^2 + y^2 - 2x + 4y - 4 = 0$ is						
(a) $y = m(x-1) + 3\sqrt{1+m^2} - 2$		(b) $y = mx + 3\sqrt{1 + m^2}$				
	common tangents, is $(a) \in \left[-\frac{13}{8}, \frac{13}{8} \right]$ The number of common (a) 1 Two circles have the equation of two control (b) one circle lies inside the equations of two control (c) one circle is inside to (c) one circle is inside to (d) they touches each control (e) one circle is inside to (f) one circle is inside to (g) one circle is inside to (h) they touches each control (a) they touches each control (b) one circle is inside to (a) they touches each control (b) one circle is inside to (c) one circle is inside to (d) they touches each control (e) one circle is inside to (f) one circle is inside to (h) they touches each control (f) one circle is inside to (f)	common tangents, is $ (a) \in \left[-\frac{13}{8}, \frac{13}{8} \right] \qquad (b) \ \lambda \geq \frac{13}{8} \text{ or } \lambda < -\frac{13}{8} \right] $ The number of common tangents to the circles $ (a) \ 1 \qquad (b) \ 2 $ Two circles have the equations $ x^2 + y^2 - 4x - 6y $ (a) they cut each other $ (c) \text{ one circle lies inside the other} $ The equations of two circles are $ x^2 + y^2 - 26y + (a) \text{ they touches each other} $ (c) one circle is inside the other circle $ A \text{ tangent is drawn to the circle } 2(x^2 + y^2) - 3x + (a) \text{ tangent passes the point } P(2, 1). \text{ Then PA is equal to the origin then coordinates of B are} $ (a) $ (a) \ 4 \qquad (b) \ 2 $ If the points $ A(1, 4) \text{ and B are symmetrical about the origin then coordinates of B are} $ (a) $ (1, 2) \qquad (b) \ (\sqrt{2}, 1) $ The range of values of m for which the line $ y = x^2 + y^2 + (a) $ The range of values of m for which the line $ x = x^2 + y^2 + (a) $ The range of values of m for which the line $ x = x^2 + y^2 + (a) $ The range of values of m for which the line $ x = x^2 + y^2 + (a) $ The range of values of m for which the line $ x = x^2 + y^2 + (a) $ The range of values of m for which the line $ x = x^2 + y^2 + (a) $ The equation of any tangent to the circle $ x^2 + y^2 + (a) + (b) + (a) + (b) + (a) + (b) +$	common tangents, is $ (a) \in \left[-\frac{13}{8}, \frac{13}{8} \right] \qquad (b) \ \lambda > \frac{13}{8} \ \text{or} \ \lambda < -\frac{13}{8} (c) \ 1 < \lambda < \frac{13}{8} $ The number of common tangents to the circles $x^2 + y^2 - 6x - 14y + 48 = (a) \ 1 \qquad (b) \ 2 \qquad (c) \ 0 $ Two circles have the equations $x^2 + y^2 - 4x - 6y - 8 = 0$ and $x^2 + y^2 - 2x = (a) \ 1 \qquad (b) \ 1 \qquad (b) \ 1 \qquad (c) \ 1 \qquad (c) \ 1 \qquad (d) \ 1 \qquad (d) \ 1 \qquad (e) \ 1 \qquad (f) \ 1 \qquad (f$			

(c) 3

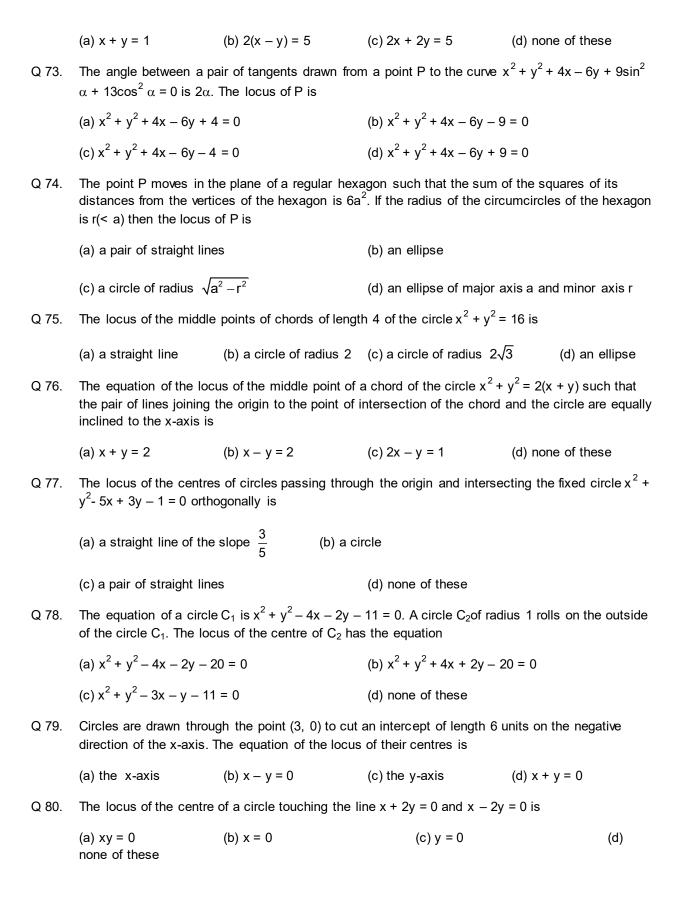
(d) 2

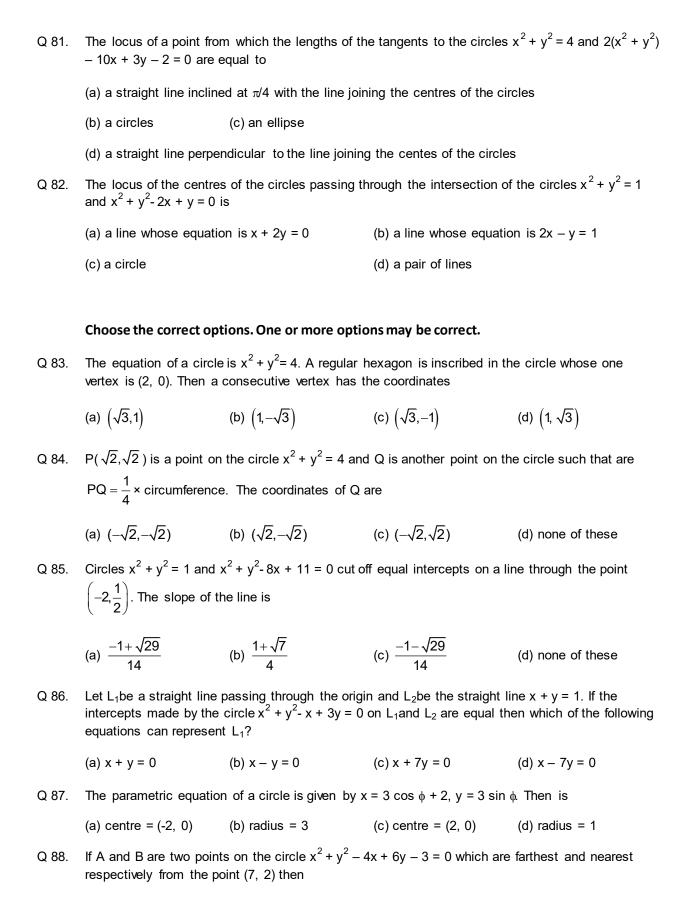
(a) 0

(b) 1

(d) none of these

Two tangents to the circle $x^2 + y^2 = 4$ at the point A and B meet at P(-4, 0). The area of the


(c) $v = mx + 3\sqrt{1 + m^2} - 2$


quadrilateral PAOB, where O is the origin, is

	(a) $\left(\frac{8}{5}\sqrt{6}, \frac{4}{5}\right)$	(b) $\left(\frac{8}{5}\sqrt{6}, -\frac{4}{5}\right)$	$(c)\left(-\frac{8}{5}\sqrt{6},-\frac{4}{5}\right)$	(d) none of these		
Q 65.	If the common chord of origin then λ is equal to	the circles $x^2 + (y - \lambda)^2 =$	16 and $x^2 + y^2 = 16$ subt	end a right angle at the		
	(a) 4	(b) $4\sqrt{2}$	(c) ±4√2	(d) 8		
Q 66.	The equation of the sm circle $x^2 + y^2 = 9$ is	allest circle passing thro	ugh the intersection of th	e line x + y = 1 and the		
	(a) $x^2 + y^2 + x + y - 8 =$ (d) none of the	` ,	$-y - 8 = 0$ (c) $x^2 +$	$y^2 - x + y - 8 = 0$		
Q 67.	The equation of a circle line $x + y = 5\sqrt{2}$ has the		e of the smallest circle to	ouching this circle and the		
	(a) $\left(\frac{7}{2\sqrt{2}}, \frac{7}{2\sqrt{2}}\right)$	(b) $\left(\frac{3}{2},\frac{3}{2}\right)$	$(c)\left(-\frac{7}{2\sqrt{2}},-\frac{7}{2\sqrt{2}}\right)$	(d) none of these		
Q 68.	68. The members of a family of circles are given by the equation $2(x^2 + y^2) + \lambda x - (1 + \lambda^2)y - 10 =$ The number of circles belonging to the family that are cut orthogonally by the fixed circle $x^2 + 4x + 6y + 3 = 0$ is					
	(a) 2	(b) 1	(c) 0	(d) none of these		
Q 69.	The equation of the circ	cle with the chord $y = 2x$	of the circle $x^2 + y^2 - 10x$) + λx - $(1 + \lambda^2)y$ - 10 = 0. by the fixed circle $x^2 + y^2$ (d) none of these		
	(a) $x^2 + y^2 - 2x - 4y - 5$	5 = 0	(b) $x^2 + y^2 = 2x + 4y$			
	(c) $x^2 + y^2 = 4x + 2y$		(d) none of these			
Q 70.	complete rotation on th	circle of radius 2 touches the coordinate axes in the first quadrant. If the circle makes a omplete rotation on the x-axis along the positive direction of the x-axis then the equation of the ircle in the new position is				
	(a) $x^2 + y^2 - 4(x + y) - 8\pi x$	$(+(2+4\pi)^2=0$	(b) $x^2 + y^2 - 4x - 4y + (2 + 4\pi)^2 = 0$			
	(c) $x^2 + y^2 - 8\pi x - 4y + ($	$(2 + 4\pi)^2 = 0$	(d) none of these			
Q 71.	A ray of light incident at the point (-2, -1) gets reflected from the tangent at (0, -1) to the circle $x^2 + y^2 = 1$. The reflected ray touches the circle. The equation of the line along which the incident ray moved is					
	(a) $4x - 3y + 11 = 0$	(b) $4x + 3y + 11 = 0$	(c) $3x + 4y + 11 = 0$	(d) none of these		
Q 72.	The locus of the centre	s of the circles for which	one end of a diameter is	(1, 1) while the other end		

is on the line x + y = 3 is

Q 64. A tangent to the circle $x^2 + y^2 = 1$ through the point (0, 5) cuts the circle $x^2 + y^2 = 4$ at A and B. The tangents to the circle $x^2 + y^2 = 4$ at A and B meet at C. The coordinates of C are

(a)
$$A = (2 - 2\sqrt{2}, -3 - 2\sqrt{2})$$

(b)
$$B = (2 + 2\sqrt{2}, -3 + 2\sqrt{2})$$

(c)
$$A = (2 + 2\sqrt{2}, -3 + 2\sqrt{2})$$

(d)
$$B = (2 - 2\sqrt{2}, -3 + 2\sqrt{2})$$

A point P($\sqrt{3}$.1) moves on the circle $x^2 + y^2 = 4$ and after covering a quarter of the circle leaves it tangentially. The equation of a line along which the point moves after leaving the circle is

(a)
$$y = \sqrt{3}x + 4$$

(b)
$$\sqrt{3}y = x + 4$$

(c)
$$\sqrt{3}y = x - 4$$
 (d) $y = \sqrt{3}x - 4$

(d)
$$y = \sqrt{3}x - 4$$

The equation of a circle of radius 1 touching the circles $x^2 + y^2 - 2|x| = 0$ is Q 90.

(a)
$$x^2 + y^2 + 2\sqrt{3}x - 2 = 0$$

(b)
$$x^2 + v^2 - 2\sqrt{3}v + 2 = 0$$

(c)
$$x^2 + y^2 + 2\sqrt{3}y + 2 = 0$$

(d)
$$x^2 + y^2 + 2\sqrt{3}x + 2 = 0$$

The line $4y - 3x + \lambda = 0$ touches the circle $x^2 + y^2 - 4x - 8y - 5 = 0$. The value of λ is Q 91.

$$(c) -35$$

(d) none of these

A circle which touches the axes, and whose centre is at distance $2\sqrt{2}$ from the origin, has the Q 92. equation

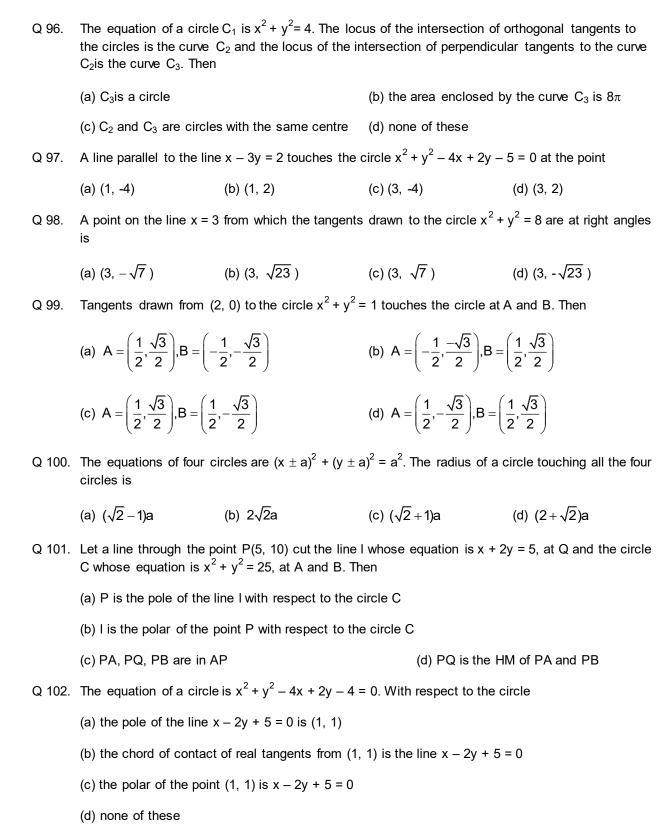
(a)
$$x^2 + y^2 - 4x + 4y + 4 = 0$$

(b)
$$x^2 + y^2 + 4x - 4y + 4 = 0$$

(c)
$$x^2 + y^2 + 4x + 4y + 4 = 0$$

(d) none of these

Let the equation of a circle be $x^2 + y^2 = a^2$. If $h^2 + k^2 - a^2 < 0$ then the line $hx = ky = a^2$ is the Q 93.


- (a) polar line of the point (h, k) with respect to the circle
- (b) real chord of contact of the tangents from (h, k) to the circle
- (c) equation of a tangent to the circle from the point (h, k)
- (d) none of these

For the equation $x^2 + y^2 + 2\lambda x + 4 = 0$ which of the following can be true? Q 94.

- (a) It represents a real circle for all $\lambda \in R$.
- (b) It represents a real circle for $|\lambda| > 2$
- (c) The radical axis of any two circles of the family is the y-axis
- (d) The radical axis of any two circles of the family is the x-axis.

The point of contact of tangent from the point (1, 2) to the circle $x^2 + y^2 = 1$ has the coordinates Q 95.

$$\text{(a)}\ \left(\frac{1-2\sqrt{19}}{5},\frac{2+\sqrt{19}}{5}\right)\ \text{(b)}\ \left(\frac{1-2\sqrt{19}}{5},\frac{2-\sqrt{19}}{5}\right)\ \text{(c)}\ \left(\frac{1+2\sqrt{19}}{5},\frac{2+\sqrt{19}}{5}\right)\ \text{(d)}\ \left(\frac{1+2\sqrt{19}}{5},\frac{2-\sqrt{19}}{5}\right)$$

Answers

1b	2d	3a	4c	5c	6a	7d	8a	9c	10b
11a	12c	13b	14a	15b	16b	17c	18a	19b	20a
21b	22b	23a	24d	25a	26c	27b	28b	29a	30c
31a	32b	33b	34c	35a	36c	37a	38d	39b	40c
41b	42c	43a	44b	45b	46d	47a	48b	49b	50c
51a	52b	53a	54c	55b	56a	57b	58c	59b	60d
61b	62c	63c	64a	65c	66b	67a	68a	69b	70a
71b	72c	73d	74c	75c	76a	77d	78a	79c	80a
81d	82a	83bd	84bc	85ac	86bd	87bc	88ab	89bc	90bc
91ac	92bc	93a	94bc	95ad	96ac	97bc	98ac	99cd	100ac

101abd 102ac