Matrices

1. Define a Matrix.

Ans: A Matrix is an ordered rectangular array of numbers or functions.

2. Define a square matrix.

Ans: A matrix in which number of rows equal to number of columns is called a square matrix.

3. Define a diagonal matrix.

(MQP 1)(J 14)

Ans: A square matrix *A* is said to be Diagonal matrix, if all the elements except the diagonals are zeros.

4. Define a scalar matrix.

(MQP 5)(M 14)(J 15)(J 16)(M 19)(A 21)

Ans: A diagonal matrix in which all the diagonal elements are same is called a Scalar matrix.

5. Define Identity matrix.

Ans: A diagonal matrix in which all the diagonal elements are one is called Identity matrix.

6. Define Symmetric matrix.

Ans: A square matrix A is said to be Symmetric if A' = A.

7. Define Skew Symmetric matrix.

Ans: A square matrix A is said to be Skew Symmetric if A' = -A.

8. Write a 2×2 matrix which is both symmetric and skew symmetric.

Ans:	0	0	
	0	0].	

9. Define a Matrix which is both symmetric and skew symmetric.

Ans: Null Matrix.

```
10. If a matrix has 5 elements, what are the possible orders it can have? (J 18)(M 20)
Ans: The possible orders are: 1 \times 5 and 5 \times 1.
```

11. If a matrix has 8 elements, what are the possible orders it can have?

Ans: The possible orders are: 1×8 , 2×4 , 4×2 and 8×1 .

12. Construct a 2×2 matrix $A = [a_{ij}]$, whose elements are given by $a_{ij} = 2i + j$. (MQP 2)

Ans: Given, $a_{ij} = 2i + j$

 $\therefore a_{11} = 2(1) + 1 = 3 \qquad a_{12} = 2(1) + 2 = 4 \qquad a_{21} = 2(2) + 1 = 5 \qquad a_{22} = 2(2) + 2 = 6$ $A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix}.$

13. Construct a 2×2 matrix $A = [a_{ij}]$, whose elements are given by $a_{ij} = \frac{i}{i}$.

(MQP 3) (M 17) (J 17) (M 18)(S 20)

Ans: Given,
$$a_{ij} = \frac{i}{j}$$

 $\therefore a_{11} = \frac{1}{1} = 1$
 $a_{12} = \frac{1}{2}$
 $a_{21} = \frac{2}{1} = 2$
 $a_{22} = \frac{2}{2} = 1$
 $A = \begin{bmatrix} 1 & \frac{1}{2} \\ 2 & 1 \end{bmatrix}$.

14. Construct a 2×2 matrix $A = [a_{ij}]$, where $a_{ij} = \frac{i-j}{2}$. (MQP 4)

Ans: Given,
$$a_{ij} = \frac{i-j}{2}$$

 $\therefore a_{11} = \frac{1-1}{2} = 0$ $a_{12} = \frac{1-2}{2} = -\frac{1}{2}$ $a_{21} = \frac{2-1}{2} = \frac{1}{2}$ $a_{22} = \frac{2-2}{2} = 0$
 $A = \begin{bmatrix} 0 & -\frac{1}{2} \\ \frac{1}{2} & 0 \end{bmatrix}$.

15. Construct a 2×2 matrix $A = [a_{ij}]$, whose elements are given by $a_{ij} = \frac{1}{2} |-3i+j|$. (J 19)(M 15)

Ans: Given,
$$a_{ij} = \frac{1}{2} |-3i + j|$$

 $\therefore \qquad a_{11} = \frac{1}{2} |-3(1) + 1| = 1$
 $a_{12} = \frac{1}{2} |-3(1) + 2| = \frac{1}{2}$
 $a_{21} = \frac{1}{2} |-3(2) + 1| = \frac{5}{2}$
 $a_{22} = \frac{1}{2} |-3(2) + 2| = 2$
 $A = \begin{bmatrix} 1 & \frac{1}{2} \\ \frac{5}{2} & 2 \end{bmatrix}$.

16. Construct a 2×2 matrix whose elements are given by $a_{ij} = \frac{(i+j)^2}{2}$.

Ans: Given,
$$a_{ij} = \frac{(i+j)^2}{2}$$

 $\therefore \quad a_{11} = \frac{(1+1)^2}{2} = 2$
 $a_{12} = \frac{(1+2)^2}{2} = \frac{9}{2}$
 $a_{21} = \frac{(2+1)^2}{2} = \frac{9}{2}$
 $a_{22} = \frac{(2+2)^2}{2} = 8$
 $A = \begin{bmatrix} 2 & \frac{9}{2} \\ \frac{9}{2} & 8 \end{bmatrix}$.

17. Write the number of all possible matrices of order 3×3 with each entry 0 or 1.

Ans: (Number of possible matrices) = (Number of entries)^(order of the matrix)

18. If
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix}$ then find $2A - B$.
Ans: $2A - B = 2 \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} - \begin{bmatrix} 3 & -1 & 3 \\ -1 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 5 & 3 \\ 5 & 6 & 0 \end{bmatrix}$.

19. Find *BA* **if**
$$A = \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 8 & 1 \end{bmatrix}$.
Ans: $BA = \begin{bmatrix} 1 & 8 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \\ 2 \end{bmatrix} = \begin{bmatrix} 1+32+2 \end{bmatrix} = \begin{bmatrix} 35 \end{bmatrix}$.

20. Write the transpose of the matrix
$$\begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$
.

Ans: Let
$$A = \begin{bmatrix} 3 & 4 \\ -1 & 2 \\ 0 & 1 \end{bmatrix}$$
, then $A' = \begin{bmatrix} 3 & -1 & 0 \\ 4 & 2 & 1 \end{bmatrix}$.