APPLICATION OF DERIVATIVE INCREASING AND DECREASING FUNCTIONS Multiple Choice Questions [MCQ]

1. If I be an open interval contained in the domain of a real valued function f and if $x_1 < x_2$ in I, then which of the following statements is true? (a) f is said to be increasing on I, if $f(x_1) \le f(x_2)$ for all $x_1, x_2 \in I$ (b) f is said to be strictly increasing on I, if $f(x_1) < f(x_2)$ for all $x_1, x_2 \in I$ (c) Both (a) and (b) are true (d) Both (a) and (b) are false **2.** The function given by $f(x) = \cos x$ is (a) strictly decreasing in $(0, \pi)$ (b) strictly increasing in $(\pi, 2\pi)$, (d) none of the above (c) neither increasing nor decreasing in $(0, 2\pi)$. **3.** The function f(x) = 4x + 3, $x \in R$ is an (a) increasing function (b) decreasing function (c) neither increasing nor decreasing (d) none of the above **4.** Function f given by $f(x) = x^2 - x + 1$ is (a) strictly decreasing in (-1, 1). (b) strictly increasing in (-1, 1). (c) neither increasing nor decreasing in (-1, 1). (d) none of the above 5. The least value of a such that the function f given by $f(x) = x^2 + ax + 1$ is strictly increasing on (1, 2) is (a) a = -3(b) a = -2(c) a = -2(d) a = 36. The function given by $f(x) = x^3 - 3x^2 + 3x - 100$ is (a) increasing in **R**. (b) decreasing in **R** (c) neither increasing nor decreasing in \mathbf{R} (d) none of the above 7. The function $f(x) = \tan x - 4x$ is (b) strictly decreasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ (a) strictly increasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ (c) neither increasing nor decreasing on $\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ (d) none of the above **8.** The interval in which $y = x^2 e^{-x}$ is increasing is (a) $(-\infty,\infty)$ (b) (-2, 0)(c) $(2, \infty)$ (d) (0, 2)9. The function $f(x) = \log(\cos x)$ is (a) strictly increasing on $\left(0, \frac{\pi}{2}\right)$ (b) strictly decreasing on $\left(0, \frac{\pi}{2}\right)$ (c) neither increasing nor decreasing on $\left(0, \frac{\pi}{2}\right)$ (d) none of the above **10.** The interval for which the function $f(x) = \cot^{-1} x + x$ increases is (b) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (a) $\left(0,\frac{\pi}{2}\right)$ (d) $(-\infty, \infty)$ (c) $(0, \pi)$ 11. For which values of x, the function $y = x^4 - \frac{4x^3}{3}$ is increasing and for which values, it is decreasing.

(a) increasing in $(-\infty, 1]$ and decreasing in $[1, \infty)$ (b) increasing in $[1, \infty)$ and decreasing in $(-\infty, 1]$ (c) increasing in $[2, \infty)$ and decreasing in $(-\infty, 2]$ (d) (d) None of these 12. The interval on which the function $f(x) = 2x^3 + 9x^2 + 12x - 1$ is decreasing is (a) $[-1, \infty]$ (b) [-2, -1] (c) $[-\infty, -2]$ (d) [-1, 1] 13. The values of x for which the function $f(x) = 2 + 3x - x^3$ is decreasing is (a) $x \leq -2$ or $x \geq 2$ (b) $x \le 0$ or $x \ge 1$ (c) $x \leq -1$ or $x \geq 1$ (d) none of these **14.** The function $f(x) = 4x^3 - 18x^2 + 27x - 7$ is (a) always decreasing in R. (b) neither increasing nor decreasing in R. (c) always increasing in R. (d) none of these **15.** The function f given by $f(x)=\tan^{-1}(\sin x + \cos x)$ is (a) increasing for all $x \in (\pi/4, \pi/2)$ (b) decreasing for all $x \in (\pi/4, \pi/2)$ (c) neither increasing nor decreasing for $x \in (\pi/4, \pi/2)$ (d) none of these ANSWERS

Q. No.	1	2	3	4	5	6	7	8	9	10
Answer	(c)	(d)	(a)	(c)	(b)	(a)	(b)	(d)	(b)	(d)
Q. No.	11	12	13	14	15					
Answer	(b)	(b)	(c)	(c)	(b)					

MAXIMA & MINIMA Multiple Choice Questions [MCQ]

- 1. f be a function defined on an interval I. Then, which of the following is incorrect ?
- (a) f is said to have a maximum value in I, if $\exists c$ in I such that $f(c) \ge f(x)$, $\forall x \in I$.
- (b) f is said to have a minimum value in I, if $\exists c$ in I such that $f(c) \leq f(x), \forall x \in I$.
- (c) f is said to have an extreme value in I, if \exists t in I such that f (c) is either a maximum or a minimum value of f in I.
- (d) none of these

2. The maximum and minimum values of the function $f(x) = (2x - 1)^2 + 7$ are

- (a) minimum Value = 5, no maximum (a)
- (b) minimum Value = 7, no maximum
- (c) no maximum Value = 3, maximum=1 (d) neither minimum nor maximum
- **3.** The maximum and minimum values of the function $f(x) = 9x^2 + 12x + 2$ are
- (a) minimum Value = 23, no maximum (b) minimum Value = -2, no maximum
- (c) maximum Value = -2, no Minimum (d) neither minimum nor maximum
- **4.** The maximum and minimum values of the function $f(x) = -(x 1)^2 + 10$ are
- (a) minimum Value = 5, no maximum (b) maximum Value = 10, maximum=1
- (c) maximum Value = 10, no minimum (d) neither minimum nor maximum
- 5. The maximum and minimum values of the function $f(x) = |\sin 4x + 3|$ are
- (a) Minimum = 3; Maximum = 4 (b) Minimum = 0; Maximum = 4
- (c) Minimum = 2; Maximum = 4 (d) none of these
- **6.** The local maxima and local minima for $f(x) = x^3 3x$ are
- (a) local minimum at x = 1 is -2, local maximum at x = -1, is 2
- (b) local minimum at x = 1 is 2, local maximum at x = -1, is 3
- (c) local minimum at x = 1 is -2, no local maximum
- (d) none of these

- 7. The local maxima and local minima for $f(x) = x^3 6x^2 + 9x + 15$ are
- (a) local minimum at x = 3 is 15, local maximum at x = 1, is 19
- (b) local minimum at x = 1 is 2, local maximum at x = 3, is 3
- (c) local minimum at x = 1 is -2 and no local maximum

(d) none of these

8. The absolute maximum value and the absolute minimum value of $f(x) = \sin x + \cos x$, $x \in [0, \pi]$

- (a) Absolute minimum value = 1, absolute maximum value = $\sqrt{2}$
- (b) Absolute minimum value = -1, absolute maximum value = $\sqrt{2}$
- (c) Absolute minimum value = -1, absolute maximum value = 2
- (d) none of these

9. The absolute maximum value and the absolute minimum value of $f(x) = (x - 1)^2 + 3$, $x \in [-3, 1]$

- (a) Absolute minimum value = 1, absolute maximum value = 19
- (b) Absolute minimum value = 1, absolute maximum value = $\sqrt{2}$
- (c) Absolute minimum value = -1, absolute maximum value = 19

(d) None of these

- **10.** The minimum and maximum value of the function $\sin x + \cos x$ is
- (a) Minimum = 0, maximum = $\sqrt{2}$ (b) Minimum = $-\sqrt{2}$, maximum = $\sqrt{2}$
- (c) Minimum = $-\sqrt{2}$, maximum =0

(d) None of these

ANSWERS

Q. No.	1	2	3	4	5	6	7	8	9	10
Answer	(d)	(b)	(b)	(c)	(c)	(a)	(a)	(b)	(a)	(b)