
11. W A V E S  O N  A  S T R I N G

1. INTRODUCTION

We come across numerous phenomena in nature based on the properties of wave motion. This chapter describes 
the equations and properties of wave motion. The study of waves on a string forms the basis of understanding the 
phenomena associated with sound waves and other mechanical and non-mechanical waves. Wave transmits both 
energy and momentum from one region to other. Mechanical waves require a medium to travel, whereas non-
mechanical waves don’t. Wave on a string is a mechanical wave but the properties and concepts studied here will 
be useful in studying non-mechanical waves as well.

2. WAVE MOTION

A wave is a disturbance or variation traveling through space and matter. It is the undulating movement of energy 
from one point to another. The medium through which the wave passes may experience some oscillations, but 
the particles in the medium do not travel with the wave. The wave equation, which is a differential equation, 
expresses the properties of motion in waves. Waves come in all shapes and sizes, and accordingly, the mathematical 
expression of the wave equation also varies.

2.1 Types of Waves 
Waves can, broadly, be classified into two types:

(a) Mechanical waves: Waves that require a medium/matter for their propagation are called mechanical waves. 
These waves are generated due a disturbance in the medium (particles in the matter) and while the wave 
travels through the medium, the movement of the medium (particles) is minimal. Therefore mechanical waves 
propagate only energy, not matter. Both the wave and the energy propagate in the same direction. All waves 
(mechanical or electromagnetic) have a certain energy. Only a medium possessing elasticity and inertia can 
propagate a mechanical wave.

(b) Non-mechanical waves/Electromagnetic waves: Waves that do not require a medium/matter for their 
propagation are called electromagnetic waves. These waves are formed by the coupling of electric and 
magnetic fields due to acceleration of electric charge and can travel through vacuum. Depending on the 
wavelength of the electromagnetic wave, they are classified as radio waves, microwaves, infrared radiation, 
visible light, ultraviolet radiation, X-rays, and gamma rays.

3. WAVE PULSE ON A STRING

A wave pulse is a single, sudden, and short-duration disturbance that moves from point A to point B through a 
medium, e.g., a string. We know that waves originate when a disturbance at the source point moves through one 
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particle to its adjacent particles from one end of the medium to the other. Now, when a disturbance-producing 
source active for a short time, a wave pulse passes through the medium. Conversely, when the source remains 
active for an extended time, creating a series of motions, it results in a wave train or a wave packet. Thus, a wave 
train is a group of waves traveling in the same direction.

For example, if the person in figure decides to move his hand up and down 10 times and then stop, a wave train 
consisting of 10 loops will move on the string.

4. EQUATION OF A TRAVELING WAVE

In the figure, let us assume that the man starts moving his hand at t = 0 and finished his job at  
t = ∆t. The vertical displacement of the left end of the string, denoted as y, is a function of time. It is zero for 
t 0and t> t< ∆ . This function can be represented by f (t). Let us take the left end of the string as the source of the 
wave and take the X axis along the string toward right. The function f (t) represents the displacement y of the 
particle at x=0 as a function of time:  y(x=0, t) =f (t). 

The disturbance on the string travels towards right at a constant speed. 
Thus, the displacement produced at the left end at time t reaches the point 

x at time xt
v

 
+  
 

 Similarly, the displacement of the particle at point x at 

time t was generated at the left end at the time t-x/. But the displacement 
of the left end at time t-x/v is f (t-x/v). Hence, y (x, t) = y(x=0, t-x/v) =  
f(t-x/v). 

The displacement of the particle at x at time t, i.e., y(x, t) is generally 
abbreviated as y and the wave equation is written as y = f (t-x/v).  … (i)

Equation (i) represents a wave traveling in the positive direction x at a constant speed. Such a wave is called a 
traveling wave or a progressive wave. The function f is dependent on the movement of the source, and therefore, 
arbitrary. The time t and the position x must be represented in the wave equation in the form t-x/ only. For example,

(t x/ v)y Asin
T

−
=  , and 

(t x/v)
Ty Ae

−
−

=  are valid wave equations.

Both these equations represent the movement of the wave in the positive direction x at constant speed v. 

In contrast, the equation 
2 2 2

2

(x v t )y Asin
L
−

=  does not represent the movement of the wave in the direction x at 

a constant speed . If a wave travels in the negative direction at a speed , its general equation may be written as 

y = f(t + x/v)  ... (ii)

Equation (i) can also be written as 
v t x

y f or y g(x v t),
v

 −
= = − 

 
  ....(iii) 

where g is some other function having the following meaning: Let us assume that t = 0 in the wave 
equation. Then, we get the displacement of various particle at t = 0, i.e., y (x,t 0) g(x)= = = . Thus, the function 
g(x) represents the shape of the string at t = 0. Assuming that the displacement of the different particles at 
t = 0 is represented by the function g(x), the displacement of the particle at x at time t will be  
y = g(x - vt). Similarly, if the wave is traveling along the negative direction x and the displacement of a different 
particle at t = 0 is g(x), the displacement of the particle at x at time t will be y = g(x + t) …(iv)

Illustration 1: The wave equation of a wave propagating on a stretched string along its length taken as the positive 

x axis is given as 
2

0
t xy y exp
T

   = − −  λ  
where y0 = 4 mm, T = 1.0 s and λ = 4 cm.

(a)

(b)

(  )c

Figure 11.1
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(a) Find the velocity of the wave. 

(b) Find the function f(t) giving the displacement of the particle at x = 0. 

(c) Find the function g(x) giving the shape of the string at t = 0.

(d) Plot the shape g(x) of the sting at t = 0. 

(e) Plot the shape of the string at t = 5s. (JEE MAIN) 

Sol: The wave moves having natural frequency of ν  and wavelength λ has velocity V = νλ . 

As the frequency is 1
T

ν =  the velocity of the wave is then V
T
λ

= .

(a) The wave equation can be written as 

21 xt
2 /TT

0y y e
 

− − λ =

On comparison with the general equation y = f (t – x/), we can infer that, 14cm
4cms

T 1.0s
−λ

υ = = =

(b) Putting x =0 in the given equation 
2(t/T)

0f(t) y e −=  … (i)

(c) Putting t = 0 in the given equation 
2(x/ )

0g(t) y e − λ=  … (ii)

(d)

  x=0

x=0 x=0 cm

(e)

4.1 Sine Wave Traveling on a String 
Consider the scenario where the person in the  

y

a

Wave

length

c
e

Hand moves

up and down

Fixed

point

x

b d Directionamplitude

The rope vibrates at rights angles

to the direction of the wave.

Figure 11.3

Fig. 11.3 keeps moving his hand up and down 
continuously. As energy is being constantly supplied 
by the person, the wave generated at the source 
keeps oscillating the any part of the string through 
which it passes. Thus energy passes from the left (the 
source) to the right continuously till the person gets 
tired. The nature of the vibration of any particle in the 
string is similar to that of the left end (the source), 
the only difference is that there is an interval of  
x/ between two motions.

When the person in the Fig 11.3 oscillates the  
left end x = 0 in a simple harmonic motion, the 
equation of motion of this end may be written as  
f(t) = Asin ω t   … (i)

where A is the amplitude and ω is the angular 
frequency. The time period of oscillation is given 
by T=2π/ω and the frequency of oscillation is  

Figure 11.2
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v = 1/T = ω /2π. The wave produced by such an oscillation source is called a sine wave or sinusoidal wave.

The displacement of the particle at x at time t will be

y f(t x/ ) or y Asinw(t x/ )= − υ = − υ  … (ii)

The velocity of the particle at x at time t is given by  y A cos(t x/ )
t

∂
= ω − υ

∂
   … (iii)

 • While differentiating with respect to t, we should treat x as constant – it is the same particle whose 

displacement should be considered as a function of time. Therefore, the symbol 
t
∂
∂

is used in place 

of d
dt

.

 • In the event that the waves travel along negative x direction, the direction of Vp will change.

Particle velocity is the same as wave velocity. The two are totally different. While the wave moves 
on the string at a constant velocity along the x axis, the particle moves up and down with velocity 

y
t
∂
∂

, which changes with x and t.

WP
QR

x x + vT x + 2vT x + 3vT x + 4vT

t

t+T/4

t+T/2

t+3T/4

t+T

Figure 11.4

Above figure shows change in shape of string with time

Vaibhav Krishan (JEE 2009 AIR 22)

4.1.1 Some Important Terms

(a) Amplitude: In a wave, the crest represents highest point the wave rises to and equilibrium represents the 
default position from which a wave arises. Therefore, the distance between the crest and the equilibrium point 
in a single wave cycle is referred to as the equilibrium.
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(b) Wavelength: The distance between any two points with the same phase, such as between crests or troughs 
is referred to as the wavelength λ. It is generally measured in meters.

(c) Wave Number: Wave number is a measurement of a certain number of wavelengths for some given distance. 
In a sense, the wave number is like a spatial analogue of frequency. Typically, wave number is taken to be 2π 
times the number of wavelengths per unit of distance, which is the number of radians for each unit of distance 

as well. 2k π
=

λ
 

(d) Time Period: A period T is the time needed for one complete cycle of vibration of a wave to pass a given 
point.

(e) Frequency: Frequency describes the number of waves that pass a fixed place in a given amount of time and 

is typically measured in hertz. These are related by f = 1
T

 

(f) Angular Frequency: The angular frequency ω gives the frequency with which phase changes. It is expressed 

in radians per second. It is related to the frequency or period by  22 f
T
π

ω= π =   ….(i)

Illustration 2: Consider the wave y = (5 mm) sin [(1 cm -1) x – (60s -1) t]. Find (a) the amplitude, (b) the wave number, 
(c) the wavelength, (d) the frequency, (e) the time period and (f) the wave velocity.  (JEE MAIN)

Sol: Comparing the given equation with y A sin (kx t)= − ω  we get the values of wave number k, amplitude A and 
angular frequency. The frequency ω =2πυ=2π/T. The velocity of wave is v = νλ  and the wave number of wave is 

2K π
=
λ

.

On comparing the given equation with standard equation of a traveling wave, we find

(a) Amplitude  A = 5mm, (b) wave number k = 1 cm-1,  (c) wavelength  2 2 cm
k
π

λ= = π

(d) Frequency  60 30Hz Hz
2 2
ω

ν= = =
π π π

  (e) Time period 1T s
30
π

= =
ν

(f) Wave velocity v = νλ  = 60 cms-1 

4.2 Velocity of Waves on a String
The wave speed depends on the properties of the medium. For a string, the speed of a transverse wave traveling 
along a vibrating string (v) is directly proportional to the square root of the tension of the string (T) over the linear 
mass density (μ): 

Tv =
µ ’ where the linear density μ is the mass per unit length of the string  ….(i)

4.3 Phase Difference
The amount by which two cyclical motions of the same frequency, 
are out of step with each other. It can be measured in degrees 
from 0° to 360°, radians from 0 to 2π, or seconds of time.. If two 
oscillators have the same frequency and no phase difference, they 
are said to be in phase. Conversely, if they have the same frequency 
and different phases, then they have a phase difference and they 
are said to be out of phase with each other. If the phase difference 
is 180° (π radians), then the two oscillators are said to be in anti-
phase.

Crest

Trough

Cycle

Figure 11.5
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4.4 Crest and Trough
In a wave, the crest represents highest point the wave rises within a cycle. A trough is the opposite of a crest, hence 
the minimum or lowest point in a cycle.

5. ALTERNATIVE FORMS OF WAVE EQUATION

As seen earlier, the wave equation of a wave traveling in x direction is y Asin (t x / ),= ω − υ

This can also be written in several other forms such as y Asin( t kx),= ω −   … (i)

 

t xy Asin2
T

 
= π − λ 

   … (ii)

 y Asin[k (vt x)]= −   … (iii)

Please bear in mind our choice of t = 0 in writing equation (v) from which the wave equation has been derived. Also, 
the point at which the left end x = 0 crosses its mean position y = 0 and goes up has been chosen as the origin of 
time. For a general choice of the origin of time, a phase constant will have to be added to give the equation

 y=A sin [ω (t-x/v) + φ] … (iv)

The constant ϕ will be π/2 If we choose t = 0 at an instant when the left end reaches its extreme position y=A, then 
the constant ϕ will be π/2. The equation will then be

 y Acos (t x / v),= ω −   … (v)

If on the other hand, t = 0 is taken at the point when the left end is crossing the mean position from an upward to 
downward direction, ϕ will be π and the equation will be 

 y xAsin t
v

 
= ω − 

 
 or y = A sin (kx - ωt)  … (vi)

Both sin(kx – ωt) and sin(ωt – kx) differ just by a phase of “π”. If a particle at t = 0, x = 0 in its mean 
position is moving upwards (in first wave), then the same particle would be in mean position and the 
particle would be moving down!

B Rajiv Reddy (JEE 2012, AIR 11)

Illustration 3: Fig 11.6 shows a string of linear mass density 1.0 Kg m-1 and a length of 50 cm. Find the time taken 
by a wave pulse to travel through the length of the string. Take g = 10 ms-2.  (JEE MAIN)

Sol: The wave velocity on stretched string under tension F = mg is given by 

Fv =
µ

 where μ is mass per unit length of the string.

The tension in the string is F = mg = 10N. Given that the mass per unit 

length is μ = 1.0 Kg m-1, the wave velocity is, 1
1

10NFv 10ms
0.1kgm

−
−

= = =
µ

. 

Therefore, to travel through 50 cm, the wave pulse will take 0.05 s.

1 kg

Figure 11.6
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Illustration 4: A rubber tube that is 12.0 m long and that has a total mass of 0.9 kg is fastened to 
fixed base. At the other end of the tube, a cord is attached that passes over a pulley and supports 
an object with a mass of 5.0 kg. If the tube is struck at one end, find the time required for the 
transverse pulse to reach the other end. (g = 9.8 m/s2) (JEE MAIN)

Sol:  For the string under the tension T =mg where m is mass of the block. When the rod is struck 

at lower rod, the wave thus originated travels at speed Tv =
µ

 where μ is the mass per unit length 
of the string.

Tension in the rubber tube AB, T = mg or T = (5.0) (9.8) = 49 N

Mass per unit length of rubber tube, 0.9 0.075kg / m
12

µ= =

∴  Speed of wave on the tube, T 49v 25.56m / s
0.075

= = =
µ

∴	 The	required	time	is		 AB 12t 0.47s
v 25.56

= = = .

Illustration 5: Prove that the equation y = a sin (ωt – kx) satisfies the wave equation
2 2

2
2 2

y y

t x

∂ ∂
=ν

∂ ∂
and find speed 

of the wave and the direction in which it is traveling.  (JEE ADVANCED)

Sol: To prove the above relation, we need to take the ratio of second order time derivative of wave equation and 
second order displacement derivative of wave equation.

2
2

2

y
asin( t kx)

t

∂
=−ω ω −

∂
 and  

2
2

2

y
k asin( t kx)

x

∂
= ω −

∂
. We can write these two equation as,

2 22

2 2 2

y y
.

t k x

∂ ∂ω
=

∂ ∂
. Comparing this with, 

2 2
2

2 2

y y

t x

∂ ∂
=ν

∂ ∂

We get, wave speed 
k
ω

ν=

The negative sign between ωt and kx implies that wave is traveling along positive direction.

Illustration 6: The Fig 11.8 shows a snapshot of a sinusoidal traveling wave which 
was taken at t = 0.3 s. The wavelength is 7.5 cm and the amplitude is 2 cm. Assuming 
the crest was at x = 0 at t = 0, write the equation of traveling wave. 
 (JEE ADVANCED)

Sol: The equation of travelling wave is y Asin(kx t)= − ω . The wave number is given 

by 2k π
=

λ
and angular frequency of wave is ω=vk.

Given, A = 2 cm, λ = 7.5 cm ∴ 12k 0.84cm−π
= =

λ

The wave has traveled a distance of 1.2 cm in 0.3 s. Hence, speed of the wave 1.2 4cm / s
0.3

ν= =

∴ Angular frequency ω = (v) (k) = 3.36 rad/s

Since the wave is traveling along the positive direction x, and crest (maximum displacement) is at x = 0 at t = 0, we 
can write the wave equation as

Figure 11.7

Figure 11.8

B

A

Y

x

2 cm
t=0.3s

}

1.2 cm
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Y(x, t) = A cos (kx - ωt)  or y(x, t) = A cos (ωt - kx)  as cos(-θ) = cos θ

Therefore, the equation of the traveling wave is

y(x, t) = (2 cm) cos [(0.84 cm-1)x – (3.36 rad/s)t]

Illustration 7: The mass and length of a rope hanging from the ceiling are 0.1 kg and 2.45 m, 
respectively. The rope has a uniform width. 

(a) Determine the speed of transverse wave in the rope at a point 0.5 m away from the lower 
end.

(b) Also, calculate the time taken by the wave to travel the full length of the rope. 
 (JEE ADVANCED)

Sol: As the rope hangs under it’s own weight, the tension in string at a distance x from 

hanging end is xT mg=


 where   is the length of the string and m is mass of the string. 

When a transverse waves are generated to travel along length of rope, they travel with speed 

Tv =
µ

where μ is mass per unit length of string. 

The tension in the string will be different at different points owing to the mass of the string and the fact that it is 
suspended vertically from a ceiling.. The tension at a point which is at a distance x free end will be due to the weight 

of the string below it. Given that m is the mass of string of length l, the mass of length x of the string will be x m
 
 
 

 0.1 x 0.5 T0.04kg / m; Tension mg mg 0.20N v 2.236m / s
2.45 2.45

   
µ = = = = = ⇒ = =    µ   

(b) From the above equation, we see that velocity of the wave is different at different points. Therefore, if at point 

x the wave travels a distance dx in time dt, then dx dxdt
v gx

= =

1 1

0 0

dxdt
gx

∴ =∫ ∫ ; 2.45t 2 2 1.0s
g 9.8

= = =


Illustration 8: The mass and length of a rope hanging vertically from a rigid support are 12 m and 6 kg, respectively. 
A stone of mass 2 kg is attached to the free end of the rope. The rope has a uniform width. If a transverse pulse 
of wavelength 0.06 m is produced at the lower end of the rope, what will be the wavelength of the pulse when it 
reaches the top of the rope?   (JEE ADVANCED)

Sol: The wave velocity will be FV = νλ =
µ

 where F is the tension in rope at a point and μ is mass 

per unit length of the string. As F is varying along the length of the rope so the velocity will vary 
along the length of the rope. As source frequency is constant λ will vary.

Owing to the fact that a stone is attached to the lower end of the rope, the tension in the rope will 
be different at the different points. The tension at the lower end will be 20 N and at the upper end 
it will be 80 N.

We have,  V = νλ   or,  F        or,F .λ = ν µ
λ

= ν
µ

x

l

Figure 11.9

Figure 11.10

6 kg

2 kg
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The frequency of the wave pulse is affected only by the frequency of the source, and hence the wave pulse 
frequency will be the same across the length of the rope as it depends only on the frequency of the source. As the 
rope has a uniform width, the mass per unit length will also be consistent across the length of the rope. 

Thus, by (i) F
λ

is constant.

Hence,  
1

(2kg)g (8kg)g
0.06m

=
λ

 where λ1 is the wavelength at the top of the rope. This gives λ1 = 0.12m

6. POWER TRANSMITTED ALONG THE STRING BY A SINE WAVE

The direction of a traveling wave on a string and the direction of the 
energy transmitted by it is the same. Consider a sine wave traveling along 
a stretched string in the direction x. The equation for the displacement in 
the direction y is y = A sin ω (t -x/v)  … (i)

The Fig 11.11 the portion of the string to the left of the point x exerts a 
force F on the portion of the string to the right of the point x at time t. The 
direction of this force is along the tangent to the string at position x. The 

component of the force along the axis y is y
yF Fsin Ftan F
x
∂

= − θ≈− θ=−
∂

The power delivered by the force F to the string on the right of position x is, therefore, y yP F
x t

 ∂ ∂
= − ∂ ∂ 

By (i), it is 
2 2

2A F
F Acos ( t x / v) [ Acos (t x / v)] cos (t x / v)

v v
   ωω

− − ω − ω ω − = ω −  
  

This is the rate at which energy is being transferred from left portion of the string to the right portion across the 
point at x. The cos2 term oscillates between 0 and 1 during cycle and its average value is 1/2, therefore, the average 
power transmitted across any point is

2 2
2 2 2

av
1 A FP 2 cA v
2 v
ω

= = π µ      … (ii)

The power passing along the length of the string is proportional to the square of the amplitude and square of the 
frequency of the wave.

Illustration 9: For a sine wave with an amplitude of 2.0 mm, the average power transmitted through a given point 
on a string is 0.20 W. What will be the power that will be transmitted through this point were the amplitude to be 
increased to 3.0 mm?.  (JEE ADVANCED)

Sol: The power transmitted by the sine wave is 2P A∝  where A is the amplitude of the wave.

Other things being equal, the power transmitted is proportional to the square of the amplitude.

Thus, 
2

2 2 2
22

1 1

P A P 9or 2.25 P 2.25 0.20 W 0.45 W
P 0.20W 4A

= = = = × =

Figure 11.11

Y

F

XX
�



11.10  |   Waves on a String

7. ENERGY IN WAVE MOTION

Every wave motion involves transfer of energy and momentum.. Waves are produced when force is applied to a 
portion of the wave medium. When force is applied to a portion of the wave medium, the disturbance thus caused 
in that portion of the medium generates a wave that exerts a force on the adjoining portions. This, in turn, disturbs 
those portions, thereby propagating the wave further to the adjacent portions. In this way, a wave can transport 
energy from one region of space to other.

The energy in wave motion is manifested in three forms, namely, energy density (u), power (P), and intensity (l). We 
shall discuss them one by one.

7.1 Energy Density (µ )
The energy density of a progressive wave is the total mechanical energy (kinetic + potential) per unit volume of 
the medium through which the wave is propagated. This can be illustrated through an example. Let us imagine a 
string attached to a tuning fork. When the tuning fork is struck, the vibration transmits energy to the segment of 
the string attached to it, or in other words, as the vibrating fork moves through its equilibrium position, it stretches 
a segment of the string, increasing its potential energy, while also imparting transverse speed to the segment, 
increasing its kinetic energy. Thus, as the wave moves along the string, energy is transferred to the other segments 
of the string.

7.2 Kinetic Energy Per Unit Volume
The kinetic energy of a unit volume of the string can be calculated from the wave function. Mass of unit volume is 
the density ρ. Its displacement from equilibrium is the wave function

y = A sin (k x – ω t).

Its speed is dy
dt

, where x is considered to be fixed. The kinetic energy of unit volume ΔK is then

 
2

2
y

dy1 1K ( m)v
2 2 dt

 
∆ = ∆ = ρ 

 
; Using y = A sin (k x – w t), we obtain dy w Acos(kx wt)

dt
= − −

So the kinetic energy per unit volume is 2 2 2 21K A cos (kx t)
2

∆ = ρ ω −ω   … (i)

7.3 Potential Energy Per Unit Volume
The work done by the vibrating fork by stretching the segment of the string is the potential energy of the segment. 

It depends on the slope dy
dx

. The potential energy per unit volume of the string is related to the slope and tension 

T and is given by (for small slopes)
2

2 dy1U p
2 dx

 
∆ = ν  

 
  … (ii) 

where    v = wave speed = 
k
ω

Using dy
dx

= k A cos (k x – ω t), we obtain for the potential energy 22 21U A cos (kx t)
2

∆ = ρω −ω   … (iii) 

which is the same as the kinetic energy. The total energy per unit volume is 2 2 2E K U A cos (kx t)∆ =∆ +∆ =ρω −ω  … (iv)

The total energy per unit volume (ΔE) varies with time. As the average value of 2cos (kx t)−ω  at any point is 1
2

, the 

average energy per unit volume (also called the energy density μ) is 2 21 A
2
ρωµ =   … (v)
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In the case of a spring with mass ρ attached to it and 
oscillating in a simple harmonic wave, the energy 
density is the same as in equation (v). However, its 
potential energy is maximum when the displacement is 
maximum. In the case of a string segment, it is the slope 
of the spring that determines the potential energy and it 
is maximum when the slope is maximum, which is at the 
equilibrium position of the segment – the same position 
for which the kinetic energy is maximum. 

In the Fig 11.12, the kinetic energy and potential energy 
both are zero at point A, whereas at point B, both the kinetic energy and potential energy are maximum.

Aman Gour (JEE 2012, AIR 230)

7.4 Intensity (I)
The intensity of a wave is defined as the flow of energy per unit area of a cross-section of the string in unit time. 

Thus, 2 2power P 1I or I A V
area of cross section s 2

= = = ρω
−

This is, however, the average intensity transmitted through the string. The instantaneous intensity 
2 2 2 2 2 2A v sin (kx t) or A v cos (kx t)ρω −ω ρω −ω  depends on x and t.

 • The relation for power and intensity discussed above are for transverse waves on a string. However, 
they hold good for other waves also.

 • Intensity due to a point source: Assuming that waves are propagated uniformly in all directions, the 
energy at a distance r from a point source is distributed uniformly on a spherical surface of radius 
r and area S= 4πr2. If P is the power per unit area that is incident perpendicular to the direction of 

propagation, then intensity 
2

PI 
4 r

=
π

 or  I ∝
2

P
r

Since amplitude A ∝ √I, a spherical harmonic wave emanating from a point source can therefore, 

be written as  Ay(r,t) sin (kr t)
r

= − ω  

T P Varun (JEE 2012, AIR 64)

Illustration 10: An oscillator attached to stretched string with a diameter of 4 mm transmits transverse waves 
through the length of the string. The amplitude and frequency of the oscillation are 10−4 m and 10 Hz, respectively. 
Tension in the string is 100 N, mass density of wire is 4.2 × 103 kg/m3. 

Find: (a) The wave equation along the string

(b) The energy per unit volume of the wave

A

B
x

y

Figure 11.12
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(c) The average energy flow per unit time across any section of the string 

(d) The power required to drive the oscillator. (JEE ADVANCED)

Sol: The wave equation of string is y Asin(kx t)= − ω  where the wave number 2k π
=

λ
, the angular frequency

22
T
π

ω = πν =  . λ is the wavelength and T is the time period of wave. As the string is under tension of 100 N, the 

wave velocity on string is given by TV = νλ =
µ

. Use the formula for wave energy in the string .

(a) Speed of transverse wave on the string is, TV
S

=
ρ

  (∵ μ = ρS)

Substituting the values, we have

3 3 2
 43.100 rad radv 2 f 20 62.83

s s
(4.2 10 ) (4.0 10 )

4

53 m / s; 
−

= ω= π = π =
 π

 

=
× ×

Wave number is 1k 1.44 m
V

−ω
= =  

∴ The wave equation is 4 1 rady (x,t) Asin(kx t) (10 m)sin (1.44m )x 62.83 t
s

− −  
= − ω = −  

  
 

(b) Energy per unit volume of the string, u = energy density = 2 21 A
2
ρ ω  

Substituting the values, we have 3 2 4 21u (4.2 10 )(62.83) (10 )
2

− 
= × 
 

 = 8.29×10-2 J/m3

(c) Average energy flow per unit time, 2 21P  power A (sv) (u)(sv)
2

 
= = ρω = 

 
 

Substituting the values, we have 2 3 2 5P (8.29 10 ) (4.0 10 ) (43.53) 4.53 10 J / s
4

− − − π
= × × = × 

 
 

(d) Power required to drive the oscillator is obviously 4.53 × 10-5 W.

8. INTERFERENCE
Interference is a phenomenon that occurs 
when two waves superimpose while 
traveling in the same medium. This results 
in the formation of a wave of greater or 
lower amplitude. Interference happens 
with waves that emerge from the same 
source or have the similar frequencies.

8.1 Principle of Superposition
The principle of superposition of waves states that when two or more waves of same type come together at a 
single point in space, the total displacement at that point is equal to the sum of the displacements of the individual 
waves. Constructive interference is the meeting of two waves of equal frequency and phase, i.e., if the crest of a 
wave meets a crest of another wave of the same frequency at the same point, then the total displacement is the 
sum of the individual displacements. Destructive interference is the meeting of two waves of equal frequency and 
opposite phase, i.e., if the crest of one wave meets a trough of another wave then the total displacement is equal 
to the difference in the individual displacements.

Resultant wave

Wave 1

Wave 2

Constructive interference Destructive interference

Figure 11.13
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In constructive interference, the phase difference between the waves is a multiple of 2π, whereas in a destructive 
interference the difference is an odd multiple of π. If the phase difference is between these two extremes, then 
the total displacement of the summed waves lies between the minimum and maximum values. If the first wave 
alone were traveling, the displacement of particles may be written as y1=f1 (t – x / v). If the second wave alone were 
traveling, the displacement may be written as y2=f2 (t + x / v)

If both the waves are traveling on the string, the displacement of its different particles will be given by

y = y1 + y2 = f1 (t – x / v) + f2 (t + x / v).

If the two individual displacements are in opposite directions, the magnitude of the resulting displacement may be 
smaller than the magnitudes of the individual displacements. In a nutshell, when two or more waves pass through 
a point at the same time, the disturbance at the point is the sum of the disturbances each wave would produce in 
absence of the other wave(s). 

8.2 Interference of Wave Going in Same Direction 
Let us assume that two identical sources send sinusoidal waves of same angular 
frequency ω in the positive direction x. It is also assumed that the wave velocity 
and consequentially, the wave number k is same for the two waves. One source 
may send the wave a little later than the other or the two sources may be located 
at different points. Here, the phases of the two waves at the point of interference 
will be different. If we assume the amplitudes of the two waves to be A1 and A2 
and the phase difference of the two waves to be an angle δ, their equations may 
be written as

1 1y A sin(kx t)= −ω  And  2 2y A sin(kx t )= −ω +δ

According to the principle of superposition, the resultant wave is represented by

1 2 1 2y y y A sin(kx t ) A sin(kx t )= + = −ω + −ω +δ

= 1 2 2A sin(kx t) A sin(kx t) cos A cos(kx t) sin−ω + −ω δ+ −ω δ

= 1 2 2sin(kx t)(A A cos ) cos(kx t)(A sin )−ω + δ + −ω δ

We can evaluate it using the method to combine two simple harmonic motions. If we write

A1 + A2 cosδ = A cos ε       … (i) 

And  A2 sinδ = A sin ε       … (ii)

We get, y A[sin(kx t)cos cos(kx t)sin ] Asin(kx t )= −ω ε+ −ω ε = −ω +ε

Thus, the resultant is indeed a sine wave of amplitude A with a phase difference ε with the first wave. By (i) and (ii), 

( ) ( )2 22 2 2 2 2 2 2
2 2 2 1 2 1 2A A cos A sin    A A cos  A sin A A 2A A cos= ε+ ε = + δ + δ = + + δ

Or  2 2
1 2 1 2A A A 2A A cos= + + δ        … (iii)

Also  2

1 2

A sinAsintan
Acos A A cos

δε
ε = =

ε + δ
       … (iv)

These relations may be remembered by using the following geometrical model can be used to remember these 
relations: draw a vector of length A1 to represent y1 = A1sin (kx - ωt) and another vector of length A2 at an angle δ 
with the first one to represent y2 = A2 sin (kx – ωt + δ). The resultant vector then represents the resultant wave y=A 
sin (kx – ωt + ε). The given Fig 11.14 shows the construction.

Illustration 11:  The equations of two waves passing simultaneously through a string are given by y1 = A1sin k  
(x – vt) and y2 = A2 sin k (x – vt + x0), where the wave number k = 6.28 cm-1 and x0 = 1.50 cm. The amplitudes for 
A1 and A2 are 5.0 mm and 4.0 mm, respectively. Find the phase difference between the waves and the amplitude of 
the resulting wave.  (JEE ADVANCED)

Figure 11.14

A

��
A2

A1
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Sol: As there are two waves passing through the string simultaneously, the phase difference between the two 

waves will be δ = kx0. And the resulting amplitude of the waves will be 2 2
1 2 1 2A A A 2A A cos= + + δ  .

The phase of the first wave is k (x -vt) and of the second is k (x- vt + x0).

The phase difference is, therefore, δ = kx0 = (6.28cm-1) (1.50 cm) = 2π × 1.5 = 3π

We can thus infer that this is a destructive interference. The amplitude of the resulting wave is given by |A1 – A2| = 
(5.0 − 4.0) mm = 1.0mm.

9. BOUNDARY BEHAVIOUR

When a propagating wave reaches the end of the medium it encounters an obstacle or, maybe, another medium 
through which it could travel. Here, the interface of the two media is referred to as the boundary and the behavior 
of a wave/pulse at that boundary is described as its boundary behavior.

9.1 Fixed End Reflection
Let us consider an elastic string which is attached at one end to a pole on 
a lab bench while the other end is will be held in the hand and stretched 
in order to introduce pulses into the medium. The end of the elastic string 
that is attached to the pole is immovable when a wave or pulse reaches 
it. If a pulse is introduced at the hand-held end of the rope, it will travel 
through the string towards the fixed immovable end of the medium. This 
is called the incident pulse since it is incident (i.e., approaching toward) the 
boundary with the pole. With the incident pulse reaches the boundary, two 
things occur:

(a) Some of the energy transmitted by the pulse is reflected back towards the hand-held end of the rope. This is 
known as the reflected pulse.

(b) That part of the energy that is transmitted to the pole causes the pole to vibrate.

As the vibrations of the pole are not 
obvious, the energy transmitted to it is 
not typically discussed. The emphasis 
here will be on the reflected pulse. What 
are the characteristics/properties of its 
motion?

When seen from the fixed immovable 
end, the reflected pulse is a mirror image 
of incident pulse. That is, an upward 
displaced pulse will be reflected and 
returned as a downward displacement 
pulse and vice-versa.

9.2 Free End Reflection
Continuing with the above example, let us consider the situation 
where instead of being securely attached to a lab pole, the elastic 
string is attached to a ring that is fixed loosely around the pole. 
Since the string is no longer attached firmly to the pole, the last 
particle of the rope will be able to move when a pulse reaches it. 

Now, if a pulse is introduced at the hand-held end of the string, 
it will travel through the string towards the pole at the right end 
of the medium. However, the string is no longer fixed tightly to 

Incident Pulse

Inverted reflected pulse

Fixed end reflection

Figure 11.16

Figure 11.17

if the end of an elastic roe not fastened to the pole

then it will be free move up and down. This

provides for the study of waves behavior at free ends.

Figure 11.15

Fixed end reflection

An elastic rope security to a can be used

to study the behavior waves at a fixed end.
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the pole and, therefore, the string and 
the pole will slide past each other. There 
will be no interaction between the string 
particle and the pole particle. In other 
words, when the last particle in the string 
is displaced upwards, there will be no 
adjoining pole particle to pull it down. As 
a result, the upward displacement of the 
incident pulse is not reversed the in the 
reflected pulse. Similarly, if the incident 
pulse has a downward displacement the reflected pulse will also demonstrate a downward displacement. . Inversion 
is not observed in free end reflection. 

10. REFLECTION AND TRANSMISSION OF A PULSE ACROSS A BOUNDARY

10.1 Reflection and Transmission of a Pulse across a Boundary from Less to More 
Dense
A pulse exhibits two behaviors upon reaching the boundary. 

(a) A part of the energy transmitted by the incident 
pulse is reflected and returns towards the hand-
held end of a thin string. The pulse that returns 
to the hand-held end after bouncing off the 
boundary is known as the reflected pulse.

(b) A part of the energy transmitted by the incident 
pulse is transmitted into the thick string. The 
disturbance that continues moving to the right 
is known as the transmitted pulse.

In a wave traveling from a less dense to a 
denser medium a part of the incident pulse 
will be reflected off the boundary of the less dense string while another part will be transmitted across the 
boundary of the thin string into the new medium (thick string). The pulse that moves into the new medium is 
the transmitted pulse and is not inverted. The pulse that is reflected off the boundary of the thinner string is 
called the reflected pulse is inverted.

10.2 Reflection and Transmission of a Pulse across a Boundary from More to Less 
Dense
Here, the transmitted pulse moves through the less 
dense string/medium, while the reflected pulse travels 
through the denser string/medium. The transmitted 
pulse travels faster and has larger wavelength than the 
reflected pulse. However, the speed and wavelength 
of the reflected pulse are same as the that of the 
incident pulse.

Here, a part of the incident pulse will be reflected 
off the boundary of the denser string/medium and a 
part will transmitted across the boundary of the denser 
string/medium into the less dense string/medium. 
There is no inversion, whatsoever.

Figure 11.19

Figure 11.20

Figure 11.18

Incident Pulse Reflection Pulse

More dense

More dense
Less dense

Reflected pulse Transmitted pulse

A wave travelling from a more dense to a less dense medium

More dense

Less dense

More dense
Less dense

Incident pulse

Reflected pulse Transmitted pulse
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PLANCESS CONCEPTS

 • The wave speed and the wavelength are always greatest in the least dense string/medium.

 • The wave frequency remains constant even when crosses the boundary.

 • When moving from less dense string/medium to denser string/medium, the reflected pulse gets 
inverted.

 • The amplitude of the incident pulse is always greater than that of the reflected pulse.

Anand K (JEE 2011, AIR 47)

11. STANDING WAVES

Standing wave, also called a stationary wave, is  
L

�1

�3

�4

L

�2

Figure 11.21

combination of two waves moving in opposite directions, 
each having the same amplitude and frequency. . The 
manner of this interference makes it appear as if some 
points along the medium are standing still. For this 
reason, this wave pattern is referred to as the standing 
wave pattern. Let us assume that two waves of equal 
amplitude and frequency propagate towards each other 
along a string. The equation of two waves are given by

1y Asin( t kx)= ω −  and  2y Asin( t kx )= ω + +δ . 

To understand these waves, let us discuss the special 
case when δ = 0.

The displacements of the particles of the string 
consequent to the interference are given by the principle 
of superposition as y = y1 + y2 = A [sin (ωt-kx) + sin 
(ωt+kx)= 2A sinωt cos kx or y = (2A cos kx) sin ωt … (xix)

11.1 Nodes and Antinodes
As discussed earlier, the manner of interference of standing  

Figure 11.22

Nodes

Antinodes

wave patterns is such that there are points along the medium 
that appear to be stationary. These points are referred to as 
nodes or points of no displacement. There are other points 
along the medium that undergo v the maximum displacement 
during each vibrational cycle of the standing wave. These points 
along the medium are called antinodes, as they represent the 
other extreme in the standing wave pattern. A standing wave 
pattern always has nodes and antinodes appearing alternatively 
in them
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PLANCESS CONCEPTS

Nodes and antinodes are quite different from crests and troughs. In a traveling wave, there points of 
large upward and downward displacements, referred to as the crest and trough of the wave. However, an 
antinode refers to a point of the string that remains stationary or appear to be stationary.

GV Abhinav (JEE 2012, AIR 329)

11.2 Differences Between Standing Waves and Traveling Waves

Standing Wave Traveling Wave

The disturbance produced in a region appears stationary. The disturbance produced in a region is transmitted with a 
definite velocity

Different particles move with different amplitudes The motion of all particles are similar in nature

The particles at node always remain at rest There is no particle which always remains at rest

All particles cross their mean positions together At no point all the particles are at mean positions together

All the particles between two successive nodes reach their ex-
treme positions together, thus moving in phase.

The phases of nearby particles are always different

The energy of one region is always confined to that region Energy is transmitted from one region of space to other

Node

t=0

t=T/8

t=T/4

t=3T/8

t=T/2

t=5T/8

t=3T/4

t=7T/8

t=T

Antinode

Figure 11.23

Illustration 12: The interference of two waves with equal amplitudes and frequencies traveling in opposite 
directions produces a standing wave having the equation Y = A cos kx sin ωt in which 

A = 1.0 mm, k = 1.57 cm-1 and ω = 78.5 s-1 

(a) Find the velocity of the component traveling waves.

(b) Find the node closest to the origin in the region x > 0.

(c) Find the antinode closest to the origin in the region x > 0.

(d) Find the amplitude of the particle at x = 2.33 cm.  (JEE ADVANCED)
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Sol: Here the two waves of same amplitude and frequency interfere with each other to form the standing waves, 

the velocity of the resultant wave will be v V
k
ω

=  where ω is the angular frequency of the wave and k is the wave 

number. The distance of the node from the origin is given by nkx
2
π

= . And distance of antinode from origin is 
given by kx = nπ.

(a) The standing wave is formed by the superposition of the waves

21 
A Asin( t kx) and sin(y y t kx)
2 2

ω − ω + . The wave velocity (magnitude) of the waves is v 
1

1
1

78.5 s
V 50 cms

k 1.57 cm

−
−

−

ω
= = =

(b) For a node, cos kx = 0

The smallest position x satisfying this relation is given by kx
2
π

=   or,  x 1cm
2k
π

= =

(c) For an antinode, |cos kx| = 1 or cos kx = ± 1

Kx = 0, min
3.14,2 ,........n x 0,x 2cm

k 1.57
π

π π π⇒ ≠ = = =

(d) The amplitude of vibration of the particle at x is given by |A cos kx|

Antinode Antinode Antinode Antinode

Node Node Node Node Node

(b)Figure 11.24

For the given point, ( )( )1 7kx  1.57cm 2.33cm  
6 6

− π
= = π=π+

Thus, the amplitude will be ( ) 3| ( / 6) |1.0 mm  m m 0.86mm
2

cos π+ π = =

11.3 Standing Waves on a String Fixed at Both Ends (Qualitative Discussion)

Let us take the example of string fixed at both the ends –- one  

Figure 11.25

end to a wall and the other end tied to a tuning fork. The tuning 
fork vibrates longitudinally with a small amplitude producing sine 
waves of amplitude A which travel along the string towards the 
wall. The said wave then gets reflected and travels toward the fork. 
This wave, being reflected from a fixed end, will be an inverted 
wave.. These waves are again hit the fork back and as the fork is 
heavy and vibrates longitudinally with a small amplitude, it acts like a fixed end and the waves reflected from the 
fork get inverted again. Therefore, the wave produced directly by the fork initially and the twice-reflected wave 
have same shape, though the twice-reflected wave has already travelled a length 2L.

Let us assume that the length of the string is 2L=λ. The wave moving from the tuning fork to the wall and the 
wave reflected back from the wall to the tuning fork interfere constructively and the resultant wave that proceeds 
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towards the wall has an amplitude 2A. This wave of amplitude 2A is again reflected back by the wall and then again 
reflected by the fork. Now, this twice-reflected wave again interfaces constructively with the new incident wave 
and a wave of amplitude 3A is produced. Thus, the amplitude keeps progressing. The string gets energy from the 
vibrating and the amplitude builds up. Same arguments hold if 2L is any integral multiple of λ that is L=n λ/2, where 
n is an integer.

However, in the above discussion, we have not factored in any loss of energy due to air viscosity or due to the 
inflexibility of the string. In the steady state, waves of invariable amplitude will be present on the string from left 
to right as well as from right to left. These opposing waves will produce standing waves on the string. Nodes and 
antinodes will be formed along the string and there will be large amplitudes of vibration at the antinodes. We can 
then say that the string is in resonance with the fork. The condition, L=n λ/2, for such a resonance may be stated 
in a different way. We have from equation (9),     υ = ν λ  or /λ = υ ν

The condition for resonance is, therefore,

 
n n n

L n or L or F /
2 2 2L 2L

υ υλ
= = ν = = µ

ν
      … (i)

The lowest frequency with which a standing wave can be set up in a string fixed at both the ends is thus 
1

F /
2Lον = µ           … (ii)

This is called the fundamental frequency of the string. All other possible frequencies of standing waves are integral 
multiples of this fundamental frequency. Equation (xx) gives the natural frequencies, normal frequencies, or 
resonant frequencies.

Illustration 13: Shown in the Fig 11.26 is a wire with a length of  

Figure 11.26

40 cm

1.6 kg

10 cm

50 cm and a mass of 20 g. It supports a mass of 1.6 kg. Find the 
fundamental frequency of the portion of the string between the 
wall and the pulley.

Take g=10ms-2.   (JEE ADVANCED)

Sol: The string is subjected to uniform tension due to weight 
of the block of mass 1.6 kg. The fundamental frequency of 

the string between the fixed support and pulley is given by 

o
1 F
2L

ν =
µ

 where μ is the mass per unit length of string.

The tension in the string is F = (1.6kg) (10ms-2) = 16N.

The linear mass density is 120g
0.04kgm

50cm
−µ= =

The fundamental frequency is 1 F
2Lον =

µ
 = 

1

16N1 25hz
2 (0.4m) 0.04kgm−

=
×

 
= 25 Hz

11.4 Analytical Treatment of Vibration of a String Fixed at Both Ends
Let us assume a string of length L which is kept fixed at the ends x= 0 and x= L. For certain wave frequencies, 
standing waves are set up in the string. Due to the repeated reflection of the wave at the ends and the damping 
effects, waves going in the positive direction x interfere to give a resultant wave 1y Asin(kx t)= −ω . Similarly, the 
waves going in the negative direction x interfere to give the resultant wave 2y Asin(kx t )= + ω +δ . As a result, the 
displacement of the particle of the string at position x and at time t is given by the principle of superposition as 

1 2y y y Asin(kx t) sin(kx t )= + = −ω + +ω +δ
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2Asin(kx ) cos( t )
2 2
δ δ

= − ω +       … (i)

If standing waves are formed, the ends x = 0 and x = L must be nodes because they are kept fixed. Thus, we have 
the boundary conditions y= 0 at x=0 for all t and  y=0 at x=l for all t.

The first boundary condition is satisfied by equation (i)  if  sin
2
δ =0, or  δ = 0.

Equation (i) then becomes y 2Asinkx cos t= ω         … (ii) 

The second boundary condition will be satisfied if

sinkL 0 or kL n , where n 1, 2, 3, 4, 5,.......
2 L nor n or L

2

= = π =
π λ

= π =
λ

    … (iii)

If the length of the string is an integral multiple of λ /2, standing waves are produced. 

Again writing T
v
υ

λ=υ = , equation (xxv) becomes 
n n F /
2L 2L
υ

ν = = µ

Which is same as equation (xx). The lowest possible frequency is 1 F /
2L 2Lο
υ

ν = = µ   … (iv)

This is the fundamental frequency of the string. The other natural frequencies with which standing wave can be 
formed on the string are

Harmonic Pattern
No. of

Loops

Length-Wavelength

relationship

1st

2nd

3rd

4rd

5th

6th

1

2

3

4

5

6

L = 1/2 �

L = 2/2 �

L = 3/2 �

L = 4/2 �

L = 5/2 �

L = 6/2 �

Figure 11.27

1 0

2 0

3 0

22 F / 1stovertone, or2rd harmonic,
2L
33 F / 2nd overtone, or3rd harmonic,
2L
44 F / 3rd overtone, or 4rd harmonic,etc.

2L

ν = ν = µ

ν = ν = µ

ν = ν = µ

 

In general, any integral multiple of the fundamental frequency is a valid frequency. These higher frequencies are 
called overtones. Thus, 1 02ν = ν  is the first overtone, 2 03ν = ν  is the second overtone, etc. An integral multiple of 
a frequency is called its harmonic. Thus, for a string fixed at both the ends, all the overtones are harmonics of the 
fundamental frequency and vice-versa.
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11.5 Vibration of a String Fixed at One End
If a string is set up in such a way that one end of it remains fixed while the other end is free to move in a transverse 
direction, standing waves can be produced. The free end can be created by connecting the string to a very light 
thread. If the vibrations of the “correct” frequency are produced by the source, standing waves are produced. 
Assuming end x=0 is fixed and x = L is free, the equation is again given by y 2Asinkxcos t= ω  which is the same as 
equation (xxii), with the boundary condition that x = L is an antinode. The boundary condition that x = 0 is a node 
is automatically satisfied by the above equation as it is fixed. For x = L to be an antinode, Sin kL 1=±

1or kL n
2

 
= + π 
 

 
2L v2 1or n

2
L 1or n

2
 π

π = +
υ

= + λ  
 

1n
F /1 2or v n

2 2L 2L

+  υ
= + = 
 

µ   … (i)

These are the normal frequencies of vibration. The  

N
A

Fundamental

N
A

N
A

First

Overtone

N N
A

N A A

Second

Overtone

Figure 11.28

fundamental frequency is obtained when n = 0,

i. e., / 4Lον = υ

The overtone frequency are  1
3 3
4L ο
υ

ν = = ν

2 3
5 75 , 7 , etc
4L 4Lο ο
υ υ

ν = = ν ν = = ν

It can be seen that all the harmonics of the 
fundamental frequency are not the valid frequencies 
for the standing waves. Only the odd harmonics are 
the overtones. The string shapes for some of the 
normal modes are shown in Fig 11.28.

Illustration 14: A string is vibrating up and down as the fifth harmonic and completes 

Figure 11.29

8.2 m  
21 vibrational cycles in 5 seconds. The length of the string is 8.2 meters. Determine the 
frequency, period, wavelength and speed for this wave.  (JEE MAIN)

Sol: The frequency of the wave is 
number of cycles produced

f
total time

= . The time period of 

wave 1T
f

= . When string is vibrating in fifth harmonics, then 2L = 5λ. The wave velocity 

is v = f λ.

Given: L = 8.2 m and 21 cycles in 5 seconds. The frequency here refers to the number of back-and-forth movements 
of a point on the string and is measured as the number of cycles per unit of time. In this case, it is f = (21 cycles)/ 
(5 seconds) = 4.2 Hz

The period is the reciprocal of the frequency. T = 1/ (4.2 Hz) = 0.238 s.

The wavelength of the wave is correlated to the length of the rope. For the fifth harmonic as shown in the picture, 

the length of the rope is equivalent to five halves of a wavelength. That is, 5L
2

= λ  where λ is the wavelength. 
Rearranging and substituting the equation gives the following results: 

( ) ( ) 2 / 5 L 2 (8.2 m) 3.28 m/ 5× × =λ = =

The wavelength and frequency wave can be used to calculate the speed of a wave using the wave equation

V f (4.2Hz).(3.28m) 13.8m / s= λ= =
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12. LAWS OF TRANSVERSE VIBRATIONS OF A STRING

For a string fixed at both ends, the fundamental frequency of vibration is given by equation (ix). The statements 
known as “Laws of transverse vibrations of a strings” can be derived from equation (ix).

12.1 Law of Length 
Tension and mass per unit length of the string remaining the same, the fundamental frequency of vibration of a 
string (fixed at both ends) is inversely proportional to the length of the string. 

ν ∝ 1/L if F and μ are constants.

12.2 Law of Tension 
The length and the mass per unit length of the string remaining the same, the fundamental frequency of a string 
is proportional to the square root of its tension. F if L and areconstants.ν ∝ µ L if F and μ are constants.

12.3 Law of mass
The length and the tension remain the same, the fundamental frequency of a string is inversely proportional to the 
square root of the linear mass density, i.e., mass per unit length.

 1 if L and F areconstants.
µ

∝ν

These above laws can be experimentally studied with an apparatus called sonometer.

12.4 Sonometer
A sonometer is an apparatus that is used to study  

A C1 C

D1

B

D D2

C2

H

Figure 11.30

the transverse vibrations of strings. It is also called 
the monochord because it often has only one 
string. It consists of a rectangular wooden box 
with two fixed bridges near the ends, with a pulley 
fixed at one end. A string is fixed at one end, which 
is then run over the bridges and the pulley, and 
then attached to a weight holder hanging below 
the pulley. Additional weights can be added to the 
holder to increase the tension in the wire. A third, 
movable bridge, can be placed under the string to 
change the length of the vibrating section of the 
string. This device demonstrates the relationship 
between the frequency of the sound produced 
when a string is plucked and the tension, length, 
and mass per unit length of the string. These 
relationships are referred to as Mersenne’s law after Marin Mersenne (1588–1648), who studied and formulated 
them. For small amplitude vibration, the frequency is proportional to:

(a) The square root of the tension of the string

(b) The reciprocal of the square root of the linear density of the string,

(c) The reciprocal of the length of wire of sonometer
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Illustration 15: Resonance is obtained in a sonometer experiment when the experimental wire with a length of 
21 cm between the bridges is excited by a tuning fork of frequency 256 Hz. If a tuning fork of frequency 384 Hz is 
used, what should be the length of the experimental wire to get the resonance? (JEE MAIN)

Sol: For sonometer wire the ratio of lengths of vibrating string is 1 2

2 1

ν
=
ν





.

By the law of length, 1 1 2 2ν = ν   or 1
2 1

2

256 21cm 14cm
384

ν
= = × =
ν

 

13. TRANSVERSE AND LONGITUDINAL WAVES

When there is a disturbance at the source in a string, it causes displacement of the particles of the string. The 
direction of such displacements is perpendicular to the direction of the propagation of the wave. Such waves are 
called transverse waves. The wave on a string is a transverse wave.. Light waves are also an example of transverse 
waves. Here, the value of the electric field changes with space and time and the changes are propagated in space. 
The direction of the electric field is perpendicular to the direction of propagation of light when light travels in free 
space.

Sound waves are an example of non-transverse waves. The particles of the medium are carried along the direction 
of propagation of sound. We shall study in some detail the mechanism of sound waves in the next chapter. If the 
displacement produced by the passing wave is along the direction of the wave propagation, the wave is called a 
longitudinal wave. Sound waves are longitudinal.

13.1 Compression and Rarefaction
A longitudinal wave consists of compressions and rarefactions. Those regions in a longitudinal wave where particles 
are clustered together are compressions. Conversely, those regions where the particles are furthest apart are called 
rarefactions.

Compressions

Figure 11.31

Illustration 16: A sonometer wire has a length of 100 cm and a fundamental frequency of 330 Hz. Find 

(a) The velocity of propagation of transverse waves along the wire and 

(b) The wavelength of the resulting sound in air if velocity of sound in air is 330 m/s.  (JEE ADVANCED)

Sol: When sonometer wire is set to vibrate in its fundamental frequency, then wavelength is λ=2L, the wave velocity 
is v f= λ  where f is the frequency of oscillation.

(a) In case of transverse vibration of string for fundamental mode:

L ( / 2), i.e., 2L 2 l 2m= λ λ = = × =

i.e., the wavelength of transverse wave propagation on string is 2 m. Since the frequency of the wire is given to be 
330 Hz, so from fυ= λ , the velocity of transverse waves along the wire will be

wireV 330 2 660m / s= × =

i.e., for transverse mechanical waves propagation along the wire, Hz,m and m/s

(b) Here vibration wire will act as source and produce sound, i.e., longitudinal waves in air. Now as frequency 
does not change with change in medium so Hz and as velocity in air is given to be = 330 m/s so from fυ= λ ; 
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air air(V / f ) (330 / 330) 1mλ = = =

i. e., for sound (longitudinal mechanical waves) in air produced by vibration of wire (body),

f = 330Hz,  λ=2m  and v =330m/s

14. POLARIZATION OF WAVES

Let us assume that we have a cardboard  

Figure 11.32

Y

Z

X

Y

Z

X

with a slit in it through which a stretched 
string is passed such that the card is 
placed in a perpendicular position to the 
string. (See Fig 11.32). If we take the string 
as the X axis, the cardboard will be in Y-Z 
plane. Now we generate a wave along the 
X axis such that the particles of the string 
are displaced in direction Y as the wave 
passes. If the slit in the cardboard is also aligned along the Y axis, the portion of the string in the slit can vibrate 
freely in the slit and the wave will pass through the slit. Now, if we turn the cardboard by 900 in its plane, the slit 
will be aligned along the Z axis. As the wave reaches the slit, the portion of the string in the slit tries to move along 
the Y axis but the narrow slit on the cardboard becomes an obstruction. Consequentially, the wave is not able to 
pass through the slit. However, if the slit is inclined to the Y axis at a different other angle, only a part of the wave 
is transmitted and in the transmitted wave the disturbance is produced parallel to the slit. The same experiment 
can be conducted with two chairs as shown in the Fig 11.33. If the displacement produced is always along a fixed 
direction, then the wave is said to be linearly polarized in that direction. The examples considered in this chapter 
are linearly polarized in y direction. By the same token, a wave that produces a displacement along the z direction, 
is a linearly polarized wave, polarized in z-direction. Its equation is given by z Asin (t x / )= ω − υ .Linearly polarized 
waves are referred to as plane polarized. In the event that each particle of a string moves in a small circle when 
the wave is propagated, the wave is called circularly polarized. If each particle goes in ellipse, the wave is called 
polarized. If the particles are move randomly in the plane perpendicular to the direction of propagation, the wave 
is called un-polarized.

Figure 11.33
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PROBLEM-SOLVING TACTICS
 1. Understanding and remembering all formulae is the key to solving problems in these sections. If the relation 

between the given quantities and the questions asked is known, it will be easy to solve most of the problems. 
All the quantities discussed in this topic are in some sense related to each other.

 2. The concept of reflection (of waves) can be encapsulated in a single point: “Inversion- Reflected wave will 
invert only when it encounters a denser medium. And transmitted wave will never invert.” If this much is clear, 
one can easily identify the case in every question.

 3. Waves must always be understood in the context of transfer of energy rather than as just some function of x 
and t for better understanding of physics.

 4. For questions pertaining to the derivation of the wave equation, one can begin easily with only the x part and 
subsequently add or subtract vt from x depending on the direction of velocity.

 5. Most questions related to velocity and energy appear complicated due to the introduction of the usual 
Newton mechanics. This should, however, be treated just as some additional information to calculate tension 
in the string (e.g., Pulley systems).

FORMULAE SHEET

S. No Term Description 

1 Wave It is a disturbance or variation traveling through a medium due to the repeated 
undulating motion of particles of the medium through their equilibrium 
position. Examples are sound waves travelling through an intervening 
medium, water waves etc.

2 Mechanical waves Waves that are propagated through a material medium are called MECHANICAL 
WAVES. These are governed by Newton’s Law of Motion. Sound waves are 
mechanical waves propagated through the atmosphere from a source to the 
listener and it requires a medium for its propagation.

3 Non mechanical 
waves

Waves which are not propagated through a material medium. Eg: light waves, 
EM waves. 

4 Transverse wave These are waves in which the displacements or oscillations are perpendicular 
to the direction of propagation of the wave.

5 Longitudinal wave Longitudinal wave waves in which the displacement or oscillations in medium 
are parallel to the direction of propagation of wave. Example: sound waves

6 Equation of harmonic 
wave

At	any	time	t,	displacement	y	of	the	particle	from	its	equilibrium	position	as	
a	function	of	the	coordinate	x	of	the	particle	is	 y(x, t) Asin( t kx)= ω − 	where,	

A	is	the	amplitude	of	the	wave,	K-	is	the	wave	number	

ω	is	angular	frequency	of	the	wave	and	(ωt-kx)	is	the	phase

7 Wave number Wavelength	λ	and	wave	number	k	are	related	by	the	relation	k	=	2 π /	λ
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8 Frequency Time	period	T	and	frequency	f	of	the	wave	are	related	to	ω	by	ω/2 π 	=	f	=	1/T

9 Speed of wave Speed	of	the	wave	is	given	by	 v	=	ω/k	=	λ/T	=	λf

10 Speed of a transverse 
wave 

The	 tension	and	 the	 linear	mass	density	of	 a	 stretched	 string,	 and	not	 the	

frequency,	determines	the	speed	of	a	transverse	wave	i.e.,	v=	 T  
µ

T	=	Tension	in	the	string

μ	=	Linear	mass	density	of	the	string.

 11 Speed of longitudinal 
waves

Speed	of	longitudinal	waves	in	a	medium	is	given	by

v	=	 B
ρ

; B = bulk modulus; ρ = Density of the medium speed of longitudinal 

waves in ideal gas is 

v = Pγ
ρ

 P = Pressure of the gas,

ρ = Density of the gas and γ  = CP / CV

12 Principle of 
superposition

It states that when two or more waves of same type come together at a single 
point in space, the total displacement at that point is equal to the sum of the 
displacements of the individual waves. It is given by iy y (x,t)=∑

13 Interference of waves Two sinusoidal waves traveling in the same direction interfere to produce a 
resultant sinusoidal wave traveling in that direction if they have the same 
amplitude and frequency, with resultant wave given by the relation

my'(x,t) [2A cos(u / 2)]sin( t kx u / 2)= ω − + where u is the phase difference 
between two waves.

If u = 0, then interference would be fully constructive.

If u = π , then waves would be out of phase and the interference would be 
destructive.

14 Reflection of waves An incident wave encountering a boundary gets reflected. If an incident wave 
is represented by 

iy (x,t) Asin( t kx)= ω −  then reflected wave at rigid boundary is 

ry (x,t) Asin( t kx ) Asin ( t kx)= ω + + π =− ω +

And for reflections at open boundary, the reflected wave is given by ry (x,t)
Asin( t kx)= ω +

15 Standing waves When two identical waves moving in opposite directions meet, the interference 
produces standing waves. The particle displacement in standing wave is given 
by y(x,t) [2Asin(kx)]sin( t)= ω . The amplitude of standing waves is different 
at different point i.e., at nodes amplitude is zero and at antinodes amplitude 
is maximum or equal to sum of amplitudes of constituting waves.
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16 Normal modes of 
stretched string

Frequency	of	transverse	waves	in	a	stretched	string	of	length	L	and	fixed	at	
both	the	ends	is	given	by	

f	=	nv	/2L	where	n	=	1,	2,	3……..	

The	above	relation	gives	a	set	of	frequencies	called	normal	modes	of	oscillation	
of	 the	 system.	Mode	 n=1	 is	 called	 the	 fundamental	mode	with	 frequency		
f1=	v/2L.	Second	harmonic	is	the	oscillation	mode	with	n	=	2	and	so	on.

Thus	the	string	has	infinite	number	of	possible	frequency	of	vibration	which	
are	harmonics	of	fundamental	frequency	f1	such	that	f	n	=nf1.

(d)

 x = 0

x = 0 x = 20 cm

(e) 

Example 2: The dimensions of a uniform rope are 
as follows: length 12 m, mass 6 kg. The rope hangs 
vertically from a rigid support with a slab of a mass of 2 
kg is attached to the free end of the rope. If a transverse 
pulse of wavelength 0.06 m is transmitted from the free 
end of the rope, what is the wavelength of the pulse 
when it reaches the top of the rope?

6 kg

2 kg

Sol: The wave velocity will be FV = νλ =
µ

 where F is 

the tension in string at a point and μ is mass per unit 
length of the string. As F is varying along the length of 
the rope so the velocity will vary along the length of the 
rope. As source frequency is constant λ will vary.

We have, V=νλ

Or, F For=νλ =ν µ
µ λ

Since the frequency of the wave pulse is dependent 
only on the frequency of the source, it will be consistent 

JEE Main/Boards

Example 1: The length of a wave propagated on a long 
stretched string is taken as the positive x axis. The wave 
equation is given by 

2t x
T

0 0y y e where y 4mm,
T 1.0s and 4cm.

 
− − λ = =

= λ=

(a) Find the velocity of the wave.

(b) Find the function finding the displacement of the 
particle at x = 0.

(c) Find the function giving the shape of the string  
at = 0.

(d) Plot the shape of the string at t =0.

(e) Plot the shape of the string at t=5s.

Sol: The wave moves having natural frequency of ν  
and wavelength λ has velocity V = νλ . As the frequency 

is 1
T

ν =  the velocity of the wave is then V
T
λ

= .

(a) The wave equation may be written as 
2x1 t

/tT
0y y e

 
− − λ =

Comparing with the general equation we see that 

4cm 4cm / sec
1.0s
λ

ν = = =

(b) Putting x = 0 in the given equation 
2(t/T)

0f(t) y e−=

 … (i)

(c) Putting t = 0 in the given equation 
2(x/ )

0g(t) y e− λ=  
 … (ii)

Solved Examples



11.28  |   Waves on a String

across the length of the rope. The mass per unit length 
will also be consistent for the entire rope as the rope is 
uniform. Thus,

By (i) F
λ

is constant.

Hence,  
1

(2k g)g (8k g)g
0.06

=
λ

where λ1 is the wavelength at the top of the rope. This 
gives λ1 = 0.12m.

Example 3: A traveling wave pulse is given by

2

10y 
5 (x 2t)

=
+ +

. What is the direction, velocity and 

amplitude of the pulse?

Sol: The wave equation given above is of form 

2

ay 
b (x t)

=
+ υ  

where ‘a’ is the amplitude of the 

disturbance.

A wave pulse is a disturbance confined to only in a 
small part of the medium at a given instant [see figure] 
and its shape does not change during propagation. It is 

usually expressed by the form 
2

ay 
b (x t)

=
+ υ

Comparing the above with the given pulse we find that 
2f(x t) (x 2t)υ = +

y

t=0

Va=
a

b

x

i.e, the pulse is traveling along negative x axis with 
velocity 2 m/s.

Further, amplitude is the maximum value of wave 
function which will be when 2(x 2t) 0+ =

So, max
10A y 2
5

= = =

Example 4: Consider a tube that is closed at one 
end and has a vibrating diaphragm at the other 
end. The diaphragm, which may be assumed to be 
the displacement node, produces a stationary wave 
pattern at the frequency of 2000 Hz, in which the 
distance between adjacent nodes is 8 cm. When the 
frequency is gradually reduced, the stationary wave 

pattern disappears but another stationary wave pattern 
reappears at a frequency of 1600 Hz. Calculate

(i) The speed of sound in air.

(ii) The distance between adjacent nodes at a frequency 
of 1600 Hz,

(iii) The distance between diaphragm and the closed 
end

(iv) The next lower frequencies at which stationary wave 
patterns will be obtained.

Sol: The standing waves generated inside the tube 
closed at one end, have the wavelength n 2Lλ =  
where L is length of the tube. The velocity of the wave 
in air is given by v = fλ, where n is the frequency of the 
sound wave.

Since the node-to node distance is λ/2, λ / 2 = 0.08 
or  λ = 0.16m

(i) c = n λ; ∴ c= 2000 × 0.16 = 320ms-1

(ii) 320 = 1600 × λ / 2  or λ = 0.2m

 ∴ Distance between nodes = 0.2/2 = 0.1 m = 10cm.

(iii) Since there are nodes at the ends, the distance 
between the closed end and the membrane must be 
exact integrals of λ/2.

∴ 0.4 = n λ / 2 = ν’ × 0.2/2 n 5
n' 4

⇒ =

When n = 5, n’ = 4 l = n × 0.16/2 = 0.4μ = 40cm

(iv) For the next lower frequency n = 3, 2, 1

 ∴ 0.4 = 3 λ / 2 or λ = 0.8/3

Since c=n λ,  320n 1200Hz
0.8 / 3

= =

Again 0.4 = 1. λ / 2 or λ = 0.4M

∴ n = 320/0.4 = 800 Hz

Again 0.4 = 1. λ / 2 or λ = 0.8M

∴ n = 320/0.8 = 400 Hz

Example 5: Consider a tuning fork of frequency 256 Hz 
and an open organ pipe of slightly lower frequency. Both 
are at 17°C temperature. When sounded together, they 
produce 4 beats per second. When the temperature of 
air in the pipe is altered, the number of beats per second 
first diminishes to zero and then increases again to 4. 
Determine the quantum of temperature change in the 
pipe? Also, in what direction has the temperature of the 
air in the pipe been altered?
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Sol: In an open organ pipe the frequency of the wave is 
tV

n =
λ

 where Vt is the velocity of wave at temperature 

t and λ=2L is the wavelength of the vibrating wave. If 
temperature of air inside the organ pipe changes, the 

velocity of wave also changes, since V T∝ .

17V
n where l lengthof the pipe

2l
= = = length of the pipe;

17 17V V
256 4 or 252

2l 2l
∴ − = =

Since beats decreases first and then increases to 4, the 
frequency of the pipe increases. This can happen only if 
the temperature increases.

Let t be the final temperature, in Celsius,

Now tV
2l

=256 + 4 or tV
2l

= 260

 
1

0

t

7

V 260 273 t 260or
V 252 273 17 252

( V

Dividing

r t 308.7 –  273  35.7 C.T ) o

+
= =

+

∴ < = =

 ∴ Rise in temperature =35.7 – 17 = 18.7 0C.

Example 6: Determine the fundamental frequency and 
the first four overtones of a 15 cm pipe

(a) If the pipe is closed at one ends,

(b) If the pipe is open at both ends

(c) How many overtones are within the human auditory 
range in each of the above cases? Velocity of sound in 
air = 330 ms-1.

Sol: For the organ pipe closed at one end, the 
fundamental frequency of the wave of wavelength λ 

is given by, 0
vn

4L
= .The frequency of ith over tone is 

given by ( )i 0n i 1 n= + ×  where i=1,2,3…. etc.

(a) 0
Vn
4l

=

Wher n0 = frequency of the fundamental node

0
330n 550Hz

4 0.15
⇒ = =

×
The first four overtones are 3n0, 5n0, 7n0 and 9n0

∴ So, the required frequencies are 550, 1650, 2750, 
3850, and 4950 Hz.

(b) 0
V 330n 1100Hz
2l 2 0.15

= = =
×

The first overtones are 2n0, 3n0, 4n0 and 5n0 

So, the required frequency are 1100, 2200, 3300, 4400, 
and 5500 Hz

The frequency of the nth overtone is (n +1) n0.

∴ (n +1) n0 =20000 or (n+1)100 = 20000

Or n = 17.18

The acceptable value is 17.

Example 7: The displacement of a particle of a string 
carrying a traveling wave is given by 

y (3.0cm)sin6.28(0.50x 50t),= −

where x is in centimeter and t in second. Find (a) the 
amplitude, (b) the wavelength, (c) the frequency and  
(d) the speed of the wave.

Sol: In a open organ pipe the frequency of the wave is 
tV

n =
λ

 where Vt is the velocity of wave at temperature 

t and λ=2L is the wavelength of the vibrating wave. If 
temperature of air inside the organ pipe changes, the 

velocity of wave also changes, since V T∝ .

On comparing with the standard wave equation 

y Asin(kx t)= −ω = x tAsin2 ( )
T

π −
λ

we see that, Amplitude = A = 3.0 cm,

Wavelength = λ= 1
0.50

cm = 2.0 cm, and the frequency 

= v = 1 50Hz
T
=

The speed of the wave is V=νλ

= (50 s-1) (2.0cm) = 100 cm s-1

Example 8: The equation for a wave traveling in the 
direction x on a string is 

y = (3.0 cm) sin [(3.14 cm-1) x – (314 s-1) t].

(a) Find the maximum velocity of a particle of the string.

(b) Find the acceleration of a particle at x = 6.0 cm at 
time t = 0.11 s

Sol: The maximum velocity is yv
t

∂
=
∂

 While the 

acceleration va
t

∂
=
∂

(a) The velocity of the particle at x at time t is 
yv
t

∂
=
∂
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1 1 1(3.0 cm)( 314s )cos[(3.14cm )x (314s )t]− − −= − −
1 1 1( 9.4ms )cos[((3.14cm )x (314s )t]− − −= − −

The maximum velocity of a particle will be v = 9.4 ms–1.

(b) The acceleration of the particle at x at time t is 

1va (9.4ms )
t

−∂
= =−
∂

(314s-1) sin [(3.14cm-1) x – (314 s-1) t] 

= - (2952ms-2) sin [(3.14 ms-1) x - (3.14 s-1)]. 

The acceleration of the particle at x = 6.0 cm at time  
t = 0.11 s = 1(2952ms-2) sin [6π - 11 π] = 0.

Example 9: One end of a long string is attached to an 
oscillator moving in transverse direction at a frequency 
of 20 Hz. The string has a cross-section area of 0.80 
mm2 and a density of 12.5 g cm-3 . It is subjected to a 
tension of 64 N along the X axis. At t= 0, the source is 
at a maximum displacement y = 1.0 cm. (a) Find the 
speed of the wave traveling on the string. (b) Write the 
equation for the wave. (c) What is the displacement of 
the particle of the string at x = 50 cm at time t = 0.05 
s? (d) What is the velocity of this particle at this instant?

Sol: As the wave is under tension F, the maximum wave 

velocity of wave is v FV =
µ

 where μ is the mass per unit 

length of the string. The wave equation is y=A cos (ωt) 
where ωis angular frequency and A is amplitude of 
wave.

(a) The mass of 1 m long part of the string is  
m= (0.80mm2) × (1 m) × (12.5gcm-3)

 = (0.80×10-6 m3) × (12.5×103kg m-3) = 0.01 kg

The linear mass density is μ 0.01 kg m-1. The wave speed 

is 1
1

64NFv 80ms
0.01kgm

−
−

= = =
µ

 

(b) The amplitude of the source is A = 1.0cm and 
the frequency is =20 Hz. The angular frequency is 
ω=2πv=40 π s-1. Also at t =0, the displacement is 
equal to its amplitude, i.e., at t=0, x = A. The equation 
of motion of the source is, therefore, y = (1.0cm)  
cos[(40 π s-1)t]  … (i)

The equation of the wave traveling on the string along the 
position X – axis is obtained by replacing t with  t – x / v in 
equation (i). It is, therefore, 

1 xy (1.0cm)cos (40 s ) t
v

−  
= π −  

  

1 1x(1.0cm)cos (40 s )t m
2

− −  
= π −  

    
… (ii)

Where the value of v has been put from part (a).

(c) The displacement of the particle at x = 50 cm at time 
t = 0.05 s is by equation (ii),

1 1y (1.0cm)cos[(40 s )(0.05s) m (0.5m)]
2

− − π
= π −  

 
 

1.0(1.0cm)cos 2 0.71cm
4 2

 π
= π − = = 

 

(d) The velocity of the particle at position x at time t is, 
by equation (ii),

1 1 1y (1.0cm)(40 s )sin (40 s )t m x
t 2

− − −  ∂ π
υ= =− π π −  ∂   

Putting the values of x and t,

1 1 140(40 cms )sin 2 cms 89cms
2 2

− − − π π
υ= − π π − = ≈ 

 

Example 10: The speed of a transverse wave traveling 
through a wire is 80 m s-1. The length of the wire is 50 
cm, the mass is 5.0 g, the area of cross-section of the 
wire is 1.0 mm2, and its Young modulus is 16 ×1011 Nm-2. 
Find the extension of the wire over its natural length.

Sol: The maximum velocity of the wave is v F /υ= µ
where F is the tension in the string and μ is mass per 
unit length of string. And the Young’s modulus of the 

string is F / AY
L / L

=
∆

.

The linear mass density is 

3
2 1

2

5 10 kg 1.0 10 kgm
50 10 m

−
− −

−

×
µ= = ×

×

The wave speed is F /υ= µ .

Thus, the tension is 

F = μv2 = (1.0 × 10–2 kgm–1) × 6400 m2s–2 = 64 N

The Young modulus is given by F / AY
L / L

=
∆

The extension is, therefore,

6 2 11 2

(64N)(0.50m)FLL 0.02mm
AY (1.0 10 m ) (16 10 Nm )− −

∆ = = =
× × ×
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Example 1: The interference of two traveling waves 
of equal amplitude and frequency moving in opposite 
directions along a string produces a standing wave 
having the equation 

y Acoskxsin t= ω  in which A = 1.0 mm, k=1.57cm-1 and 
ω = 78.5s-1.

(a) Find the velocity of the component traveling waves. 

(b) Find s the node closest to the origin in the region 
x > 0.

(c) Find the antinode closest to the origin in the region 
x>0

(d) Find the amplitude of the particle at x= 2.33 cm. 

Sol: Here the two waves of same amplitude and 
frequency interfere with each other to form the 
standing waves, the velocity of the resultant wave will 

be V
K
ω

=  where ω is the angular frequency of the wave 

and K is the wave number. At the node the waves are 
90o opposite in phase, so that the amplitude of resulting 
wave is zero at the node.

(a) The standing wave is formed by the superposition 
of the waves 

1 2
A Ay sin( t kt) andy sin( t kt)
2 2

= ω − = ω +

The wave velocity (magnitude) of either of the waves is 
1

1

78.5s
50cm / s

k 1.57cm

−

−

ω
ν= = = .

(b) For a node, cos kx = 0

The smallest position value of x satisfying this relation 

is given by kx 
2
π

=

Or  
1

3.14x 1cm
2k 2 1.57cm−

π
= = =

×

(c) For an antinode, |coskx| = 1

The smallest positive x satisfying this relation is given 

by kx=π  or x 2cm
k
π

= =

(d) The amplitude of vibration of the particle at x is 
given by |Acoskx|. For the given point,

1 7kx (1.57cm )(2.33cm)
6 6

− π
= = π=π+

Thus, the amplitude will be (1.0mm)| 

3cos( / 6) | mm 0.86mm
2

π + π = =

Example 2: A tuning fork of frequency 500 Hz is used 
to generate a transverse harmonic wave of amplitude 
0.01 m at one end (x = 0) of a long, horizontal string. At 
a given instant of time the displacement of the particle 
at x = 0.1 m is –0.005m and that of the particle at x = 
0.2 m is +0.005m. Calculate the wavelength and wave 
velocity. Assuming that the wave is traveling along 
the positive direction x and that the end x = 0 is at 
equilibrium position at t = 0, obtain the equation of 
the wave.

Sol: The fork is the source to generate the transverse 
wave on string whose frequency is also 500 Hz. The 
equation of this wave is given by y Asin (kx t)= − ω  
where k is the wave number and x is the displacement 
of particle. The wave velocity is given by V = νλ  where 
υ is the frequency of source

Since the wave is traveling along positive direction x 
and the displacement of the end x = 0 is at time t = 0, 
the general equation of this wave is

2y(x,t) Asin ( t x)
 π

= υ − 
λ 

  … (i)

Where A = 0.01 m. When x = 0.1m, Y = -0.005m

1
20.005 0.01sin ( t x )

 π
∴ − = υ − 

λ 

Where  x1 = 0.1m or 1
2 1sin ( t x )

2
 π

υ − = − 
λ 

∴Phase 1 1
2 7phase sin ( t x )

6
π π

∴ φ = υ − =
λ

 … (ii)

When x = 0.2m y= + 0.005. Therefore, we have +0.005 

= 0.01 sin 2
2 (V t x )

 π
− 

λ 
 

Where x2 = 0.2 m

 2 1
2 2(V t x )

6
π π

∴ φ = − =
λ  

 … (iii)

From eqs. (ii) and (iii)

1 2∴ ∆φ=φ −φ =π

Now,  2 xπ
∆φ= − ∆

λ
  thus, 

1 2
2 2(x x ) (0.1 0.2) or 0.2mπ π

π=− − = − λ=
λ λ

Now, frequency n of the wave = frequency of the tuning 
fork = 500 Hz. Hence, wave velocity 

1n 500 0.2 100ms−υ= λ= × =
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Substituting for A, λ, and v in equation. (i) We get 
{ }y (x,t) 0.01sin 10 (100t x)= π −  

This is the equation of the wave where y and x are in 
meters and t in seconds.

Example 3: Two tuning forks A and B sounded together 
produce 6 beats per second. With the introduction of 
an air resonance tube closed at one end, the two forks 
give resonance when the two air columns are 24 cm 
and 25 cm, respectively. Calculate the frequencies of 
forks.

Sol: Beats are produced when the two waves of similar 
amplitude but different frequency are interacting with 

each other. For vibrating air column 1 2

2 1

f
f

=




where  

is length of vibrating air column and f is frequency of 
tuning fork.

Let the frequency of the first fork be f1 and that of 
second be f2.

We then have, f1
v

4 24
=

×
 and f2

v
4 25

=
×

We also see that f1 > f2  

∴ f1 - f2 = 6  … (i)

And 1

2

f
f

25
24

=   … (ii)

Solving (i) and (ii), we get 1f 150= Hz and 2f 144= Hz

Example 4: The oscillation of a string of length 60 
cm fixed at both ends is represented by the equation: 

x
y 4sin cos(96 t)

15
 π

= π 
 

 where x and y are in cm and t 

is in seconds.

(a) What is the maximum displacement of a point at x 
= 5 cm?

(b) Where are the nodes located along the string?

(c) What is the velocity of a particle at x = 7.5 cm & at 
t = 0.25 sec.

(d) Write down the components waves which give the 
above wave on superposition.

Sol: The wave equation oscillating string is written 

in form of 2 x 2 vty 2acos sin
   π π

=    λ λ   
 where x is 

displacement and v is velocity of wave. The maximum 

velocity of wave is yv
t

∂
=
∂

 and the distance of nodes 

from any fixed end of string found using relation 

k x
2
π

=  

Comparing given equation with equation of standing 

wave, 2 x 2 vt
y 2acos sin

   π π
=    λ λ   

2 ; 30cm; a 2cm
15,

2 v
96 v 1440cm / sec

π π
= λ= =

λ
π

= π ⇒ =
λ

( ) max
5 4 3a 5 cm,  y 4sin 2 3 cm

15 2
x

 π×
= = 

 
==

(b) As 30cm;λ= nodes are at 0, 15, 30, 45, 60 cm

(c) y x4sin sin(96 r) 96
t 15

 ∂ π
=− π × π ∂  

 

x = constant For x = 7.5 cm, t = 0.25 sec.

y 7.54sin sin(96 0.25) 96 0
t 15

 ∂ π×
=− π× × π= ∂  

(d) Component waves xy 4sin sin(96 t)
15
 π

=− π 
 

x x2sin 96 t 2sin 96 t
15 15
   π π

= + π + − π   
   

⇒ Component waves are 1
x

y 2sin 96 t
15

 π
= + π 

 
;

2
x

y 2sin 96 t
15

 π
= − π 

 

Example 5: A uniform rope hangs vertically from a 
rigid support with a slab of mass 2 kg attached to the 
free end of the rope. The rope has a length of 12 m and 
a mass of 6 kg. A transverse pulse of wavelength 0.06 
m is produced at the free end of the rope. Determine 
the wavelength of the pulse when it reaches the top of 
the rope?

6 kg

2 kg

Sol: The wave velocity will be FV = νλ =
µ

 where F is 

the tension in rope at a point and μ is mass per unit 
length of the string. As F is varying along the length of 
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the rope so the velocity will vary along the length of the 
rope. As source frequency is constant λ will vary.

As the rope is stretched using a slab, its tension will 
be different at different points along the length of the 
rope. The tension at the free end will be (2 kg) g while 
at the upper end it will be (8kg) g.

We have, v = vλv F / vυ= λ ⇒ µ = λ  or F / vλ= µ  … (i)

Since the frequency of the wave pulse is dependent 
only on the frequency of the source, it will be consistent 
across the length of the rope. The mass per unit length 
will also be consistent for the entire rope as the rope is 
uniform. Thus, by 

(i) F is constant
λ

. Hence,
1

(2kg)g (8kg)g
0.06m

=
λ

,

Where 1λ is the wavelength at the top of the rope, this 
gives 1λ =0.12m.

Example 6: Two waves passing through a region are 
represented by 

1 1y (1.0cm)sin[(3.14cm )x (157s )t]− −= −

and 1 1y (1.5cm)sin[(1.57cm )x (314s )t]− −= −

Find the displacement of the particle at x = 4.5 cm at 
time t = 5.0 ms.

Sol: As the waves are superimposed on each other, the 
resultant displacement is Y=y1+y2.

According to the principle of superposition, each 
wave produces its own disturbance and the resultant 
disturbance is equal to the vector sum of the individual 
disturbances. The displacements of the particle at x = 
4.5cm at time t = 5.0 due to the two waves are,

 
1

1
1 3

y (1.0cm)sin[(3.14cm )(4.5cm)

(157s )](5.0 10 s)

−

− −

=

− ×

(1.0cm)sin 4.5 (1.0cm)sin[4 / 4]
4

 π
= π− = π+π 

 

1.0cm

2
=

 
and

1 1
2

3

y (1.5cm)sin[(1.57cm )(4.5cm) (314s )]

(5.0 10 s)

− −

−

= −

× ×

(1.5cm)sin 2.25 (1.5cm)sin[2 / 4]
2

1.5cm
(1.5cm)sin

4 2

 π
= π− = π+π 

 
π

=− =−

The net displacement is 

1 2
0.5cmy y y 0.35cm.

2

−
= + = =−

Example 7: The vibrations of a string fixed at both ends 
are described by the equation 

1 1y (5.00mm) sin[(1.57cm )x]sin[(314s )t]− −=

(a) What is the maximum displacement of the particle 
at x =5.66cm? 

(b) What are the wavelengths and the wave speeds 
of the two transverse waves that combine to give the 
above vibration?

(c) What is the velocity of the particle at x = 5.66 cm at 
time t = 2.00s?

(d) If the length of the string is 10.0 cm, locate the 
nodes and the antinodes. How many loops are formed 
in the vibration?

Sol: The transverse velocity of particle of string is 
y

u
t

∂
=
∂

. The wave velocity is V = νλ . Comparing wave 

equation with y=A sin kx sin ωt, we get the amplitude A 
and angular frequency of the wave.

(a) The amplitude of the vibration of the particle at 
position x is

1A |(5.00 mm) sin[(1.57cm )x]
For x 5.66cm,

A |(5.00 mm) sin 5.66
2

(5.00 mm) sin 2.5
3

−=
=

 π
= × 

 
 π

= π + 
 

(5.00 mm) cos 2.50 mm
3
π

= =

(b) From the given equation, the wave number  
k = 1.57 cm-1 and the angular frequency ω = 314 s-1. 
Thus, the wavelength is 

1

2 2 3.14 4.00 cm
k 1.57 cm−

π ×
λ = = =  

and Frequency is 
1

1314sv 50 s
2 2 3.14

−
−ω

= = =
π ×

The wave speed is 
1 1(50s ) (4.00 cm) 2.00ms− −υ=νλ = = .

(c) The velocity of the particle at position x at time t is 
given by 

1 1

1

y (5.00 mm) sin [(1.57 cm )x] [314s
t

cos(314s )t]

− −

−×

∂
υ= =

∂
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1 1 1(157 m s ) in (1.57 cm ) xcos(314 s )t− − −=

(d) The nodes occur where the amplitude is zero, i.e., 

sin (1.57cm-1) x = 0 or 1cm x n
2

− π
= π 

 
 

Where n is an integer. Thus,  x = 2n cm.

The nodes, therefore, occur at x = 0, 2 cm, 4 cm, 6 cm, 
8cm and 10 cm. Antinodes occur in between them, i.e., 
at x = 1 cm, 3 cm, 5cm, 7 cm and 9 cm. The string 
vibrates in 5 loops.

Example 8: A guitar of 90 cm length has a fundamental 
frequency of 124 Hz. Where should it be pressed to 
produce a fundamental frequency of 186 Hz?

Sol: As wires of guitar resemble the sonometer wire, 
thus the fundamental frequency of the guitar wire fixed 

at both ends is 1 F 
2L

ν =
µ

. And for two vibrating 

strings, the ratio of their vibrating lengths is 1 2

2 2

ν
=
ν





.

The fundamental frequency of a string fixed at both 

ends is given by 1 F 
2L

ν =
µ

As F and μ are fixed, 

1 2 1
2 1

2 1 2

L
or L L

L
124Hz

(90 cm) 60 cm
186 Hz

ν ν
= =

ν ν

= =

1 2 1
2 1

2 1 2

L
or L L

L
124Hz

(90 cm) 60 cm
186 Hz

ν ν
= =

ν ν

= =

Thus, the string should be pressed at 60 cm from an 
end.

Example 9: The total length of a sonometer wire is 1 m 
between the fixed ends. Where the two bridges should 
be placed in the sonometer so that the three segments 
of the wire have their fundamental frequencies in the 
ratio 1:2:3?

Sol: For sonometer the ratio of length of wires is L 1
∝
ν

  

where v is the frequency of the wave and L is length of 
vibrating string.

Suppose the lengths of the three segments are L1, L2, 
and L3, respectively. The fundamental frequencies are 

1
1

1 F /
2L

ν = µ  

2
2

1 F /
2L

ν = µ  ; 3
3

1 F /
2L

ν = µ  

So that ν 1L1 = ν 2L2 = ν 3L3.  ... (i)

As ν 1: ν 2: ν 3 = 1: 2: 3 we have  

ν 2 = 2 ν 1 and ν 3 = 3 ν 1 so that by (i)

1 1 1 1
2 1 3 1

2 3

L L
L L and L

2 3
ν ν

= = ν = =
ν ν

 and

L1+L2+L3 = 1m

We get 1
11 mL 1 1
2 3

 
+ + = 

 
 

1 2
1L6 6L m Thus, L m

11 2 11
= = =

 1
3

2L m
3 11
ν

= =

One bridge should be placed at 6 m
11

 from one end 

and the other should be placed at 2 m
11

 from other end.

Example 10: A wire having a linear mass density 5.0 
×10-3 kg m-1 resonates at a frequency of 420 Hz when it 
is stretched between two rigid supports with a tension 
of 450 N.. The next higher frequency at which the same 
wire resonates is 490 Hz. Find the length of the wire.

Sol: For vibrating string the nth harmonic of fundamental 

frequency is n Ff
2L

=
µ

. Here L is the length of vibrating 

string and F is the tension in the string. The two given 
frequencies correspond to two consecutive values n 
and (n+1).

Suppose the wire vibrates at 420 Hz in its nth harmonic 
and at 490 Hz in its (n + 1)th harmonic.

1 n420s F /
2L

− = µ      … (i)

and  1 (n 1)
490s F /

2L
− +
= µ     … (ii)

This gives 490 (n 1)
or n 6

420 n
+

= =

Putting the value in (i),

1 1
3 1

450N6 900420s ms
2L L5.0 10 kgm

− −
− −

= =
×

Or  900L m 2.1m
420

= =
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Exercise 1

Q.1 Audible frequencies have a range 40 hertz to 30,000 
hertz. Explain this range in terms of 

(i) Period T

(ii) Wavelength λ in air, and

(iii) Angular frequency

Give velocity of sound in air is 350 ms-1

Q.2 From a radio station, the frequency of waves is 15 
Mega cycle/sec. Calculate their wavelength.

Q.3 The velocity of sound in air at N.T.P is 331 ms-1. Find 
its velocity when the temperature rises to 910C and its 
pressure is doubled. 

Q.4 A displacement wave is represented by = 0.25 × 
10-3 sin (500 t – 0.025 x). Deduce (i) amplitude (ii) period 
(iii) angular frequency (iv) wavelength (v) amplitude of 
particle velocity (vi) amplitude of particle acceleration. , 
the t and x are in cm, sec and meter respectively.

Q.5 The length of a sonometer wire between two fixed 
ends is 110 cm. Where should be two bridges be placed 
so as to divide the wire into three segments, whose 
fundamental frequencies are in the ratio 1: 2: 3?

Q.6 Calculate the velocity of sound in a gas, in which 
two wave lengths 2.04 m and 2.08 m produce 20 beats 
in 6 seconds.

Q.7 A tuning fork of unknown frequency gives 6 beats 
per second with a tuning fork of frequency 256. It gives 
same number of beats/ sec when loaded with wax. Find 
the unknown frequency.

Q.8 Is it possible to have longitudinal waves on a string? 
A transverse wave in a steel rod?

Q.9 What type of mechanical waves do you expect to 
exist in (a) vacuum (b) air (c) inside the water (d) rock (e) 
on the surface of water? 

Q.10 What will be the speed of sound in a perfect rigid 
rod?

Q.11 What is the distance between compression and its 
nearest rarefaction in a longitudinal wave?

Q.12 What is the distance between a node and an 
adjoining antinode in a stationary wave?

Q.13 Explain why waves on strings are always transverse.

Q.14 What is a wave function? Give general form of 
wave function. What is a periodic function?

Q.15 Distinguish between harmonics and overtones.

Q.16 A stone is dropped into a well in which water is 
78.4 m deep. After how long will the sound of splash 
be heard at the top? Take velocity of sound in air  
= 332 ms-1

Q. 17 From a cloud at an angle of 300 to the horizontal, 
we hear the thunder clap 8s after seeing the lightening 
flash. What is the height of the cloud above the ground 
if the velocity of sound in air is 330 m/s?

Q.18 A steel wire 0.72m long has a mass of 5.0 × 10-3 kg. 
If the wire is under a tension of 60 N, what is the speed 
of transverse wave on the wire?

Q.19 For a metal, bulk modulus of elasticity is  
7.5 × 1010 Nm-2, and density is 2.5 × 103 m-3. Deduce the 
velocity of longitudinal waves.

Q.20 A steel wire 70 cm long has mass of 7g. If the 
wire is under a tension of 100 N, what is the speed of 
transverse waves in the wire? 

Q.21 Two waves of angular frequencies 50 and 5000 
rad s-1 have the same displacement amplitude, 3 × 10-5 
cm. Deduce the acceleration amplitude for them.

Q.22 The equation of a wave traveling in x- direction 
on a string is y = (3.0 cm) sin [(3.14cm-1) x – (314 s-1)t]

(a) Find the max. Velocity of a particle of the string.

JEE Main/Boards
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(b) Find the acceleration of a particle at x = 6.0 cm and 
at time t = 00.11 s.

Q.23 A fork of frequency 250 Hz is held over and 
maximum sound is obtained when the column of air is 
31 cm or 97 cm. Determine (i) velocity of sound (ii) the 
end correction (iii) the radius of the tube.

Q.24 In an experiment, it was found that a tuning fork 
and a sonometer gave 5 beats/sec, both when length 
of wire was 1 m and 1.05m. Calculate the frequency of 
the fork.

Exercise 2 

Single Correct Choice Type 

Q.1 A wave is propagating along x–axis. The 
displacement of particle of the medium in z – direction 
at t = 0 is given by: z = exp [- (x +2)2], where ‘x’ is in 
meters. At t = 1s, the same wave disturbance is given 
by: z = exp [-2 ( 2-x ) 2]. Then, the wave propagation 
velocity is 

(A) 4 m/s in + x direction

(B) 4 m/s in - x direction

(C) 2 m/s in + x direction

(D) 2 m/s in - x direction

Q.2 The equation of a wave traveling along the positive 
x – axis, as shown in figure at t = 0 is given by

y

1

0

-0.5

x

-0.1

(A) sin kx t (B)sin kx t
6 6

(C)sin t kx (D)sin t kx
6 6

   π π
−ω + −ω −   

   
   π π
ω − + ω − −   
   

(A) sin kx t (B)sin kx t
6 6

(C)sin t kx (D)sin t kx
6 6

   π π
−ω + −ω −   

   
   π π
ω − + ω − −   
   

Q.3 In the figure shown the shape of part of a long string 
in which transverse wave are produced by attaching 
one end of the string to tuning fork of frequency 250 
Hz. What is the velocity of the waves?

5 cm

-5 cm

O

0.1 cm

0.3 cm

0.5 cm

(A) 1.0 ms-1  (B) 1.5 ms-1 

(C) 2.0 ms-1 (D) 2.5 ms-1

Q.4 A block of mass 1 kg is hanging vertically from a 
string of length 1 m and mass/ length = 0.001 Kg/m. 
A small pulse is generated at its lower end. The pulse 
reaches the top end in approximately

1 m

(A) 0.2 sec (B) 0.1 sec 

(C) 0.02 sec  (D) 0.01 sec

Q. 5 A uniform rope having some mass hangs vertically 
from a rigid support. A transvers wave pulse is produced 
at the lower end. The speed (v) of the wave pulse varies 
with height (h) from the lower end as:

v

h

(A)

v

h

v

h

(B)

v

h

(D)(  )C

Q. 6 A wire of 10-2 kgm-1 passes over a frictionless light 
pulley fixed on the top of a frictionless inclined plane 
which makes an angle of 300 with the horizontal. Masses 
m and M are tied at two ends of wire such that m rests 
on the plane and M hangs freely vertically downwards. 
The entire system is in equilibrium and a transverse 
wave propagates along the wire with a velocity of 100 
ms-1. Then,

(A) M = 5kg (B) m 1
M 4

=

(C) m 20kg=  (D) m 4
M

=
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Q.7 Consider a function y = 10 sin2 (100πt + 5 πz) where 
y, z are in cm and t is in second.

(A) The function represents a traveling, periodic wave 
propagating in (-z) direction with speed 20m/s. 

(B) The function does not represent a traveling wave.

(C) The amplitude of the wave is 5 cm. 

(D) The amplitude of the wave is 10 cm.

Q. 8 The displacement from the position of equilibrium 
of a point 4 cm from a source of sinusoidal oscillations 
is half the amplitude at the moment t = T/ 6 (T is the 
time period). Assume that the source was at mean 
position at t = 0. The wavelength of the running wave is

(A) 0.96m (B) 0.48m (C) 0.24m (D) 0.12m

Q. 9 The period of oscillations of a point is 0.04 sec. 
and the velocity of propagation of oscillation is 300m/ 
sec. The difference of phases between the oscillations 
of two points at distance 10 and 16m respectively from 
the source of oscillations is 

(A) 2π  (B) π/ 2  (C) π/ 4  (D) π

Q.10 A motion is described by 
2 2

3y 
a (x 3t)

=
+ +

where 

y, x are in meter and t is in second.

(A) This represents equation of progressive wave  
propagation along – x direction with 3 ms-1.

(B) This represents equation of progressive wave  
propagation along + x direction with 3 ms-1.

(C) This does not represent a progressive wave equation.

(D) Data is insufficient to arrive at any conclusion.

Q.11 A pulse shown here is reflected from the rigid wall 
A and then from free end B. The shape of the string 
after these 2 reflection will be 

B A

Q.12 A composition string is made up by joining two 
strings of different masses per unit length →μ and 4μ. 
The composite string is under the same tension. 

B A

B A

B A

B A

(A) (B)

(  )C (D)

A transverse wave pulse: Y = (6 mm) sin (5t + 40x), 
where ‘t’ is in seconds and ‘x’ in meters, is sent along 
the lighter string towards the joint. The joint is at x = 
0. The equation of the wave pulse reflected from the 
joint is 

(A) (2 mm) sin (5t – 40x)

(B) (4 mm) sin (40t – 5x)

(C) - (2 mm) sin (5t – 40x)

(D) (2 mm) sin (5t – 10x)

Q. 13 In the previous question, the percentage of power 
transmitted to the heavier string through the joint is 
approximately

(A) 33%  (B) 89%  (C) 67%  (D) 75%

Q.14 A wave pulse on a string has the dimension shown 
in figure. The waves speed is V= 1 cm/s. If point O is a 
free end. The shape of wave at time t = 3 s is:

1 cm

V=1cm/s

1 cm 1 cm 2 cm

O

O
1cm

1cm

1cm

1cm

O

O

2cm

1cm

(A) (B)

(  )C (D)

Q.15 A string 1 m long is drawn by a 300 Hz vibrator 
attached to its end. The string vibrates in 3 segments. 
The speed of transverse waves in the string is equal to 

(A) 100 m/s (B) 200 m/s

(C) 300 m/s (D) 400 m/s

Q.16 The resultant amplitude due to superposition 
of two waves y1 = 5sin (ωt - kx) and y2 = -5 cos  
(ωt – kx - 1500)

(A) 5 (B) 5 3  

(C) 5 2 3−  (D) 5 2 3+
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Q.17 A wave represented by the equation 
y Acos(kx t)= −ω is superimposed with another wave 
to from a stationary wave such that the point x = 0 is a 
node. The equation of the other wave is:

(A) Asin (kx t)− +ω  (B) Acos (kx t)− +ω

(C) Asin (kx t)+ω  (D) Acos (kx t)+ω

Q.18 A taut string at both ends vibrates in its nth 
overtone. The distance between adjacent Node and 
Antinode is found to be ‘d’. If the length of the string 
is L, then

(A) L 2d(n 1)= +  (B) L d (n 1)= +  

(C) L 2dn=  (D) L 2d(n 1)= −

Q.19 A metallic wire of length L is fixed between 
two rigid supports. If the wire is cooled through a 
temperature difference ΔT (Y = young’s modulus, ρ = 
density, α = coefficient of linear expansion) then the 
frequency of transverse vibration is proportional to:

(A) 
Y

α

ρ
 (B) Yα

ρ
 (C) 

Y

ρ

α
 (D) 

Y

ρα

Q.20 A standing wave 20Y Asin x cos(1000 t)
3

 
= π π 

   
is 

maintained in a taut string where y and x are expressed 
in meters. The distance between the successive points 
oscillating with the amplitude A/2 across a node is 
equal to

(A) 25 cm (B) 2.5 cm (C) 5 cm (D) 10 cm

Q.21 A string of length 0.4m & mass 10-2kg is tightly 
clamped at its ends. The tension in the string is 1.6 N. 
Identical wave pulses are produced at one end at equal 
intervals of time, Δt. The minimum value of Δt which 
allows constructive interference between successive 
pulses is:

(A) 0.05s (B) 0.10s (C) 0.20s (D) 0.40s

Q. 22 Fig 11.46, show a stationary wave between two 
fixed points P and Q. which points (s) of 1, 2 and 3 are 
in phase with the point X? 

P QX 1 2 3

(A) 1, 2 and 3 (B) 1 and 2 only

(C) 2 and 3 only (D) 3 only

Q.23 A wave travels uniformly in all directions from a 
point source in an isotropic medium. The displacement 
of the medium at any point at a distance r from 
the source may be represented by (A is a constant 
representing strength of source)

(A) [A / r ]sin(kr t)−ω  (B) [A /r]sin(kr t)−ω

(C) [Ar]sin(kr t)−ω  (D) 2[A /r ]sin(kr t)−ω

Q.24 A sinusoidal progressive wave is 
generated in a string. Its equation is given by
Y (2mm)sin(2 x 100 t / 3)= π − π +π . The time when 
particle at x = 4 m first passes through mean position, 
will be 

(A) 1 sec
150

 (B) 1 sec
12

(C) 1 sec
300

 (D) 1 sec
100

Q.25 A transverse wave is described by the equation
Y Asin[2 x(ft x / )]= π − λ . The maximum particle velocity 
is equal to four times the wave velocity if:

(A) A / 4λ =π  (B) A / 2λ =π  

(C) Aλ =π  (D) 2 Aλ = π

Previous Years’ Questions 

Q. 1 A transverse wave is described by the equation

0
xfty  y sin2

 
π − λ

= 


. The maximum particle velocity 

is equal to four time the wave velocity if  (1984)

(A) λ =π  (B) 0 / 2yλ =π  

(C) 2λ = π  (D) 0y2λ = π

Q.2 A wave represented by the equation 
( )y acos kx t= −ω is superimposed with another wave 

to from a stationary wave such that point x = 0 is a 
node. The equation for the other wave is  (1988)

Q.3 The displacement y of a particle executing periodic 

motion is given by 2 1cos ty  4 sin(1000t)
2

 
 
 

= . This 

expression may be considered to be a result of the 
superposition of ………………….. Independent harmonic 
motions.  (1992)

(A) Two         (B) Three        (C) Four     (D) Five
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Q.4 The extension in a string, obeying Hooke’s law, is 
x. The speed of transverse wave in the stretched string 
is. If the extension in the string is increased to 1.5 x, the 
speed of transverse wave will be  (1996)

(A) 1.22  (B) 0.61  (C) 1.50  (D) 0.75

Q. 5 A traveling wave in a stretched string is described 
by the equation; Y = A sin (kx – ωt)

The maximum particle velocity is   (1997)

(A) Aω (B) ω/k (C) dω/dk (D) x/ω

Q.6 Two vibrating strings of the same material but of 
lengths L and 2L have radii 2r and r respectively. They 
are stretched under the same tension. Both the strings 
vibrate in their fundamental modes. The one of length L 
with frequency V1 and the other with frequency V2. The 
ratio V1/V2 is given by  (2000)

(A) 2 (B) 4 (C) 8 (D) 1

Q.7 The ends of a stretched wire of length L are 
fixed at x = 0 and x = L. In one experiment the  

displacement of the wire is 1
x

y Asin sin t
L

 π
= ω 

 
 and 

energy is E1 and in other experiment its displacement is 

2
2 x

y Asin sin2 t
L

 π
= ω 

 
and energy is E2. Then (2011)

(A) E2 = E1 (B) E2 = 2E1

(C) E2 = 4E1 (D) E2 = 16E1

Q.8 Two pulses in a stretched string, whose centers are 
initially 8 cm apart, are moving towards each other as 
shown in the figure. The speed of each pulse is 2 cm/s. 
After 2 s the total energy of the pulses will be  (2001)

8 cm

(A) Zero 

(B) Purely kinetic 

(C) Purely potential 

(D) Partly kinetic and partly potential

Q.9 A sonometer wire resonates with a given tuning fork 
forming standing waves with five antinodes between 
the two bridges when a mass of 9 kg is suspended from 

the wire. When this mass is replaced by mass M. The 
wire resonates with the same tuning fork forming three 
antinodes for the same positions of the bridges. The 
value of M is (2002)

(A) 25 kg (B) 5kg

(C) 12.5 kg (D) 1/25 kg

Q.10 A massless rod BD is suspended by two identical 
massless strings AB and CD of equal lengths. A block 
of mass m is suspended from point P such that BP is 
equal to x. If the fundamental frequency of the left wire 
is twice the fundamental frequency of right wire, then 
the value of x is  (2006)

A

B

P

m

D

C

x

(A) l/5 (B) l/4 (C) 4l/5 (D) 3l/4

Q.11 A hollow pipe of length 0.8 m is closed at one 
end. At its open end, a 0.5 m long uniform string is 
vibrating in its second harmonic and it resonates with 
the fundamental frequency of the pipe. If the tension in 
the wire is 50 N and the speed of sound is 320ms-1, the 
mass of the string is  (2010)

(A) 5 kg (B) 10kg (C) 20 kg (D) 40 kg

Q.12 The displacement of particles in a string stretched 
in the x – direction is represented by y. Among the 
following expressions for y, those describing wave 
motion is (are)  (1987)

(A) cos kxsin tω  (B) 2 2 2 2k x t−ω  

(C) 2cos (kx t)+ω  (D) ( )2 2 2 2cos k x t−ω

Q.13 A wave is represented by the equation;  
( )y  A sin 10 x 3+15 t /π +π π=

Where x is in meter and t is in second. The expression 
represents   (1990)

(A) A wave traveling in the position x – direction with a 
velocity 1.5 m/s

(B) A wave traveling in the negative x – direction with a 
velocity 1.5 m/s



11.40  |   Waves on a String

(C) A wave traveling in the negative x – direction with a 
wavelength 0.2 m

(D) A wave traveling in the position x – direction with a 
wavelength 0.2 m

Q.14 Two identical straight wires are stretched so as to 
produce 6 beats/ s when vibrating simultaneously. On 
changing the tension slightly in one of them, the beat 
frequency remains unchanged. Denoting by T1, T2 the 
higher and the lower initial tension in the strings, then 
it could be said that while making the above changes in 
tension (1991)

(A) T2 was decreased (B) T2 was increased

(C) T1 was decreased (D) T1 was increased

Q. 15 A wave disturbance in a medium is described by

( )y x,  t   0.02cos 50 t cos(10 x)
2

 π
= π + π 

 
,

Where x and y are in meter and t is in second. (1995)

(A) A node occurs at x = 0.15m

(B) An antinode occurs at x = 0.3 m

(C) The speed of wave is 5 ms-1

(D) The wavelength of wave is 0.2 m

Q.16 The (x, y) coordinates of the corners of a square 
plate are (0, 0), (L, 0), (L, L) and (0, L). The edges of the 
plates are clamped and transverse standing waves are 
set-up in it. If ( )u x,  y denotes the displacement of 
the plate at the point (x, y) at some instant of time, 
the possible expression (s) for u is (are) (a = positive 
constant)  (1998)

(A) acos( x / 2L)cos( y / 2L)π π

(B) asin( x / L)sin( y / L)π π

(C) asin( x /L)sin(2 y / L)π π

(D) acos(2 x /L)cos( y / L)π π

Q.17 A transverse sinusoidal wave of amplitude a, 
wavelength λ and frequency is traveling on a stretched 
string. The maximum speed of any point on the string is 
ν/10, where is the speed of propagation of the wave. If  
a = 10-3m and ν = 10m/s, then λ  and f are given by
 (1998)

(A) 22 10 m−λ = π×  (B) 310 m−λ =

(C) f
310 Hz

2

−

=
π

 (D) f = 104Hz

Q.18 In a wave motion, y = a sin(kx – wt), y can represent
 (1999)

(A) Electric field (B) Magnetic field

(C) Displacement (D) Pressure

Q.19 Standing waves can be produced  (1999)

(A) On a string clamped at both ends

(B) On a string clamped at one end and free at the other

(C) When incident wave gets reflected from a wall

(D) When two identical waves with a phase difference 
of π are moving in the same direction

Q.20. A wave travelling along the x-axis is described 
by the equation y(x, t) = 0.005 cos (αx −βt). If the 
wavelength and the time period of the wave are 0.08 m 
and 2.0 s, respectively, then α and β in appropriate units 
are (2008)

(A) α = 25.00 π, β = π  (B) 0.08 2.0,α =
π π

 

(C) 0.04 1.0,α = β =
π π

 (D) 12.50 ,
2.0
π

α = π β =

Q.21 The equation of a wave on a string of 
linear mass density 0.04 kg m–1 is given by 

( ) t xy  0.02 m sin 2
0.04(t) 0.50(m)

  
= π −  

  
. The tension 

in the string is (2010)

(A) 4.0 N  (B) 12.5 N 

(C) 0.5 N  (D) 6.25 N

Q.22 The transverse displacement y (x,t) of a wave 

on a string is given by 
2 2(ax bt 2 abxt)y(a,t) e− + += .This 

represents a (2011)

(A) Wave moving in – x direction with speed b
a

 

(B) Standing wave of frequency b

(C) Standing wave of frequency 1

b
  

(D) Wave moving in + x direction with a
b
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Q.23 Two particles are executing simple harmonic 
motion of the same amplitude A and frequency ω along 
the x-axis. Their mean position is separated by distance 
X0 (X0 > A). If the maximum separation between them is 
(X0 + A), the phase difference between their motion is:
 (2011)

X +A0

X0
A

(A) 
3
π   (B) 

4
π   (C)

6
π   (D) 

2
π

Q.24 A mass M, attached to a horizontal spring, 
executes S.H.M. with amplitude A1. When the mass M 
passes through its mean position then a smaller mass 
m is placed over it and both of them move together 

with amplitude A2. The ratio of 1

2

A
A

 
  
 

is: (2011)

(A) M m
M
+  (B)

1/2
M m

M
 +
 
 

(C)
1/2

M
M m
 
 + 

 (D) M
M m+

Q.25 A sonometer wire of length 1.5 m is made of steel. 
The tension in it produces an elastic strain of 1%.What 
is the fundamental frequency of steel if density and 
elasticity of steel are 7.7 × 103 kg/m3 and 2.2 × 1011 N/m2  
respectively? (2013)

(A) 188.5 Hz  (B) 178.2 Hz 

(C) 200.5 Hz  (D) 770 Hz

Q.26 The period of oscillation of a simple pendulum 

is LT 2
g

= π . Measured value of L is 20.0 cm known 

to 1 mm accuracy and time for 100 oscillations of the 
pendulum is found to be 90s using a wrist watch of 1s 
resolution. The accuracy in the determination of g is:
 (2015)

(A) 2%   (B) 3%   (C) 1%   (D) 5%

Q.27 A pendulum made of a uniform wire of cross 
sectional area A has time period T. When an additional 
mass M is added to its bob, the time period changes to 
TM. If the Young’s modulus of the material of the wire 

is Y then 1
Y

is equal to : (g = gravitational acceleration)
 (2015)

(A) 
2

MT A1
T Mg

   −     
 (B)

2
MT Mg

1
T A

   −     

(C) 
2

MT A1
T Mg

   −      
 (D)

2

M

T A1
T Mg

   −      

Q.28 For a simple pendulum, a graph is plotted between 
its kinetic energy (KE) and potential energy (PE) 
against its displacement d. Which one of the following 
represents these correctly? (Graphs are schematic and 
not drawn to scale) (2015)

E

PE

KE
d

E

KE

PE
d

E KE

PE

d

E

PE

KE

d

(A) (B)

(  )C
(D)

Q.29 A uniform string of length 20 m is suspended 
from a rigid support. A short wave pulse is introduced 
at its lowest end. It starts moving up the string. The 
time taken to reach the support is: (take g = 10 ms–2)
 (2016)

(A) 2s (B) 2 2 s (C) 2 s (D) 2 2π s

Q.30 A particle performs simple harmonic motion with 
amplitude A. Its speed is trebled at the instant that it 

is at distance 2A
3

from equilibrium position. The new 

amplitude of the motion is. (2016)

(A) 3A (B) A 3  (C) 7A
3

 (D) A 41
3
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Exercise 1 

Q.1 A transverse wave is traveling along a string from 
left to right. The figure. represents the shape of the 
string (snap - shot) at a given instant. At this instant (a) 
which points have an upward velocity (b) which points 
will have downward velocity (c) which points have zero 
velocity (d) which points have maximum magnitude of 
velocity? 

A

B

C

D

E

F

G

H

Q.2 A sinusoidal wave propagates along a string. In 
figure (a) and (b). ‘y’ represents displacement of particle 
from the mean position. ‘x’ & ‘t’ have usual meanings. 
Find:

(a) Wavelength, frequency and speed of the wave.

(b) Maximum velocity and maximum acceleration of 
the particles

(c) The magnitude of slope of the string at x = 2 at  
t = 4 sec.

y (in mm)

+3

-3

0
2 4 6

for x=2m

t (in sec.)

(a)

y (in mm)

0
1 3 7

for x=2m

x (in m)

(b)

Q.3 The extension in a string, obeying Hook’s low is 
x. the speed of wave in the stretched string is v. If the 
extension in the string increased to 1.5x find the new 
the speed of wave.

Q.4 A steel wire has a mass of 5gm and is under 
tension 450N. Find the maximum average power that 
can be carried by the transverse wave in the wire if the 
amplitude is not to exceed 20% of the wavelength.

Q.5 The figure shown a triangle pulse on a rope at t = 
0. It is approaching a fixed end at 2 cm/s

2 cm/s

1 cm

1 cm 1 cm2 cm

(a) Draw the pulse at t = 2sec. 

(b) The particle speed on the leading edge at the instant 
depicted is_______. 

Q.6 Two strings A and B with μ =2 kg/m and μ = 8 
kg/m respectively are joined in series and kept on a 
horizontal table with both the ends fixed. The tension in 
the string is 200 N. If a pulse of amplitude 1 cm travels 
in A towards the junction, then find the amplitude of 
reflected and transmitted pulse.

Q.7 A parabolic pulse given by equation y (in cm) = 
0.3 – 0.1 (x – 5t) 2 (y > 0) x in meter and t in second 
traveling in a uniform string. The pulse passes through 
a boundary beyond which its velocity becomes 2.5 m/s. 
What will be the amplitude of pulse in this medium 
after transmission?

Q.8 A 40 cm long wire having a mass 3.2 gm and area 
of c.s 1 mm2 is stretched between the support 40.05 
cm apart. In its fundamental mode, it vibrates with a 
frequency 1000/64 Hz. Find the young’s modulus of the 
wire.

Q.9 A string of mass 0.2 kg/m and length  
L = 0.6m is fixed at both ends and stretched such that 
is has a tension of 80 N. The string is vibrating in its 
third normal mode, has an amplitude of 0.5 cm. What 
is the frequency of oscillation? What is the maximum 
transverse velocity amplitude?

JEE Advanced/Boards
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Q.10 A rope, under tension of 200N and fixed at both 
ends, oscillates in a second – harmonic standing wave 
pattern. The displacement of the rope is given by: 

( ) (sin xY  0 / 2)s.10 in 2 tm  1= π π

Where x = 0 at one end of the rope, x is in meters and t 
is in seconds. What are 

(a) The length of the rope 

(b) The speed of the progressive waves on the rope, 
and

(c) The mass of the rope

(d) If the rope oscillates in a third – harmonic standing 
wave pattern, what will be the period of oscillation?

Q.11 A stretched uniform wire of a sonometer between 
two fixed knife edges, when vibrates in its second 
harmonic gives 1 beat per second with a vibrating 
tuning fork of frequency 200 Hz. Find the percentage 
change in the tension of the wire to be in unison with 
the tuning fork.

Q.12 A string fixed at both ends has consecutive 
standing wave modes for which the distances between 
adjacent nodes are 18 cm and 16 cm respectively.

(a) What is the length of the string?

(b) If the tension is 10 N and the linear mass density is 
4kg/m, what is the fundamental frequency?

Q.13 In a mixture of gases, the average number of 
degree of freedom per molecules is 6. The rms speed 
of the molecules of the gas is c. find the velocity of 
sound in the gas.

Exercise 2 

Single Correct Choice Type

Q.1 A wave is represented by the equation
Y  10sin2 (100t 0.02x) 10sin2 (100t 0.02x)= π − + π +  The 
maximum amplitude and loop length are respectively

(A) 20 units and 30 units

(B) 20 units and 25 units 

(C) 30 units and 20 units

(D) 25 units and 20 units

Q.2 A string of length 1 m and linear mass density 0.01 
kgm-1 is stretched to a tension of 100N. When both ends 
of the string are fixed, the three lowest frequencies for 
standing wave are f1, f2 and f3. When only one end of the 
string is fixed, the three lowest frequencies for standing 
wave are n1, n2 and n3. Then 

(A) n3 = 5n1 = f3 = 125 Hz  

(B) f3 = 5f1 = n3 = 125 Hz

(C) f3 = n2 = 3f1 = 150 Hz  

(D) 1 2
2

f f
n 75Hz

2
+

= =

Q.3 A chord attached to a vibrating string from divides 
it into 6 loops, when its tension is 36N. the tension at 
which it will vibrate in 4 loops is 

(A) 24N (B) 36N (C) 64N (D) 81N

Q.4 A wave equation is given as y = cos (500t – 70x), 
where y in mm and t is in sec.

(A) The wave is not a transverse propagating wave.

(B) The speed of wave is 50/7 m/s

(C) The frequency of oscillation 1000π Hz

(D) Two closest points which are in same phase have 
separation 45 π/7 cm.

Q.5 A wave pulse passing on a string with a speed of 
40 cm s–1 in the negative x – direction has its maximum 
at x = 0 at t = 0. Where will this maximum be located 
at t = 5s?

(A) 2 m (B) 3 m (C) 1 m (D) 2.5 m

Q.6 A steel wire of length 64 cm weights 5 g. If it is 
stretched by a force of 8 N, what would be the speed of 
a transverse wave passing on it?

(A) 10 m/s  (B) 38 m/s (C) 32 m/s (D) 22 m/s

Q.7 Two blocks each having a mass of 3.2 kg are 
connected by a wire CD and the system is suspended 
from the ceiling by another wire AB. The linear mess 
density of the wire AB is 10 g m-1 and that of CD is 8 gm-1.  
Find the speed of a transverse wave pulse produced in 
AB and in CD.

(A) 80 m/s, 63 m/s (B) 75 m/s, 54 m/s

(C) 82 m/s, 33 m/s (D) 87 m/s , 60 m/s
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Q.8 In the arrangement shown in figure, the string 
has a mass of 4.5 g. How much time will it take for a 
transverse disturbance produced at the floor to reach 
the pulley?

(Take g = 10 ms-2)

25 cm

2.0 cm

2 kg

(A) 0.03 s (B) 0.02 s (C) 0.01 s (D) 0.04 s

Assertion Reasoning Type

Q.9 Statement-I: In a sinusoidal traveling wave on a 
string potential energy of deformation of string element 
at extreme position is maximum

Statement-II: The particle in sinusoidal traveling wave 
perform SHM.

(A) Statement-I is true, statement-II is true, statement-II 
is a correct explanation for statement-I

(B) Statement-I is true, statement-II is true, statement-II 
is NOT correct explanation for statement-I

(C) Statement-I is true, statement-II is false

(D) Statement-I is false, statement-II is true

Q. 10 Statement-I: When a pulse on string reflects 
from free end, the resultant pulse is formed in such a 
way that slope of string at free end is zero.

Statement-II: Zero resultant slope ensures that there is 
no force components perpendicular to string.

(A) Statement-I is true, statement-II is true, statement-II 
is a correct explanation for Statement-I

(B) Statement-I is true, statement-II is true, statement-II 
is NOT correct explanation for Statement-I

(C) Statement-I is true, statement-II is false

(D) Statement-I is false, statement-II is true

Multiple Correct Choice Type

Q.11 At a certain moment, the photograph of a string 
on which a harmonic wave is traveling to the right is 
shown. Then, which of the following is true regarding 
the velocities of the points P, Q and R on the string.

y

P

Q

R
x

(A) PV is upwards  (B) Q RV V=−

(C) P Q R| V | | V | | V |> =  (D) Q RV V=

Comprehension Type 

The figure represents the instantaneous picture of a 
transverse harmonic wave traveling along the negative 
X – axis. Choose the correct alternative (s) related to the 
movement of the mine points shown in the figure.

y

a

b

c

d

e

f

g

h
o x

Q.12 The point/s moving upward is/are

(A) a (B) c (C) f (D) g

Q.13 The point/s moving downwards is/are

(A) o (B) b (C) d (D) h

Q.14 The stationary points is/ are

(A) o (B) b (C) f (D) h

Q.15 The point/s moving with maximum velocity is/are

(A) b (B) c (C) d (D) h

Previous Years’ Questions 

Q. 1 An object of specific gravity ρ is hung from a thin 
steel wire. The fundamental frequency for transverse 
standing waves in the wire is 300 Hz. The object is 
immersed in water, so that one half of its volume is 
submerged. The new fundamental frequency (in Hz) is 
 (1995)
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(A) 
1/2

2 1
300

2
 ρ−
 ρ 

 (B) 
1/2

2
300

2 1
 ρ
 ρ− 

(C) 2
300

2 1
 ρ
 ρ− 

 (D) 2 1
300

2
 ρ−
 ρ 

Q.2 A string of length 0.4m and mass 10-2 kg is tightly 
clamped at its ends. The tension in the string is 1.6N. 
Identical wave pulses are produced at one end at equal 
intervals of time Δt, The minimum value of Δt, which 
allows constructive interference between successive 
pulses, is (1998) 

(A) 0.05 s (B) 0.10 s (C) 0.20 s (D) 0.40s

Q. 3 A transverse sinusoidal wave moves along a string 
in the positive x – direction at a speed of 10 cm/s. The 
wavelength of the wave is 0.5 m and its amplitude is 
10 cm. At a particular time t, the snap – shot of the 
wave is shown in figure. The velocity of point P when its 
displacement is 5 cm is  (2008)

y

P
x

(A) 3 ĵm / s
50
π  (B) 3 ĵm / s

50
π

−

(C) 3 î m / s
50
π  (D) 3 îm / s

50
π

−

Q.4 A vibrating string of certain length l under a tension 
T resonates with a mode corresponding to the first 
overtone (third harmonic) of an air column of length 
75 cm inside a tube closed at one end. The string also 
generates 4 beats/s when excited along with a tuning 
fork of frequency n. Now when the tension of the string 
is slightly increased the number of beats reduces to 2 
per second. Assuming the velocity of sound in air to 
be 340 m/s, the frequency n of the tuning fork in Hz is
 (2008)

(A) 344 (B) 336 (C) 117.3 (D) 109.3

Paragraph 1:

Two plane harmonic sound waves are expressed by the 
equations.

1y (x,t) Acos( x 100 t)= π − π

and 2y (x,t) Acos(0.4 x 92 t)= π − π

(All parameters are in MKS) (2006) 

Q.5 How many times does an observer hear maximum 
intensity in one second?

(A) 4   (B) 10       (C) 6           (D) 8

Q.6 What is the speed of sound?

(A) 200 m/s     (B) 180 m/s        (C) 192 m/s    (D) 96 m/s

Q.7 At x = 0 how many times the amplitude of y1 + y2 is 
zero in one second?

(A) 192     (B) 48          (C) 100          (D) 96

Q.8 A wave equation which gives the displacement 
along the y – direction is given by; 4y 10 sin(60t 2x)−= + .  
Where x and y are in meter and t is time in second. This 
represents a wave  (1981) 

(A) Traveling with a velocity of 30 m/s in the negative 
x – direction 

(B) Of wavelength π m

(C) Of frequency 30/ π Hz

(D) Of amplitude 10-4 m

Q.9 As a wave propagates (1999) 

(A) The wave intensity remains constant for a plane wave

(B) The wave intensity decreases as the inverse of the 
distance from the source for a spherical wave

(C) The wave intensity decreases as the inverse square 
of the distance from the source for a spherical wave

(D) Total intensity of the spherical wave over the 
spherical surface centered at the source remains 
constant at all times

Q.10 
2

0.8Y(x,t)
[(4x 5t) 5]

=
+ +

represents a moving pulse 

where x and y are in meter and t is in second. Then, (1999)

(A) Pulse is moving in positive x – direction 

(B) In 2 s it will travel a distance of 2.5 m

(C) Its maximum displacement is 0.16 m

(D) It is a symmetric pulse
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Q.11 A copper wire is held at the two ends by rigid 
supports. At 300C, the wire is just taut, with negligible 
tension. Find the speed of transverse waves in this wire 
at 100C. (1998)

Given: Young modulus of copper = 1.3 ×1011 N/m2

Coefficient of linear expansion of copper = 1.7 ×10-5 o C-1 

Density of copper = 9 ×103 kg/m2

Q.12 A string 25 cm long and having a mass of 2.5 g is 
under tension. A pipe closed at one end is 40 cm long. 
When the string is set vibrating in its first overtone and 
the air in the pipe in its fundamental frequency, 8 beats/ s  
are heard. It is observed that decreasing the tension in 
the string decreases the beat frequency. If the speed of 
sound in air is 320 m/s find the tension in the string.
 (1999)

Q.13 A uniform rope of length 12 m and mass 6 kg 
hangs vertically from a rigid support. A block of mass  
2 kg is attached to the free end of the rope. A transverse 
pulse of wavelength 0.06 m is produced at the lower 
end of the rope. What is the wavelength of the pulse 
when it reaches the top of the rope? (1984)

Q.14 A steel wire of length 1 m, mass 0.1 kg and uniform 
cross-sectional area 10-6 m2 is rigidly fixed at both ends. 
The temperature of the wire is lowered by 200C. If 
transverse waves are set – up by plucking the string in 
the middle, calculate the frequency of the fundamental 
mode of vibration. (2009)

11 2
steel

5
steel

Y 2 10 N / m and

1.21 10 / C.

Given :
− ο

= ×

α = ×

Q.15 When two progressive waves y1 = 4 sin (2x - 6t) 

and y2 = 3 sin 2x 6t
2

 π
− − 

 
 are superimposed, the 

amplitude of the resultant wave is: (2010)

Q.16 A horizontal stretched string fixed at two ends, is 
vibrating in its fifth harmonic according to the equation 
y(x, t) = 0.01m sin [(62.8m-1)x] cos[(628s-1)t]. Assuming 
π= 3.14, the correct statement(s) is (are): (2013)

(A) The number of nodes is 5.

(B) The length of the string is 0.25 m.

(C) The maximum displacement of the midpoint of the 
string, from its equilibrium position is 0.01m.

(D) The fundamental frequency is 100 Hz.

Q.17 One end of a taut string of length 3m along the x 
axis is fixed at x = 0. The speed of the waves in the string 
is 100 ms-1. The other end of the string is vibrating in 
the y direction so that stationary waves are set up in 
the string. The possible waveform(s) of these stationary 
waves is (are): (2014)

(A) x 50 ty(t) Asin cos
6 3
π π

=

(B) x 100 ty(t) Asin cos
3 3
π π

=

(C) 5 x 250 ty(t) Asin cos
6 3
π π

=

(D) 5 xy(t) Asin cos250 t
6
π

= π

Q.18 A metal rod AB of length 10x has its one end A 
in ice at 0°C and the other end B in water at 100°C. If 
a point P on the rod is maintained at 400°C, then it is 
found that equal amounts of water and ice evaporate 
and melt per unit time. The latent heat of evaporation 
of water is 540 cal/g and latent heat of melting of ice is 
80 cal/g. If the point P is at a distance of λ x from the 
ice end A, find the value of λ . [Neglect any heat loss to 
the surrounding.] (2009)

Q.19. Column I shows four systems, each of the same 
length L, for producing standing waves. The lowest 
possible natural frequency of a system is called its 
fundamental frequency, whose wavelength is denoted 
as fλ . Match each system with statements given in 
column II describing the nature and wavelength of the 
standing waves. (2011)

Column I Column II

(A) Pipe closed at one end

LO
(A)

(p) Longitudinal waves

(B) Pipe open at both ends

O L
(B)

(q) Transverse waves
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PlancEssential Questions

Column I Column II

(C) Stretched wire clamped 
at both ends

O L

(  )C

(r) f Lλ =

Column I Column II

(D) Stretched wire clamped 
at both ends and at mid-
point

O LL/2

(D)

(s) f 2Lλ =

(t) f 4Lλ =

Answer Key

JEE Main/Boards

Exercise 1
Q. 2 20 m

Q. 3 382.2 ms-1

Q. 4 (i) 0.25 × 10-3 cm

 (ii) π/250 sec (iii) 500 rad/sec 

 (iv) 80 π meters  

 (v) 0.125 cm/s (vi) 62.5 cm/sec2

Q. 6 353.6 ms-1

Q. 7 250 Hz

JEE Main/Boards

Exercise 1
Q. 5 Q. 17 Q. 22

Exercise 2
Q.1 Q.4 Q.5

Q.6 Q.10 Q.14

Q.21

JEE Advanced/Boards

Exercise 1
Q. 2 Q.10 Q.12

Exercise 2
Q.1 Q.2 Q.4

Q.9 Q.10

Q. 16 4.23 s

Q. 17 1.320 km

Q. 18 92.95 ms-1

Q. 19 5.27 ×103 ms-1

Q. 20 100 ms-1

Q. 21 7.5 ×10-2 cms-2; 7.5 ×10 2 cms-2

Q. 22 (a) 9.42 m/s (b) zero

Q. 23 330 ms-1, 0.02 m, 0.033 m

Q. 24 205 Hz
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Exercise 2

Single Correct Choice Type

Q.1 A Q.2 D Q. 3 A Q. 4 D Q. 5 C Q. 6 C

Q.7 C Q.8 B Q. 9 D Q. 10 A Q. 11 A Q. 12 C

Q.13 B Q.14 D Q.15 B Q.16 A Q. 17 B Q. 18 B

Q.19 B Q.20 C Q.21 B Q.22 C Q. 23 B Q.24 C

Q.25 B

Previous Years’ Questions
Q. 1 B Q. 2 C Q. 3 B Q. 4 A Q. 5 A Q. 6 D 

Q. 7 C Q. 8 B Q. 9 A Q. 10 A Q. 11 B Q. 12 A, C

Q. 13 B, C Q. 14 D Q. 15 A, B, C, D Q. 16 B,C Q. 17 A Q. 18 A,B 

Q. 19 A Q. 20 A Q. 21 D Q. 22 A Q. 23 D Q. 24 C

Q. 25 B Q. 26 B Q. 27 A Q. 28 B Q. 29 B Q. 30 C

JEE Advanced/Boards

Exercise 1

Q. 1  (a) D,E,F, (b) A,B,H, (c) C,G, (d) A,E  Q. 2 (a) λ=4m, 1f Hz
4

= , 1 m/s 

(b) 
2

23 3mm / s, mm / s
2 4
π π , (c) 3

2
π

  
Q. 3 1.22 v

Q. 4 106.59 kW    Q. 5 (a)	

          (b) 2 cm/s

Q.6 1 1
1 2A cm,A cm
3 3

=− =
  

Q. 7 0.2 cm

Q. 8 1 ×109 Nm–2   Q. 9 50Hz, 50π cm/sec

Q. 10 4 m, 24 m/s, 25/18 kg, 1/9 sec  Q. 11 1.007%

Q. 12 (a) 144 cm; (b) 17.36 Hz  Q. 13 2/3c

Exercise 2

Single Correct choice type

Q. 1 B Q. 2 D Q. 3 D Q. 4 B Q. 5 A Q. 6 C

Q. 7 A Q. 8 B

Assertion Reasoning Type

Q. 9 D Q. 10 A
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JEE Main/Boards

Exercise 1

Sol 1: (i) 1
30,000

s ≤ T ≤ 1
40

(ii) 350
30000

m/s ≤ λ ≤ 350
40

m/s

(iii) 80π rads–1 ≤ ω ≤ 60000π rads–1 

Sol 2: f = 15 × 106 Hz

λ = V
f

 = 
8

6

3 10
15 10
×

×
 = 20 m 

Sol 3: V’ = 4
3

V = 4
3

× 331 = 382.2 ms–1

Sol 4: (i) A = 0.25 × 10–3 cm

(ii) T = 2
500
π  = 

250
π  s 

(iii) ω = 500 rad/s 

(iv) λ = 2
0.025

π m = 80π m

(v) Vmax = 0.25 × 10–3 × 500 cm s–1

Vmax. = 0.125 cms–1

(vi) amax. = Vmax ω = 0.125 × 500 

 amax. = 6.25 cms–2

Sol 5: 

f ∝ 1


f → 1 : 2: 3

 → 1 : 1
2

 : 1
3

 → 6 : 3 : 2

Bridges must be placed at 60 cm from one end and 20 
cm from another end 

Sol 6: V
2.04

– V
2.08

 = 20
6

; V 0.04
2.04 2.05

 
 × 

= 20
6

V = 353. 6 ms–1

Sol 7: On loading with wax frequency decreases 

f – 256 = ± 6

f = 256 ± 6 Hz 

f = 262 Hz 

Sol 8: No because string is not stretchable yes 
transverse waves are possible in a steel rod. 

Sol 9: (a) No wave possible as there is no particle.

(b) Longitudinal waves (direction of motion of particles 
parallel to direction of propagation of wave)

Solutions

Multiple Correct Choice Type

Q.11 C, D

Comprehension Type

Q. 12 A, D Q.13 C Q.14 B, C Q.15 C, D 

Previous Years’ Questions
Q.1 A Q.2 B Q.3 A Q.4 A Q.5 A Q.6 A 

Q.7 C Q.8 A, B, C, D Q.9 A Q.10 A Q.11 70.1 m/s Q.12 27.04 N

Q.13 0.12 m Q.14 11 Hz Q.15 5 Q. 16 B, C Q. 17 A, C, D Q. 18 9

Q. 19 A → p, t; B →  p, s; C →  q, s; D → q, r
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(c) Longitudinal 

(d) Both are possible 

(e) Combined longitudinal & transverse (ripples)

Sol 10: Infinite as young’s modulus of a rigid body is 
infinite 

Sol 11: Half the wavelength (λ/2)

Sol 12: 

Sol 13: Strings cannot be compressed or extended 
hence there won’t be regions of compression and 
rarefaction. Strings have elasticity of shape. Hence 
wave on strings are transverse. 

Sol 14: Refer theory 

Sol 15: A harmonic of a wave is a component frequency 
of the signal that is an integer multiple of the fundamental 
frequency. If f is the fundamental frequency the harmonics 
have frequency 2f, 3f, 4f ….. etc.

An overtone is any frequency higher than the 
fundamental frequency of a sound. 

Sol 16: 

  

Time to reach water = 2 78.4
9.8
×  = 45

Time for sound to reach top = 78.4
332

 = 0.23 s

Total time = 4.23 s 

Sol 17:  

d 
8

1 1–
330 3 10

 
 

× 
 = 8 × 330 × 3 × 108

d (3× 108 – 330)

d ~=  8 × 330

d = 264 m 

height of cloud = 1320 m = 1.32 Km 

Sol 18: m = 
–35 10

0.72
×  = 1

144
T = 60 N 

V = t
µ

 = 60
1/ 144

 = 24 15 = 92.95 ms–1

Sol 19: B = 7.5 × 1010 N m–2

E = 2.7 × 103 kg m–3

V = B
e

 = 
10

3

7.5 10
2.7 10

×

×
= 5270.46 ms–1

V = 5.27 × 103 ms–1

Sol 20: μ = 
–37 10

0.7
×  = 10–2 kg/m

T = 100 N 

V = T
µ

 = 
–2

100
10

 = 100 ms–1

Sol 21: ω, = 50 rads–1 CO2 = 5000 rads–1

a = 3 × 10–5 × (50)2 cms–2

a1 = 7.5 × 10–2 cms–2

a2 = 3 × 10–5 × (5000)2 cms–2

a2 = 750 cms–2

a2 = 7.5 ms–2

Sol 22: y = (3.0 cm) sin [(3.14 cm–1)x – (314 s–1)t]

(a) Vmax. = 3.0 cm × 314 s–1 = 942 cm s–1

= 9.42 ms–1
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(b) a = –3 ×(314)2sin(π × 6 – 100 π × 0.11)

a = – 3 × (314)2 sin(– 5π)

a = 0

Sol 23: f = 250 Hz

(31+ h) = 
2
λ

(97 + h) = 3
4
λ

 
⇒ 66 = 

2
λ

λ = 132 cm

V = fλ = 250 × 1.32 ms–1 ⇒ V = 330 ms–1

H = 132
4

 – 31 = 2 cm = 0.02 m 

Radius of tube = 
End Cross section

0.6

= 0.02
0.6

 = 0.2
6

 = 0.1
3

 = 0.033 m 

Sol 24: V
2

 – F = 5

F – V
2.1

 = 5

V
2

– V
2.1

 = 10

V = 420 ms–1

F = 5 + 420
2.1

 = 205 Hz

Exercise 2

Single Correct Choice Type

Sol 1: (A) z = 
2–(x–vt c)e +

c – V × 0 = 2

c – V × 1 = – 2

V = + 4 m/s 

Sol 2: (D) y = – sin kx – t
6

 π
ω + 

 

⇒ y = sin t – kx –
6

 π
ω 
 

Sol 3: (A) V = fλ ⇒ V = 250 × 0.4
100

 = 1 ms–1

Sol 4: (D) V = T
µ

 = 10
0.001

 = 100 ms–1

T = 
–1

1m

100ms
 = 0.01 sec 

Sol 5: (C) V ∝ T1/2

T decreases linearly with height 

∴ Parabolic curve 

Sol 6: (C) 

  

T = V2M = 100 N; T = mg sin θ

Mg = 100 N ; 100 = m × 10 × 1
2

M = 10 kg, m = 20 kg 
m
M

 = 2

Sol 7: (C) y = 5(1 – cos(200πt + 10πz))

Amplitude = 5 cm 

Sol 8: (B) y = A sin(kx + wt)

A sin 4k
3

 π
+ 

 
 = A

2  
⇒

 
4k + 

3
π  =

6
π

⇒ K = 2π
λ

 = 
24
π

λ = 48 cm ; λ = 0.48 m

Sol 9: (D) T = 0.04 sec; ω = 2
T
π  = 2

0.04
π  = 50π

V = 300 m/s, k = 
V
ω  = 50

300
π  = 

6
π

Δφ = 
6
π  × 6 = π
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Sol 10: (A) y =
2 2

3
a (x – 3t)+

;  y = 
2 2

3
a (x vt)+ +

 

V = – 3 m/s 

Sol 11: (A) Phase change of π due to reflection from 
rigid wall. 

Sol 12: (C) V1 → speed in light string 

V2 → speed in heavy string 

V2 = 1V
2

Ar = 2

1 2

V
V V+

A = 

1
2

11
2

+
 6 mm = 2 mm 

y= (2mm) sin (kx – wt)

y = (2mm) sin(40x – 5t)

Sol 13: (B) For a given string Power ∝ A2

Power reflected = 
2

1
3

 
 
 

P = P/9

Power transmitted = 8P
9

∴ 89% power transmitted 

Sol 14: (D) By superposition 

Sol 15: (B)  = 1m f = 300 Hz
3
2

λ = ; f = v


; λ = 2
3
 ; v = fλ

v = 300 × 2
3

× 1 = 200 m/s

Sol 16: (A) y1 = 5 sin (ωt – kx)

y2 = – 5 cos(ωt – kx – 150°)

y1+ y2 = 5(sin(ωt – kx) – sin(ωt – kx – 60°))

= 10 (sin30° cos(ωt – kx – 30°))

= 5 cos(ωt – kx – 30°)

Sol 17: (B) y1 = A cos(kx – ωt)

y2 = A cos(kx + ωt + φ)

y1+y2=2A cos 20 kx
2

 φ
+ 

 
cos t

2
 φ
ω + 
 

cos
2
φ  = 0 ; φ = π

 y2 = – A cos (kx + ωt)

Sol 18: (B) (n + 1) = L
2d

L = (n + 1)d

Sol 19: (B) 

T = Y αΔTA

f ∝ v


; v


= 
2

1
2

T
µ

f ∝ 
2

1
r

1/2
T 

 µ 

∝ 
2

1


1/2

Ay T
m
A

 
 α∆
 
  
 

; ∝
2

1


1/2
y T α∆

 ρ 

Sol 20: (C) y = A sin 20 x
3

 
π 

 
cos(1000 πt)

sin 20 x
3

 π
 
 

 = 1
2

20x
3

 = 
6
π ; x = 1

40
m 

Distance = 2x = 1
20

m = 5 cm

Sol 21: (B)  = 0.4 m, m = 10–2 kg, T = 1.6 N 

μ = 
–210

0.4
 = 2.5 × 10–2 kg/m

f = 1
2 0.4× –2

1.6
2.5 10×

= 1
0.8

× 4
0.5

= 10 Hz

T = 0.1 s 
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Sol 22: (C) sin φ = sin(π – φ)

Sol 23: (B) Refer theory y = A
r

 sin(kr – ωt)

Sol 24: (C) At x = 4

⇒ y = (2mm) sin 8 – 100 t
3

 π
π + π 

 

⇒ y = (2mm) sin – 100 t
3

 π
π 

 

3
π  = 100πt ; t = 1

300
sec 

Sol 25: (B) Vpmax = 2πfA

Vwave = 2 f
2 /
π
π λ

 = fλ

2πfA = 4fλ

λ = A
2
π

Previous Years’ Questions

Sol 1: (B)	We	velocity	v	=	
coefficient of t
coefficient of x

=	 2 f
2 /
π
π λ

	

=	λf

Maximum	particle	velocity	vpm	=	ωA	=	2πfy0

Given,	Vpm	=	4V	 or	 2πf	y0	=	4λf

∴λ =	 0y
2
π

Sol 2:	(C) For	a	stationary	wave	to	form,	two	indentical	
waves	should	travel	in	opposite	direction.	Further	at	x	
=	0,	resultant	y	(from	both	the	waves)	should	be	zero	
at	all	instant.

Sol 3: (B) The	given	equation	can	be	written	as	

y = 2(2cos2
t
2 )sin (1000 t)

y = 2 (cos t + 1)sin (1000 t)

 = 2cos t sin 1000 t + 2 sin (1000 t)

 = sin(1001t) + sin(999t) + 2sin(1000t)

i.e., the given expression is a result of superposition 
of three independent harmonic motions of angular 
frequencies 999, 1000 and 1001 rad/s.

Sol 4: (A) From	Hooke’s	law	

Tension	 in	 a	 string	 (T)	∝	 extension	 (x)	 and	 speed	 of	

sound	in	string	v	=	 T / µ 	or	v	∝	 T

Therefore,	v	∝	 x

x is increased to 1.5 times i.e., speed will increase by 

1.5  times of 1.22 times. Therefore speed of sound in 
new position will be 1.22 v.

Sol 5: (A) This	 is	 an	 equation	 of	 a	 travelling	 wave	
in	 which	 particles	 of	 the	 medium	 are	 in	 SHM	 and	
maximum	particle	velocity	in	SHM	is	Aω,	where	A	is	the	
amplitude	and	ω	the	angular	velocity.

Sol 6: (D) Fundamental	frequency	is	given	by	

V = 1 T
2 µ

 (with both the ends fixed)

∴Fundamental	frequency

V	∝ 1

µ

(for	same	tension	in	both	strings)

Where	μ	=	mass	per	unit	length	of	wire

=	ρ.A	(ρ	=	density)

=ρ(πr2)	or	 µ 	∝	r	∴	v	∝	 1
r

∴ 1

2

V
V
	=	 2 2

1 1

r
r

  
    
  





	=	 r 2L
2r L

  
  
  

	=	1	

Sol 7: (C) Energy	E	∝	(amplitude)2	(frequency)2	

Amplitude	(A)	is	same	in	both	the	cases,	but	frequency	
2ω	in	the	second	case	is	two	times	the	frequency	(ω)	in	
the	first	case	

Therefore, E2 = 4E1

Sol 8: (B) After	two	seconds	both	the	pulses	will	move	
4	 cm	 towards	 each	 other.	 So	 by	 their	 superposition,	
the	resultant	displacement	at	every	point	will	be	zero.	
Therefore	 total	 energy	 will	 be	 purely	 in	 the	 form	 of	
kinetic.	 Half	 of	 the	 particles	 will	 be	moving	 upwards	
and	half	downwards.
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Sol 9: (A) Let	f0	=	frequency	of	tuning	fork

Then,	f0	=	
9g5

2 µ

	=	 Mg3
2 µ

(μ	=	mass	per	unit	length	of	wire)

Solving	this,	we	get	M	=	25	kg

In	 the	 first	 case,	 frequency	 corresponds	 to	 fifth	
harmonic	while	 in	 the	 second	 case	 it	 corresponds	 to	
third	harmonic.

Sol 10: (A) f	∝	v	∝	 T

	 fAB	=	2fCD

∴TAB	=	4TCD	 	 	…(i)

Further	Stp	=	0

∴TAB(x)	=	TCD	(l	–	x)	or	4x	=	l	–	x

(TAB	=	4TCD)

or	x	=	l/5

Sol 11: (B) The fundamental mode in a pipe closed at 
one end and the second harmonic in a string are shown 
in figure. It can be seen that λ = λ =p s s/ 4 Lp and L .

For the pipe closed at one end, 

ν ν
= = = =
λ

p p
p

p p

320v 100 Hz
4L 4(0.8)

 

Where νp =320m/s is the velocity of sound in the pipe 

and Lp=0.8m is length of the pipe. For string of mass m, 

length Ls and having tension T, velocity of the string is 

given by,

ν
= = = = =
λ

s S
s

s s s

T / (m / L ) T 50 10v
L mL m(0.5 m

At resonance νp = νs  substitute νp  and νs  from first 
and second equation to get m= 0.01kg=10 gram.

Sol 12: (A, C)	options	satisfy	the	condition;
2

2

y
x
∂

∂
 = (constant) 

2

2

y
t

∂

∂

Sol 13: (B, C) ω	=	15π,	k	=	10	p

Speed	of	wave,	v	=	
k
ω 	=	1.5	m/s

Wavelength	of	wave	λ	=	 2
k
π 	=	 2

10
π
π
	=	0.2	m

10π	x	and	15πt	have	the	same	sign.	Therefore,	wave	is	
traveling	in	negative	x-direction.

Sol 14: (D) T1	>	T2
∴v1	>	v2
or	f1	>	f2
and	f1	–	f2	=	6	Hz

Now,	 if	 T1	 is	 increased,	 f1	 will	 increase	 or	 f1	 –	 f2	 will	
increase.	Therefore,	(d)	option	is	wrong.

If T1 is decreased, f1 will decrease and it may be possible 
that now f2 – f1 become 6 Hz. Therefore, (C) option is 
correct. Similarly, when T2 is increased, f2 will increase 
and again f2-f1 may become equal to 6 Hz. So, (B) is also 
correct. But (A) is wrong.

Sol 15: (A, B, C, D) It	is	given	that	

y(x,	t)	=	0.02cos	(50πt	+	π/2)cos	(10πx)

≅	A	cos	(ωt	+	π/2)	cos	kx

Node occurs when kx = 
2
π , 3

2
π etc.

10πx	=	
2
π ,	 3

2
π

⇒ x	=	0.05m,	0.15	m	option	(a)

Antinode	occurs	when	kx	=	π,	2π,	3π	etc.

10πx	=	π,	2π,	3π	etc.

⇒ x	=	0.1m,	0.2,	0.3	m	option	(b)

Speed	of	the	wave	is	given	by,

v = 
k
ω  = 50

10
π
π

 = 5 m/s  option (c)

Wavelength is given by,

λ	=	 2
k
π 	=	 2

10
π
π
	=	 1

5
 
 
 

m	=	0.2	m	

Sol 16: (B, C) Since,	 the	 edges	 are	 clamped,	
displacement	of	the	edges	u(x,	y)	=	0	for	
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Line,	OA	i.e.,	y	=	0;	0	≤	x	≤	L

AB	i.e.,	x	=	L;	0	≤	y	≤	L

BC	i.e.,	y	=	L;	0	≤	x	≤	L	

OC	i.e.,	x	=	0;	0	≤	y	≤	L

The	above	conditions	are	satisfied	only	in	alternatives	
(B)	and	(C).

Note	that	u	(x,	y)	=	0,	for	all	four	values	eg,	in	alternative	
(D),	u(x,	y)	=	0	for	y	=	0,	y	=	L	but	it	is	not	zero	for	x	=	
0	or	x	=	L.	Similarly,	in	option	(A)	u	(x,	y)	=	0	at	x	=	L,	y	
=	L	but	it	is	not	zero	for	x	=	0	or	y	=	0	while	in	option	
(B)	and	(C),	u	(x,	y)	=	0	for	x	=	0,	y	=	0,	x	=	L	and	y	=	L.

Sol 17: (A) Maximum	speed	of	any	point	on	the	string	
=	aω =	a(2πf)

∴=	 v
10
	=	10

10
	=	1	(Given:	v	=	10	m/s)

∴2πaf	=	1	;	 f	=	 1
2 aπ

a = 10–3 m (Given)

∴f	=	
–3

1
2 10π×

	=	
310

2π
	Hz

Speed	of	wave	v	=	f	l

∴(10	m/s)	=	
3

–110 S
2

 
λ  π 
;	λ	=	2π	×	10–2m

Sol 18: (A, B) In case of sound wave, y can represent 
pressure and displacement, while in case of an 
electromagnetic wave it represents electric and 
magnetic fields.

Note: In general, y is general physical quantity which is 
made to oscillate at one place and these oscillations are 
propagated to other places also.

Sol 19: (A) Standing waves can be produced only when 
two similar type of waves (same frequency and speed, 
but amplitude may be different) travel in oposite 
directions.

Sol 20: (A) y = 0.005 cos (αx − βt)

Comparing the equation with the standard form,

x ty Acos 2
T

  
= − π  λ  

2π/λ = α and 2π/T = β

α = 2π/0.08 = 25.00 π

β = π

Sol 21: (D) 
2 2

2
2 2

(2 / 0.004)T v 0.04 6.25N
k (2 / 0.50)
ω π

= µ = µ = =
π

Sol 22: (A) 2
(x,t)

by e ( ax bt) V
a

−= + =

Wave moving in − ve x –direction.

Sol 23: (D) 1

2

0

2

φ =

π
φ =

;	

1

2

0

2

φ =

π
φ =

Sol 24: (C) Energy of simple harmonic oscillator is 
constant.

2 2 2 2
1 2

2
1
2
2

1

2

1 1M A (m M) A
2 2

A M m
MA

A M m
A M

⇒ ω = + ω

+
=

+
∴ =

2 2 2 2
1 2

2
1
2
2

1

2

1 1M A (m M) A
2 2

A M m
MA

A M m
A M

⇒ ω = + ω

+
=

+
∴ =

Sol 25: (B) v 1 T 1 Tf
2 2 2 Ad

= = =
µ  

Also, yT T Y 1Y f
A A 2 d

∆∆
= ⇒ = ⇒ =

∆
 

   

3 3

11 2

1.5m, 0.01,d 7.7 10 kg / m

y 2.2 10 N / m

∆
= = = ×

= ×







After solving

32 10f Hz
7 3

f 178.2Hz

= ×

≈

32 10f Hz
7 3

f 178.2Hz

= ×

≈

Sol 26: (B) Given L 0.1
L 20
∆

=  
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2 2

90 1T sec. T sec.
100 100

T 1
T 90

1 Lg
4 T

g L 2 T100% 100 100
g L T

g 0.1 1100% 100 2 100 2.72%
g 20 90

= ∆ =

∆
=

 
=  

π 
∆ ∆ ∆

⇒ × = × + ×

   ∆
× = + =   

   

2 2

90 1T sec. T sec.
100 100

T 1
T 90

1 Lg
4 T

g L 2 T100% 100 100
g L T

g 0.1 1100% 100 2 100 2.72%
g 20 90

= ∆ =

∆
=

 
=  

π 
∆ ∆ ∆

⇒ × = × + ×

   ∆
× = + =   

   

2 2

90 1T sec. T sec.
100 100

T 1
T 90

1 Lg
4 T

g L 2 T100% 100 100
g L T

g 0.1 1100% 100 2 100 2.72%
g 20 90

= ∆ =

∆
=

 
=  

π 
∆ ∆ ∆

⇒ × = × + ×

   ∆
× = + =   

   

2 2

90 1T sec. T sec.
100 100

T 1
T 90

1 Lg
4 T

g L 2 T100% 100 100
g L T

g 0.1 1100% 100 2 100 2.72%
g 20 90

= ∆ =

∆
=

 
=  

π 
∆ ∆ ∆

⇒ × = × + ×

   ∆
× = + =   

   

2 2

90 1T sec. T sec.
100 100

T 1
T 90

1 Lg
4 T

g L 2 T100% 100 100
g L T

g 0.1 1100% 100 2 100 2.72%
g 20 90

= ∆ =

∆
=

 
=  

π 
∆ ∆ ∆

⇒ × = × + ×

   ∆
× = + =   

   

So, nearest option is 3%.

Sol 27: (A)

M

T 2
g

MgT 2
g AY

= π

+ ∆
= π ∆ =



 



M

T 2
g

MgT 2
g AY

= π

+ ∆
= π ∆ =



 



MT
T

+ ∆
=

 



2
M

2
M

2
M

T
1

T

T Mg1
T AY

T1 A1
y T Mg

  ∆
= +  

 

 
= +  

 
   = −     





2
M

2
M

2
M

T
1

T

T Mg1
T AY

T1 A1
y T Mg

  ∆
= +  

 

 
= +  

 
   = −     





2
M

2
M

2
M

T
1

T

T Mg1
T AY

T1 A1
y T Mg

  ∆
= +  

 

 
= +  

 
   = −     





Sol 28: (B) K.E. is maximum at mean position, whereas 
P.E. is minimum.

At extreme position, K.E. is minimum and P.E. is 
maximum.

Sol 29: (B) Let mass per unit length be λ

X = �

X = 0

X

2

2

TT gx v gx

v gx
gvdva

dx 2
g1 4t t 2 2 sec

2 2 g

= λ = =
λ

=

= =

= ⇒ = =




2

2

TT gx v gx

v gx
gvdva

dx 2
g1 4t t 2 2 sec

2 2 g

= λ = =
λ

=

= =

= ⇒ = =




2

2

TT gx v gx

v gx
gvdva

dx 2
g1 4t t 2 2 sec

2 2 g

= λ = =
λ

=

= =

= ⇒ = =




Sol 30: (C) 

2
2

new

2Av A
3

Av 5
3

v 3v 5A

 
= ω −  

 
ω

=

= = ω

2
2

new

2Av A
3

Av 5
3

v 3v 5A

 
= ω −  

 
ω

=

= = ω

2
2

new

2Av A
3

Av 5
3

v 3v 5A

 
= ω −  

 
ω

=

= = ω

So the new amplitude is given by
2

2 2 2
new new new

new

2Av A x 5A A
3

7AA
3

 
= ω − ⇒ ω = ω −  

 

=

JEE Advanced/Boards

Exercise 1

Sol 1: (a) D, E, F

(b) A, B, H

(c) C, G

(d) A, E 

Sol 2: (a) λ = 4 m 

f = 1
T

 = 0.25 Hz

V = fλ = 1 ms–1 in –ve n-direction 

(b) Vmax. = 0.5 π × 3 mm s–1 = 1.5π mm s–1
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amax. = 0.75π2 mm s–2

(c) y = (3 mm) sin x – t
2 2

 π π
+ π 

 

= (3 mm) sin (x – t 2)
2

 π
+ 

 

t

dy
dx

 = 3
2

 π
 
 

cos 
2
π  (x –t + 2)

Slope at x = 2m & t = 4 sec

= 3
2
π cos 

2
π  (2 – 4 + 2) = 3

2
π

Sol 3: V ∝ T , V’ = 1.5 V

Sol 4: μ = 5 ×10–3 kg/m ; V=
–3

450
5 10×

=300 m/s

T = 450 N

A ≤ 
5
λ

Pavg max. = 1
2

 
2 2A F
V

ω

= 1
2

× 4π2 
2 2f
25
λ × 450

300

= 
22

25
π × 450 × 

2(300)
300

= 106.59 kW 

Sol 5: 

 Vp = – slope × Vwave = – (–1) × – 2 cm/s

Vp = – 2 cm/s 

–ve sign represents particle moving down 

Sol 6: μA = 2 kg/mμB = 8 kg/m

T = 200 N 

VA=
200

2
=10m/s VB=

200
8

=5m/s 

Ar = – B

A B

V
V V+

A; AT = A

A B

V
V V+

A

Ar = – 1
3

cm; AT = 2
3

cm

Sol 7: V1 = 5 m/s 

V2 = 2.5 m/s 

AT = 5
7.5

A = 2
3

 × 0.3 = 0.2 cm 

Sol 8:  = 0.4 m ; m = 3.2 g ; A = 1 mm2

m = 3.2
0.4

× 10–3 = 8 × 10–3

100
64

 = 1
2 0.4×

 
–3

T
8 10×

2
800
64

 
 
 

× 8 × 10–3 = T 

410
8 8×

 × 5 × 10–3 = T 

T = 1.25 N 

Y = T
A∆




 = 
–6 –4

1.25 0.4
10 5 10

×

× ×
= 0.5

5
× 1010 Nm–2

Y = 109 Nm–2

Sol 9: μ = 0.2 kg/m

L = 0.6 m 

T = 80 N 

f = 3
2 0.6×

 80
0.2

 = 3
1.2

× 20 = 50 Hz

Vmax = 2πfA

= 2π × 50 × 0.5 cms–1 = 50π cms–1

Sol 10: T = 200 N 

k = 
2
π

λ = 2
k
π  = 2

/ 2
π

π
 = 4 m 

(a) Second harmonic 

∴  = λ = 4 m 

(b) V = 12
/ 2
π

π
 = 24 ms–1

(c) μ = 
2

T
V

 = 200
24 24×

mass = μ ×  = 200
24 24×

× 4 = 1.39 kg

(d) f = 3
8

 × 24 = 9 Hz 
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T = 1
f

; T = 1
9

 sec 

Sol 11: T'
T

 f= 200
199

T'
T

 = 
2

200
199
 
 
 

T’ = 1.01007

ΔT = T’ – T = 0.01007

% change in tension = 1.007%

Sol 12: λ1 = 36 cm λ2 = 32 cm 

λ1 = 2
n
  = 36; λ2 = 2

(n 1)+
  = 32

⇒ n 1
n
+  = 36

32
 = 

8
9

⇒ 8n + 8 = 9n

⇒ n = 8

 = 36 8
2
×  = 144 cm 

 = 1.44 m 

(b) f0 = 1
2 1.44×

 
–3

10
4 10×

⇒ f0 = 50
2 1.44×

f0 = 17.36 Hz

Sol 13: V = RT
M
γ

RT
M

 = c

3

γ = 1 + 2
6

 = 4
3

V = γ × c

3
= 4

3
 × c

3

V = 2
3

c

Exercise 2

Single Correct Choice Type

Sol 1: (B) y = 20 sin 2π(100t) cos(2π(0.02x))

Amax. = 20 units 

2π
λ

 = 2π(0.02) 

λ = 50 units 

Maximum loop length = 
2
λ  = 50

2
 = 25 units 

Sol 2: (D) M = 0.01 kg m–1 

T = 100N; f1 =
1
2

100
0.01

 = 50Hz

f1 = 1
2

T
µ

 ; f2 = 2f1 ; f3 = 3f1

n1 = 1f
2

 ; n2 = 13f
2

 ; n3 = 15f
2

 

Sol 3: (D) ν = n
2

T
µ

ν1 = ν2

6 × 36  = 4 × T

T = 
2

2

36
4

 = 81 N 

Sol 4: (B) y = cos (70x – 500 t)

Transverse wave as particle oscillate perpendicular to 
the direction of motion 

V = 500
70

 = 50
7

 m/s 

f = 500 = 250
π

λ = 2
70
π m = 20

7
π cm 

Sol 5: (A) ( )y Acos kx t= − ω  

For this the maximum occurs at x = 0 and at t = 0

For getting the maximum at t = 5 sec

kx 5 x 5 / k= ω ⇒ = ω

x = 5 v = 200 cm = 2m
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Sol 6: (C) The speed of the transverse is given as 

TV =
µ

 

Here, T is tension and is Mass per unit length. Now 
putting values in above equation, we get

1000V 8 64  5 32 m / s
100

= × × × =

Sol 7: (A) 1
AB 3

T 6.4 10 80ms
10 10

−
−

×
ν = ⇒ ν = =

µ ×
 

1
CD 3

3.2 10 63ms
8 10

−
−

×
ν = =

×
 

Sol 8: (B) 1
3

T 20 100ms
2 10

−
−

ν = = =
µ ×

 

14.5 2gm
2.25

−µ = =

⇒ 21s t gt
2

= µ −

⇒ 2 = 100t-5t2

⇒ t2 - 20t + 0.4 = 0 

⇒ 20 400 1.6t 0.02s
2

+ ± −
= =  

Assertion Reasoning Type

Sol 9: (D) Potential energy is maximum at the extremes 
and particle oscillate in SHM.

Sol 10: (A) There cannot be a perpendicular force to 
a string.

Sol 11: (C, D)  

Comprehension Type

Sol 12: (A, D) Upward 

a, g , h

Sol 13: (C) Downward

c, d, e 

Sol 14: (B, C) Stationary 

b, f 

Sol 15: (C, D) Maximum velocity 

o, d, h

Previous Years’ Questions

Sol 1: (A) The	 diagramatic	 representation	 of	 the	
given	problem	 is	 shown	 in	 figures.	 The	expression	of	

fundamental	frequency	is	V	=	 1 T
2 µ

In	air	T	=	mg	(Vρ)g

∴v	=	 A g1
2

ρ
µ 	

…(i)

When the object is half immersed in water 

T’	=	mg	–	upthrust	=	Vρg	–	 w
V g
2

 
ρ 

 
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=	 V g
2

 
 
 

(2ρ	–	ρw)

The new fundamental frequency is 

V’	=	 1
2
	×	 T'

µ
	=	 w(Vg / 2)(2 – )1

2
ρ ρ

µ

	 …(ii)

∴
v '
v
	=	 w2 –

2

 ρ ρ
 
 ρ 

or v’ =
1/2

w2 –
v

2
 ρ ρ
  ρ 

= 300
1/2

2 – 1
2

 ρ
 ρ 

 Hz

Sol 2: (B) Mass	per	unit	length	of	the	string.

m = 
–210

0.4
 = 2.5 × 10–2 kg/m

∴Velocity	of	wave	in	the	string,

V	=	 T
m
	=	

–2

1.6
2.5 10×

v = 8 m/s

For constructive interference between successive pulses 

Δtmin	=	
2
v
 	=	 (2)(0.4)

8
	=	0.10s

(After	two	reflections,	the	wave	pulse	is	in	same	phase	
as	 it	 was	 produced,	 since	 in	 one	 reflection	 its	 phase	
changes	 by	 π,	 and	 if	 at	 this	 moment	 next	 identical	
pulse	 is	 produced,	 then	 constructive	 interference	will	
be	obtained.)

Sol 3: (A) Particle	velocity	vp	=	–	v	(slope	of	y-x	graph)

Here,	 v	 =	 +	 ve,	 as	 the	 wave	 is	 traveling	 in	 positive	
x-direction.

Slope	at	P	is	negative.

∴ Velocity	of	particle	is	in	positive	y	(or ĵ )	direction.

Sol 4: (A) With	 increase	 in	 tension,	 frequency	 of	
vibrating	string	will	increase.	Since	number	of	beats	are	
decreasing.	Therefore,	frequency	of	vibrating	string	or	
third	harmonic	frequency	of	closed	pipe	should	be	less	
that	the	frequency	tuning	fork	by	4.

∴Frequency	of	tuning	fork

=	Third	harmonic	frequency	of	closed	pipe	+4

=	 v3
4

 
 
 

	+	4	=	 3403
4 0.75

 
 × 

	+	4	=	344	Hz

Sol 5: (A) In	one	second	number	of	maximas	is	called	
the	beat	frequency.	Hence,

fb = f1 – f2 = 100
2
π
π

 – 92
2
π
π

 = 4Hz

Sol 6: (A) Speed	of	wave	v	=	
k
ω

or v = 100
0.5

π
π

 or 92
0.46

π
π

 = 200 m/s

Sol 7:	(C) At	x	=	0,	y	=y1	+	y2
 =	2A	cos	96πt	cos	4πt

Frequency	of	cos	(96	πt)	function	is	48	Hz	and	that	of	
cos	(4πt)	function	is	2	Hz.

In	one	second,	cos	function	becomes	zero	at	2f	times,	
where	 f	 is	 the	 frequency.	 Therefore,	 first	 function	will	
become	 zero	 at	 96	 times	 and	 the	 second	at	 4	 times.	
But	second	will	not	overlap	with	first.	Hence,	net	y	will	
become	zero	100	times	in	1	s.	

Sol 8: (A, B, C, D) y	=	10–4	sin	(60t	+	2x)

A	=	10–4	m,	ω	=	60	rad/s,	k	=	2m–1

Speed of wave, v = 
k
ω  = 30 m/s

Frequency, f = 
2
ω
π

 = 30
π

Hz.

Wavelength	λ	=	 2
k
π 	=	πm

Further,	 60	 t	 and	 2x	 are	 of	 same	 sign.	 Therefore,	 the	
wave	should	travel	in	negative	x-direction.

Sol 9: (A) For	a	plane	wave	 intesity	 (energy	 crossing	
per	unit	area	per	unit	time)	is	constant	at	all	points.

But for a spherical wave, intensity at a distance r from 
a point source of power P (energy transmitted per unit 
time) is given by 

I	=	
2

P
4 rπ

	or	I	∝ 
2

1
r
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Note:	for	a	line	source	I	∝	 1
r

Because,	I	=	 P
rπ 

Sol 10: (A) The	shape	of	pulse	at	x	=	0	t	=	0	would	be	
as	shown,	in	figure(a).

Y (0, 0) = 0.8
5

 = 0.16m 

From the figure it is clear that ymax = 0.16 m 

Pulse will be symmetric (Symmetry is checked about 
ymax) if at t = 0 

y(x) = y(–x)

From the given equation

And	
2

2

0.8y(x)
16x 5

0.8y(–x)
16x 5


= +


=
+ 

	at	t	=	0

or y (x) = y (– x)

Therefore, pulse is symmetric.

Speed of pulse, at t = 1s, and x = – 1.25 m 

(a) (b)

Value of y is again 0.16 m, i.e., pulse has traveled a 
distance of 1.25 m in 1 s in negative x-direction or we 
can say that the speed of pulse is 1.25 m/s and it is 
traveling in negative x-direction. Therefore, it will travel 
a distance of 2.5 m in 2 s. The above statement can be 
better understood from figure (b)

Sol 11: Tension	due	to	thermal	stresses,

T	=	YA	α	.	Δθ

v	=	 T
µ

Hence,	μ	=	mass	per	unit	length	=	ρA

∴v	=	 T
Aρ
	=	 YA .

A
α ∆θ
ρ

	=	 Yα∆θ
ρ

Substituting the values we have,

v	=
11 –5

3

1.3 10 1.7 10 20
9 10

× × × ×

×
=70.1	m/s	

Sol 12: By	 decreasing	 the	 tension	 in	 the	 string	 beat	
frequency	 is	decreasing,	 it	means	 frequency	of	 string	
was	greater	than	frequency	of	pipe.	Thus,	

First overtone frequency of string–Fundamental 
frequence of closed pipe = 8

∴ 1

1

v
2

2
 
  
 

	–	 2

2

v
4

 
  
 

	=	8

or	v1	=	
2

1
2

v
8

4
 

+ 
  





Substituting the value, we have 

v1	=	
3200.25 8

4 0.4
 

+ × 
	=	52	m/s

Now,	v1	=	
T
µ
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 ∴T	= 2
1vµ = 2

1
m v
 
 
 

=
–3

22.5 10 (52)
0.25

 ×
  
 

=27.	04	N

Sol 13: v	=	 T / µ

top

bottom

v

v
= top

bottom

T

T
= 6 2

2
+ =	2		 …(i)

Frequency will remain unchanged. Therefore, equation 

(i) can be written as, top

bottom

f

f

λ

λ
 = 2 

Or	λtop	=	2	(λbottom)	=	2	×	0.06	=	0.12	m

Sol 14: The	temperature	stress	is	σ	=	YaΔq

or	tension	in	the	steel	wire	T	=	σA	=	YAαΔq

Substituting	the	values,	we	have	

T	=	(2	×	1011)	(10–6)	(1.21	×	10–5)	(20)	=	48.	4	N

Speed of transverse wave on the wire, v = T
µ

Hence,	μ	=	mass	per	unit	length	of	wire	=	0.1	kg/m

∴v	=	 48.4
0.1

	=	22	m/s

Fundamental	frequency	f0	=
v
2
= 22

2 1×
	= 11 Hz

Sol 15: 

2 2
eq 1 2 1 2

2 2
eq

eq

A A A 2A A cos

A 4 3 2(4)(3)cos
2

A 5

= + + φ

π
= + +

=

Sol 16: (B, C) y = 0.01 m sin (20 π x) cos 200 π t

No. of nodes is 6

220

1 m 0.1m
10

π
π =

λ

∴λ = =

Length of the spring 10.5 0.25
2

= × =

Mid point is the antinode

Frequency at this mode is 200f 100Hz
2

π
= =

π

∴ Fundamental frequency 100 20Hz
5

= =

Sol 17: (A, C, D) Taking y(t) = A f(x) g(t) & Applying the 
conditions:

1; here x = 3m is antinode & x = 0 is node

2; possible frequencies are odd multiple of fundamental 
frequency.

where, fundamental
v 25Hz
4 3

ν = =


The correct options are A, C, D.

Sol 18:
P

0 C (ice)
o

400 C
o

100 C (steam)
o

(10 - )x��x

vapourice

ice vapour

dmdm
dt dt

400kS 300kS
xL (100 )xL

9

=

=
λ − λ

λ =

Sol 19: A → p, t; B →  p, s; C →  q, s; D → q, r


