JEE 2023

Electric Charges and Field

- 1. A cylinder of radius *R* and length *L* is placed in a uniform electric field *E* parallel to the cylinder axis. The total flux for the surface of the cylinder is given by
 - (A) $2\pi R^2 E$
 - (B) $\pi R^2 / E$
 - (C) $(\pi R^2 \pi R^2) / E$
 - (D) Zero
- 2. An electric charge q is placed at the centre of a cube of side α . The electric flux through one of its faces will be

(A)
$$\frac{q}{6\varepsilon_0}$$
 (B) $\frac{q}{\varepsilon_0 a^2}$
(C) $\frac{q}{4\pi\varepsilon_0 a^2}$ (D) $\frac{q}{\varepsilon_0}$

3. A cube of side *l* is placed in a uniform field *E*, where $E = E\hat{i}$. The net electric flux through the cube is

(A)	Zero	(B) $l^2 E$
(C)	$4l^2E$	(D) $6l^2 E$

4. Eight dipoles of charges of magnitude *e* are placed inside a cube. The total electric flux coming out of the cube will be

(A)	$\frac{8e}{\varepsilon_0}$	(B)	$\frac{16e}{\varepsilon_0}$
(C)	$\frac{e}{\varepsilon_0}$	(D)	Zero

5. A point charge +q is placed at the centre of a cube of side *L*. The electric flux emerging from the cube is

(A)
$$\frac{q}{\varepsilon_0}$$
 (B) Zero
(C) $\frac{6qL^2}{\varepsilon_0}$ (D) $\frac{q}{6L^2\varepsilon_0}$

6. Electric charge is uniformly distributed along a long straight wire of radius 1mm. The charge per cm length of the wire is Q coulomb. Another cylindrical surface of radius 50 cm and length 1m symmetrically encloses the wire as shown in the figure. The total electric flux passing through the cylindrical surface is

7. q_1, q_2, q_3 and q_4 are point charges located at points as shown in the figure and S is a spherical Gaussian surface of radius R. Which of the following is true according to the Gauss's law

8. A long string with charge per unit length λ passes through a cube of length ℓ . The maximum flux through the cube will be

(A)
$$\frac{\lambda \ell}{\varepsilon_0}$$
 (B) $\frac{\sqrt{2}\lambda \ell}{\varepsilon_0}$
(C) $\frac{\sqrt{3}\lambda \ell}{\varepsilon_0}$ (D) $\frac{2\lambda \ell}{\varepsilon_0}$

9. If ϕ_1 is the electric flux entering in a closed surface and ϕ_2 is the electric flux leaving the same closed surface, then the electric charge inside the surface will be

(A)	$(\phi_1 + \phi_2)\varepsilon_0$	(B)	$(\phi_2 - \phi_1)\epsilon_0$
(C)	$(\phi_1 + \phi_2)/\epsilon_0$	(D)	$(\phi_2 - \phi_1)/\epsilon_0$

10. A uniform electric field $\vec{E} = a\hat{i} + b\hat{j}$, intersects a surface of area A. What is the flux through this area if the surface lies in the *yz* plane (A) aA (B) 0

(C) bA (D) $A\sqrt{a^2+b^2}$

Answer Key

- 1. **(D**)
- (A) 2.
- 3. (A)
- **(D**) 4.
- (A) 5.
- 6.
- (B) (B) 7.
- (C) (B) 8.
- 9.
- 10. (A)

Hints and Solutions

1. (D)

Flux through surface $A\phi_A = E \times \pi R^2$ and $\phi_B = -E \times \pi R^2$

Flux through curved surface

C = $\int \vec{E} \cdot d\vec{s} = \int E ds \cos 90^\circ = 0$ ∴ Total flux through cylinder = $\phi_A + \phi_B + \phi_C = 0$

2. (A)

By Gauss's theorem. Total flux $\varphi = \frac{q}{\varepsilon_0}$

So the flux through one face = $\frac{q}{6\varepsilon_0}$

3. (A)

As there is no charge residing inside the cube, hence net flux is zero.

4. (D)

 $\varphi = \frac{\Sigma q}{\varepsilon_0} = 0$ i.e., net charge on dipole is zero.

5. (A)

Electric flux coming out through a closed surface is q/ϵ_0 .

6. (B)

Charge enclosed by cylindrical surface (length 100 cm) is $Q_{enc.} = 100 \text{ Q}$. By applying Gauss's law

$$\varphi = \frac{1}{\varepsilon_0} \left(Q_{\text{enc.}} \right) = \frac{1}{\varepsilon_0} \left(100 \text{ Q} \right)$$

By using
$$\int \vec{E} \cdot \vec{dA} = \frac{1}{\varepsilon_0} (Q_{enc})$$

9. (B)

 $\phi_2 - \phi_1 = \frac{q}{\varepsilon_0}$ (sign convention of flux) $q = (\phi_2 - \phi_1)\varepsilon_0$

10. (A)

$$\phi = \vec{E}.\vec{A}$$
$$= (a\hat{i} + b\hat{j}).A\hat{i}$$
$$= aA$$