

Buoyancy and Floatation

Q.1 Assertion (A): The buoyant force for a floating body passes through the centroid of the displaced volume.

Reason (R): The force of buoyancy is a vertical force and equal to the weight of fluid displaced.

- (a) both A and R are true and R is the correct explanation of A
- (b) both A and R are true but R is not a correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- Q.2 A symmetrical right circular cone of wood floats in fresh water with its axis vertical and the apex down. The axial height of the cone is 1 unit. The submerged portion has a height h, measured upwards from the apex. What would be the height of the centre of buoyancy from the apex?
 - (a) $\frac{h}{2}$
- (b) $\frac{5}{8}t$
- (c) $\frac{2}{3}h$
- (d) $\frac{3}{4}$
- Q.3 The increase in metacentric height
 - 1. increase stability
 - 2. decrease stability
 - 3. increases comfort for passengers
 - decreases comfort for passengers

The correct answer is

- (a) 1 and 3 (c) 2 and 3
- (b) 1 and 4 (d) 2 and 4
- Q.4 A small plastic boat loaded with nuts and bolts is floating in a bath tub. If the cargo is dumped into the water, allowing the boat to float empty.

then the water level in the tub will

- (a) rise
- (b) fall
- (c) not change
- (d) None of these
- Q.5 When a block of ice floating on water in a container melts, the level of water in the container
 - (a) rises
 - (b) first falls and then rises
 - (c) remains the same
 - (d) talls
- Q.6 A cubical body is dropped in water and is found to have neutral equilibrium. If it is dropped in sea water (specific gravity = 1.03)
 - (a) il will be in stable equilibrium
 - (b) it will be in unstable equilibrium
 - (c) it will be in neutral equilibrium
 - (d) the body will sink
- Q.7 Two cubes of size 1.0 m sides, one of relative density = 0.60 and another of relative density = 1.15, are connected by a weightless wire and placed in a large tank of water. Under equilibrium the tighter cube will project above the water surface to a height of
 - (a) 10 cm
- (b) zero
- (c) 50 cm
- (d) 25 cm
- Q.8 A reclangular floating body 20 m long is 5 m wide. The water lane is 1.5 m above the bottom. If the centre of gravity is 1.8 m from the bottom, then its metacentric height will be approximately.
 - (a) 3.3 m
- (b) 1.65 m
- (c) 0.34 m
- (d) 0.30 m
- 0.9 What is buoyant force?
 - (a) Lateral force acting on a submerged body:
 - (b) Resultant force acting on a submerged body

- (c) Resultant force due to water on a body
- (d) Resultant hydrostatic force on a body due to Ituid surrounding it
- Q.10 For floating bodies, how is the metacentric radius defined?
 - (a) The distance between centre of gravity and the metacentric
 - (b) Second moment of area of plane of floation about centroidal axis perpendicular to plane of rotation/immersed volume
 - (c) The distance between centre of gravity and the centre of buoyancy
 - (d) Moment of inertia of the body about its axis of rotation/immersed volume
- Q.11 Consider the following statements:
 - 1. Increasing the metacentric height of a ship causes increase in the period of rolling.
 - 2. The frequency of pitching can be reduced by adding more loads along the length of a ship below its centre of gravity
 - 3. A ship has different metacentres in rolling and pitching
 - 4. Stability can be improved by increasing the width and reducing the draft.

Which of these statements are correct?

- (a) 1, 2, 3 and 4
- (b) 1, 2 and 4
- (c) 1, 2 and 3
- (d) 2, 3 and 4
- Q,12 Consider the following statements related to the stability of floating bodies:
 - 1. The metacentre should be above the centre of gravity of the floating body for stable equilibrium during small oscillations.
 - 2. For a floating body, stability is not determined simply by the relative positions of centre of gravity and centre of buoyancy.
 - 3. The position of metacentre of a floating body is fixed irrespective of the axis of
 - 4. Large value of metacentric height reduces the period of roll of the vessel.

Which of these statements are correct?

- (a) 1 and 3
- (b) 2 and 4
- (c) 1, 2 and 4
- (d) 1, 2, 3 and 4

Q.13 Assertion (A): Stability of a floating body is determined by the relative position of the centre of gravity and the centre of buoyancy.

Reason (A): If metacentre of the floating body is above the centre of gravity of the body, then the floating body will be in stable equilibrium.

- (a) both A and R are true and R is the correct explanation of A
- (b) both A and R are true but R is not a correct explanation of A
- (c) A is true but R is false
- (d) A is false but R is true
- Q.14 If k is the radius of gyration, h the metacentric height, othe acceleration due to gravity, the time of oscillation of a floating body, is
- (c) $2\pi \sqrt{\frac{K}{h^2 a}}$ (d) $\pi \sqrt{\frac{K^2}{g^2 h^2}}$
- 0.15 Passenger ships are designed to have a relatively small metacentric height which lies in the range oſ

 - (a) 0.1-0.3 m
 - (c) 0.6-0.9 m
- (b) 0.3-0.6 m (d) 0.9-1.2 m
- Q.16 Match List-I with List-II and select the correct answer using the codes given below the lists:
 - List-I
 - A. Submerged body
 - B. Floating body
 - C. Melacentric height
 - D. Buoyancy List-II
 - 1. Force on a curved surface
 - 2. Moment of intertia
 - Melacentro
 - 4. Force acting vertically up
 - 5. Centre of buoyancy

- С D A B 5 3 2 1
- 2 3 4 1
- 5 3 2 4
- 2 5 4 ١

- Q.17 A solid cylinder of length L, diameter D and specific gravity 0.6 floats in neutral equilibrium in water with its axis vertical. What is the ratio of L to D?

- Q.18 Match the following

Column-I

- A. Mbelow G
- B. Mand G at same location
- C. Mabove G.
 - M = Metacenter
 - G = Centre of gravity Column-II
- Stable equilibrium
- 2. Unstable equilibrium
- 3. Neutral equilibrium

Codes:

- В С Α
- (a) 1 3 2
- (b) 2 3
- (c) 1 2 3 2
- 3 1 (d)

- Q.19 A homogeneous circular cylinder of length h and radius r and specific gravity 'S floats in water, It
 - is noted that $r = \frac{2h}{2}$. Under which of the following.

condition, floatation will be unstable

- (a) S < 0.22, S > 0.11
- (b) 0.22 < S < 0.33
- (c) 0.33 < S < 0.66
- (d) 0.66 < S < 0.99
- Q.20 The least radius of gyration of a ship is 8 m and metacentre height 70 cm. The time period of oscillation of the ship is
 - (a) 3.05 sec
- (b) 6.78 sec
- (c) 60.08 sec
- (d) 19.18 sec
- Q.21 A metal cube of size 15 cm x 15 cm x 15 cm and specific gravity 8.6 is submerged in a two-layered liquid, the bottom layer being mercury and the top layer being water. The percentage of the volume of the cube remaining above the interface will be, approximately.

B. (c)

- (a) 68
- (b) 63
- (c) 40
- (d) 25

Answers **Buoyancy and Floatation**

- 1. (e)

 - 2. (d) 3. (b) 4. (b) 12. (c) 13. (d) 14. (b)
- 5. (c)
 - 6. (a)
 - 7. (d)
- 9. (d)
 - 10. (a)
- 15. (b) 16. (b) 17. (d) 18. (b) 19. (c) 20. (d)

21. (c)

Explanations **Buoyancy and Floatation**

7. (d)

Weight of blocks = Weight of displaced liquid $1 \times 1 \times 1 \times 0.6 + 1 \times 1 \times 1 \times 1.15$

$$= 1 \times 1 \times 1 \times 1 + (1 - x) \times 1 \times 1 \times 1$$

$$\Rightarrow 1.75 = 2 - x$$

$$\Rightarrow x = 0.25 \text{ m} = 25 \text{ cm}$$

$$GM = \frac{I}{H} - BG$$

$$86 = 1.8 - \frac{1.5}{2} = 1.05$$

$$\therefore \qquad GM = \frac{20 \times 5^3}{12 \times 20 \times 5 \times 1.5} - 1.05$$

$$= 0.34 \,\mathrm{m}$$
11. (d)
$$T = 2\pi \sqrt{\frac{k^2}{g \times GM}}$$

$$\Rightarrow I \sim \frac{1}{\sqrt{GM}}$$

- 0.9 to 1.2 m 17. (o)
- For neutral equilibrium GM = 0

19.

$$\frac{L}{D} = \frac{1}{\sqrt{8S(1-S)}}$$

$$= \sqrt{8 \times 0.6 \times 0.4} = \frac{1}{4} \times \frac{1}{\sqrt{0.3 \times 0.4}}$$

- - $=\frac{1}{4}\times\sqrt{\frac{100}{3\times4}}=\frac{5}{4\sqrt{3}}$ (c)

to 0.6 m and for cargoships metacentric height

For unstable equilibrium

GM < 0BM - BG < 0

$$= BM - BG$$

$$I = (h - x)$$

 $\frac{\lambda}{1} - \frac{2}{(\mu - \gamma)} < 0$

 $\frac{\pi(2r)^4}{64 \times \pi r^2 x} - \frac{h - x}{2} < 0$

 $\Rightarrow \frac{16\pi t^4}{64\pi r^2 x} - \frac{h - x}{2} < 0$

 $\frac{r^2}{4r} - \frac{h-x}{2} < 0$

 $\Rightarrow \frac{\frac{4}{9}r^2}{4 \times h \times S} \frac{h - h \times S}{2} < 0$

 $\Rightarrow \frac{h}{9S} - \frac{h(1-S)}{2} < 0$

 $\Rightarrow \frac{1}{9c} - \frac{1-5}{2} < 0$

 \Rightarrow (2S-2)(3S-1)<0

 $\Rightarrow \frac{1}{3} < S < \frac{2}{3}$

20. (d)

21. (c)

 $T = 2\pi \sqrt{\frac{k^2}{GMg}}$ $= 2\pi \sqrt{\frac{8 \times 8}{0.7 \times 9.81}} = 19.18 \text{ sec}$

Let the percentage of cube remain above interface is p. The buoyancy force is $p_w = (0.01p) \times 15^{9}g$

+ $13.6 \, \rho_w (1 - 0.01 p) \times 15^3 g$ This force will be equal to the weight of the cube

 $= 8.6 p_w 15^3 g$ $\therefore 0.01p + 13.6(1 - 0.01p) = 8.6$ \Rightarrow 12.6 × 0.01p = 13.6 - 8.6 = 5

p = 39.7% = 40%