DPP - Daily Practice Problems

Date : Start Time :	End Time :
	ISTRY (CC20)
SYLLABUS : General Principles an Max. Marks : 120 Marking Scheme : + 4 for INSTRUCTIONS : This Daily Practice Problem Sheet contain Darken the correct circle/ bubble in the Response Grid prov	ns 30 MCQ's. For each question only one option is correct.
 Identity x, y, z for the following metallurgical process. Metal sulphidex → Metal oxidey → Impure metalz → Pure metal. x, y and z are respectively (a) roasting, smelting, electrolysis (b) roasting, calcination, smelting (c) calcination, auto-reduction, bassemerisation (d) none of the above is correct 	(a) $Pb + Sn$ (b) $Cu + Sn$ (c) $Cu + Zn$ (d) $Pb + Zn$ 3. Which reagent is used in Bayer's process? (a) Na_2CO_3 (b) Carbon (c) $NaOH$ (d) Silica 4. Thomas slag is (a) $Ca_3(PO_4)_2$ (b) $CaSiO_3$ (c) Mixture of (a) and (b)
2. Bronze is a mixture of	(d) FeSiO ₃

 RESPONSE GRID
 1. abcd
 2. abcd
 3. abcd
 4. abcd

- 5. Which of the following condition favours the reduction of a metal oxide to metal?
 - (a) $\Delta H = +ve$, $T\Delta S = +ve$ at low temperature
 - (b) $\Delta H = +ve$, $T\Delta S = -ve$ at any temperature
 - (c) $\Delta H = -ve$, $T\Delta S = -ve$ at high temperature
 - (d) $\Delta H = -ve$, $T\Delta S = +ve$ at any temperature
- 6. Which of the following fluxes is used to remove acidic impurities in metallurgical process?
 - (a) Silica
 - (b) Lime stone
 - (c) Sodium chloride
 - (d) Sodium carbonate
- 7. A basic lining is given to a furnace by using
 - (a) Calcined dalomite
 - (b) Lime stone
 - (c) hae matite
 - (d) silica
- 8. Electromagnetic separation is used in the concentration of
 - (a) copper pyrites (b) bauxite
 - (c) cassiterite (d) cinnabar
- **9.** Extraction of gold and silver involves leaching with CN⁻ ion. Silver is later recovered by
 - (a) distillation
 - (b) zone refining
 - (c) displacement with Zn
 - (d) liquation
- **10.** Which of the following reactions is an example for calcination process ?
 - (a) $2Ag + 2HCl + (O) \rightarrow 2AgCl + H_2O$
 - (b) $2Zn + O_2 \rightarrow 2ZnO$
 - (c) $2ZnS+3O_2 \rightarrow 2ZnO+2SO_2$
 - (d) $MgCO_3 \rightarrow MgO + CO_2$
- 11. ΔG° vs T plot in the Ellingham's diagram slopes downward

for the reaction

a)
$$Mg + \frac{1}{2}O_2 \rightarrow MgO$$

b) $2Ag + \frac{1}{2}O_2 \rightarrow Ag_2O$
c) $C + \frac{1}{2}O_2 \rightarrow CO$

(d)
$$\operatorname{CO} + \frac{1}{2}\operatorname{O}_2 \to \operatorname{CO}_2$$

- **12.** Which of the following elements is present as the impurity to the maximum extent in the pig iron ?
 - (a) Manganese (b) Carbon
 - (c) Silicon (d) Phosphorus
- 13. Among the following statements the incorrect one is
 - (a) Calamine and siderite are carbonates
 - (b) Argentite and cuprite are oxides
 - (c) Zinc blende and iron pyrites are sulphides
 - (d) Malachite and azurite are ores of copper.
- **14.** Match list I with list II and select the correct answer using the codes given below the lists:
- List I List II Cyanide process A. Ultrapure Ge L II. Floatation process B. Pine oil III. Electrolytic reduction C. Extraction of Al IV. Zone refining D. Extraction of Au Codes: (a) I-C, II-A, III-D, IV-B (b) I-D,II-B,III-C,IV-A (d) I-D,II-A,III-C,IV-B (c) I-C,II-B,III-D, IV-A 15. A coupled reaction is takes place as follow- $A + B \longrightarrow C + D$, $\Delta G^{o} = + x k j$ $D + E \longrightarrow F$ $\Delta G^{\circ} = -y kj$ for the spontaneity of reaction $A + B + E \longrightarrow C + F$, which of the following is correct? (a) 2x = y(b) x < y(c) x > y(d) $x = (y) \times T\Delta S$
- 16. Aluminium is extracted from alumina (Al_2O_3) by electrolysis

 Response GRID
 5. abcd
 6. abcd
 7. abcd
 8. abcd
 9. abcd

 10.abcd
 11.abcd
 12.abcd
 13.abcd
 14. abcd
 of a molten mixture of

- (a) $Al_2O_3 + HF + NaAlF_4$
- (b) $Al_2O_3 + CaF_2 + NaAlF_4$
- (c) $Al_2O_3 + Na_3AlF_6 + CaF_2$
- (d) $Al_2O_3 + KF + Na_3AlF_6$
- **17.** Which of the following statements, about the advantage of roasting of sulphide ore before reduction is not true?
 - (a) The ΔG_f^o of the sulphide is greater than those for CS_2 and H_2S .
 - (b) The ΔG_f^0 is negative for roasting of sulphide ore to oxide.
 - (c) Roasting of the sulphide to the oxide is thermodynamically feasible.
 - (d) Carbon and hydrogen are suitable reducing agents for reduction of metal sulphides.
- **18.** In the extraction of copper from its sulphide ore, the metal is finally obtained by the reduction of cuprous oxide with :
 - (a) Copper (I) sulphide (Cu_2S)
 - (b) Sulphur dioxide (SO_2)
 - (c) Iron sulphide (FeS)
 - (d) Carbon monoxide (CO)
- **19.** The method of zone refining of metals is based on the principle of
 - (a) Greater solubility of the impurity in the molten state than in the solid
 - (b) Greater mobility of the pure metal than that of the impurity
 - (c) Higher melting point of the impurity than that of the pure metal
 - (d) Greater noble character of the solid metal than that of the impurity
- 20. In the cyanide extraction process of silver from argentite

- ore, the oxidising and reducing agents used are
- (a) O_2 and CO respectively
- (b) O_2 and Zn dust respectively
- (c) HNO₃ and Zn dust respectively
- (d) HNO₃ and CO respectively
- 21. The metal oxide which cannot be reduced to metal by carbon is

(a)
$$\operatorname{Fe}_2O_3$$
 (b) Al_2O_3

- (c) PbO (d) ZnO
- **22.** Which of the following reaction takes place in blast furnace during extraction of copper ?
 - (a) $2Cu_2S + 3O_2 \longrightarrow 2Cu_2O + 2SO_2$
 - (b) $2\text{FeS} + 3\text{O}_2 \longrightarrow 2\text{FeO} + 2\text{SO}_2$
 - (c) $2Cu_2O + Cu_2S \longrightarrow 6Cu + SO_2$
 - (d) All of these
- 23. Which process represents the change,

 $Ti + 2I_2 \rightarrow TiI_4 \rightarrow Ti + 2I_2$

- (a) Cupellation
- (b) Van Arkel
- (c) Polling
- (d) Zone Refining
- 24. Among the following groups of oxides, the group containing oxides that cannot be reduced by carbon to give the respective metals is

(a) Cu_2O,SnO_2 (b) Fe_2O_3,ZnO

```
(c) CaO, K_2O (d) PbO, Fe_3O_4
```

- **25.** Which of the following pairs of metals is purified by van Arkel method ?
 - (a) Ga and In (b) Zr and Ti
 - (c) Ag and Au (d) Ni and Fe

Response	16.@b©d	17.@b©d	18.@b©d	19. @b©d	20. abcd
Grid	21. @b©d	22.@b©d	23. @b©d	24. abcd	25. @b©d

- **26.** Which of the following reaction(s) occur in temperature range 500 800 K in blast furnace.
 - (i) $Fe_2O_3 + CO \longrightarrow 2FeO + CO_2$
 - (ii) $Fe_3O_4 + 4CO \longrightarrow 3Fe + 4CO_2$
 - (iii) $FeO + CO \longrightarrow Fe + CO_2$
 - (iv) $C + CO_2 \longrightarrow 2CO$
 - (a) (i) and (ii) (b) (i), (ii) and (iii)
 - (c) (iii) and (iv) (d) (iv) only
- 27. Which of the following pair is incorrectly matched?
 - (a) Magnetite Fe_3O_4 (b) Copper glance Cu_2S
 - (c) Calamine $-ZnCO_3$ (d) Zincite -ZnS
- **28.** Before introducing FeO in blast furnace, it is converted to Fe_2O_3 by roasting so that
 - (a) it may not be removed as slag with silica
 - (b) it may not evaporate in the furnace
 - (c) presence of it may increase the m.pt. of charge
 - (d) None of these.
- **29.** Which of the following statements is correct ?

- (a) Gangues are carefully chosen to combine with the slag present in the ore to produce easily fusible flux to carry away the impurities
- (b) Slags are carefully chosen to combine with the flux present in the ore to produce easily fusible gangue to carry away the impurities
- (c) Gangues are carefully chosen to combine with the flux present in the ore to produce easily fusible slag to carry away the impurities
- (d) Fluxes are carefully chosen to combine with the gangue present in the ore to produce easily fusible slag to carry away the impurities
- **30.** The value of $\Delta_f G^\circ$ for formation of Cr_2O_3 is -540 kJmol⁻¹ and that of Al_2O_3 is -827 kJ mol⁻¹. What is the value of $\Delta_r G^\circ$ for the reaction?

$$\begin{array}{c} \frac{4}{3}\operatorname{Al}(s) + \frac{2}{3}\operatorname{Cr}_2\operatorname{O}_3(s) \to \frac{2}{3}\operatorname{Al}_2\operatorname{O}_3(s) + \frac{4}{3}\operatorname{Cr}(s). \\ (a) & -574\,\mathrm{kJ\,mol^{-1}} & (b) & -287\mathrm{kJ\,mol^{-1}} \\ (c) & +574\,\mathrm{kJ\,mol^{-1}} & (d) & +287\mathrm{kJ\,mol^{-1}} \end{array}$$

Response Grid 26.@bcd 27.@bcd 28.@bcd 29.@bcd 30. @bcd

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 20 - CHEMISTRY					
Total Questions	30	Total Marks	120		
Attempted		Correct			
Incorrect		Net Score			
Cut-off Score	38	Qualifying Score	56		
Success Gap = Net Score – Qualifying Score					
Net Score = (Correct × 4) – (Incorrect × 1)					

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

- (a) The conversion of metal sulphide to metal oxide involves the process of **roasting** (i.e., *x* is roasting). The metal oxides can then be converted to impure metal by reduction. Of the given choices in (a) and (b) the reduction process is that of **smelting**. (i.e., 'y' is smelting) The conversion of impure metal to pure metal involves a process of purification. Thus it is electrolysis.
- **2.** (b)
- **3.** (c)
- **4.** (c)
- 5. (d)
- 6. (b)
- 7. (a) Dalomite on calcination gives CaO, MgO which provides basic lining in furnace.
- 8. (c)
- 9. (c) Zn being more reactive than Ag and Au, displaces them.

 $4Ag + 8NaCN + 2H_2O + O_2$ <u>Leaching</u>

4Na[Ag(CN)₂]+4NaOH

Soluble Sodium dicyanoargentate (I)

Soluble cyanide compound can be treated with Zn to give metal by displacement.

 $2Na[Ag(CN)_2] + Zn$ Displacement

 $Na_2[Zn(CN)_4] + 2Ag\downarrow$

- **10.** (d) Decomposition of carbonates and hydrated oxides.
- 11. (c)
- 12. (b) Pig iron or cast iron contains 3 5% carbon and varying amounts of Mn, Si, P and S which makes the iron hard and brittle.
- 13. (b) Cuprite is Cu_2O and Argentite is Ag_2S .
- 14. (b) Cyanide process is for gold (I-D); floatation process pine oil (II-B); Electrolytic reduction Al (III-C); Zone refining -Ge (IV-A).
- 15. (b) For a spontaneous reaction , ΔG° must be negative and it can be possible only in this case when x < y
- 16. (c) Fused alumina (Al_2O_3) is a bad conductor of electricity. Therefore, cryolite (Na_3AlF_6) and fluorspar (CaF_2) are added to purified alumina which not only make alumina a good conductor of electricity but also reduce the melting point of the mixture to around 1140 K.
- 17. (d) The sulphide ore is roasted to oxide before reduction because the ΔG_f^0 of most of the sulphides are greater than those of CS_2 and H_2S , therefore neither C nor H can reduce metal sulphide to metal. Further, the standard free energies of formation of oxide are much less than those of SO_2 . Hence oxidation of metal sulphides to metal oxide is thermodynamically favourable.

18. (a) Cuprous oxide formed during roasting of cuprous sulphide is mixed with few amount of cuprous sulphide and heated in a reverberatory furnace to get metallic copper.

$$2\mathrm{Cu}_{2}\mathrm{O} + \mathrm{Cu}_{2}\mathrm{S} \rightarrow 6\mathrm{Cu} + \mathrm{SO}_{2}$$

- 19. (a) Zone refining is based on the difference in solubility of impurities in molten and solid state of the metal. This method is used for obtaining metals of very high purity.
- **20.** (b) The reactions involved in cyanide extraction process are :

$$Ag_2S + 4NaCN \rightarrow 2Na [Ag(CN)_2] + Na_2S$$
 (argentite)

$$4Na_{2}S + 5O_{2} + 2H_{2}O \rightarrow 2Na_{2}SO_{4} + 4NaOH + 2S$$

Oxiding
agent

$$2Na[Ag(CN)_{2}] + Zn \xrightarrow{(reducing agent)} Na_{2}[Zn(CN)_{4}] + 2Ag \downarrow$$

21. (b) Al_2O_3 cannot be reduced by carbon.

22. (d)

2

- 23. (b) The given reaction is the method named as Van Arkel for the purification of titanium
- 24. (c) Ca and K are strong reducing agents, hence their oxides cannot be reduced with carbon
- **25** (b) Zr and Ti are purified by van Arkel method.

$$Zr(s) + 2I_2(g) \longrightarrow ZrI_4(g)$$

 $ZrI_4(g) \xrightarrow{On the hot} Zr(s) + 2I_2(g)$

- **26.** (c) (iii) and (iv) reactions occur in the temperature range of 900 1500K in blast furnace.
- 27. (d) Zincite is ZnO.

28. (a) FeO is capable forming slag with SiO_2

$$SiO_2 + FeO \rightarrow FeSiO_3$$

30. (b) The two equation are:

$$\frac{4}{3}Al(s) + O_2(g) \rightarrow \frac{2}{3}Al_2O_3(s), \ \Delta_f G^\circ = -827kJ \ mol^{-1}$$
...(1)
$$\frac{4}{3}Cr(s) + O_2(g) \rightarrow \frac{2}{3}Cr_2O_3(s), \ \Delta_f G^\circ = -540kJ \ mol^{-1}$$
...(2)

Subtracting equation (ii) from equation (i) we have,

$$\frac{4}{3}Al(s) + \frac{2}{3}Cr_2O_3(s),$$

$$\rightarrow \frac{2}{3}Al_2O_3(s) + \frac{4}{3}Cr(s), \quad \Delta_r G^\circ = -287kJ \text{ mol}^{-1}$$