• An angle is made when two lines or line segments meet. For example:

• When the sum of the measures of two angles is 90°, the angles are called **complementary angles**.

Here, $\angle AOB$ and $\angle PQR$ are complementary as $(\angle AOB + \angle PQR) = 75^{\circ} + 15^{\circ} = 90^{\circ}$.

• When the sum of the measures of two angles is 180°, the angles are called **supplementary angles**.

Here, $\angle ABC$ and $\angle PQR$ are supplementary as $(\angle ABC + \angle PQR) = 110^{\circ} + 70^{\circ} = 180^{\circ}$.

- A pair of angles are called adjacent angles, if:
- they have a common vertex
- they have a common arm
- the non-common arms are on either side of the common arm

For example, $\angle AOB$ and $\angle BOC$ are adjacent angles as they have a common vertex O, common arm OB, and non-common arms OA and OC lie on either side of OB.

- A linear pair is a pair of adjacent angles whose non-common sides are opposite rays.
- The sum of the measures of the adjacent angles is 180°.

Here, $\angle AOC$ and $\angle BOC$ form a linear pair as $\angle AOC + \angle BOC = 180^{\circ}$.

• The sum of angles around a point is equal to 360°.

In this figure, five angles have a common vertex, which is point P. In other words, the five angles make a complete turn and therefore the sum of these five angles will be equal to 360°. This is true no matter how many angles make a complete turn.

• When two lines intersect, the vertically opposite angles so formed are equal.

• A line which intersects two or more lines at distinct points is called **transversal** to the lines.

Here, line l is a transversal with respect to lines p and q.

1.

- 1. $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$, $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$ are pairs of corresponding angles.
- 2. $\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$ are pairs of alternate interior angles.
- 3. $\angle 1$ and $\angle 7$, $\angle 2$ and $\angle 8$ are pairs of alternate exterior angles.
- 4. $\angle 3$ and $\angle 6$, $\angle 4$ and $\angle 5$ are pairs of interior angles on the same side of the transversal.
- 5. $\angle 1$ and $\angle 8$, $\angle 2$ and $\angle 7$ are pairs of exterior angles on the same side of the transversal.

• Corresponding angles

When a transversal intersects two lines *l* and *m*, the **c**orresponding angles so formed at the intersection points are named as follows:

 $\angle 1$ and $\angle 5$, $\angle 2$ and $\angle 6$ $\angle 3$ and $\angle 7$, $\angle 4$ and $\angle 8$

Corresponding angles axiom

If a transversal intersects two parallel lines, then each pair of corresponding angles is equal.

In the above figure, if lines *l* and *m* become parallel then we will have following pair of equal angles:

 $\angle 1 = \angle 5$, $\angle 2 = \angle 6$, $\angle 3 = \angle 7$ and $\angle 4 = \angle 8$

Converse of corresponding angles axiom

If a transversal intersects two lines such that a pair of corresponding angles is equal, then the two lines are parallel to each other.

In the figure, the corresponding angles are equal. Therefore, the lines l and m are parallel to each other.

• Alternate angles

When a transversal intersects two lines l and m, the alternate angles so formed at the intersection points are named as follows:

Alternate interior angles $\angle 3$ and $\angle 5$, $\angle 4$ and $\angle 6$

Alternate exterior angles

 $\angle 1$ and $\angle 7$, $\angle 2$ and $\angle 8$

• Alternate angles axiom

If a transversal intersects two parallel lines, then the angles in each pair of alternate angles are equal.

In the above figure, lines *I* and *m* are parallel. So, by using the alternate angles axiom, we can say that:

 $\angle 1 = \angle 7$, $\angle 2 = \angle 8$, $\angle 3 = \angle 5$ and $\angle 4 = \angle 6$

Converse of alternate angles axiom

If a transversal intersects two lines such that the angles in a pair of alternate angles are equal, then the two lines are parallel.

In the above figure, alternate interior angles are equal (100°) and thus, lines *l* and *m* are parallel.

• Property of interior angles on the same side of a transversal:

If a transversal intersects two parallel lines, then the angles in a pair of interior angles on the same side of the transversal are supplementary. For example,

In the given figure, if lines *l* and *m* are parallel to each other then $\angle 1 + \angle 4 = 180^{\circ}$ and $\angle 2 + \angle 3 = 180^{\circ}$.

• Converse of the property of interior angles on the same side of a transversal:

If a transversal intersects two lines such that the interior angles on the same side of the transversal are supplementary, then the lines intersected by the transversal are parallel. **Example:**

In the given figure, decide whether *l* is parallel to *m* or not.

(Vertically opposite angles)

 $\angle x + 84 = 96^{\circ} + 84^{\circ} = 180^{\circ}$

 $\angle x = 96^{\circ}$

i.e., Sum of the interior angles on the same side of the transversal is supplementary. Therefore, $I_{\parallel}m$.