STRAIGHT LINES

If (3, -4) and (-6, 5) are the extremities of a diagonal of a parallelogram and (2, 1) is its third vertex, then its

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

fourth vertex is -

	(A) (-1, 0)	(B) (-1, 1)	(C) $(0, -1)$	(D) (-5, 0)			
2.	The ratio in which the line	joining the points (3, -4) and	d (-5, 6) is divided by x-axis $-$	-			
	(A) 2 : 3	(B) 6 : 4	(C) 3 : 2	(D) none of these			
3.		angle with vertices $(0, 0)$, $(3, 0)$					
	(A) (1, 1)	(B) (2, 3/2)	(C) (3/2, 2)	(D) none of these			
4.	The mid points of the sides of a triangle are (5, 0), (5, 12) and (0, 12), then orthocentre of this triangle is -						
	(A) (0, 0)	(B) (0, 24)	(C) (10, 0)	(D) $\left(\frac{13}{3}, 8\right)$			
5.	Area of a triangle whose ver	rtices are (a $\cos \theta$, $b \sin \theta$), (-	a sin θ , b cos θ) and (-a cos θ	θ , – b sin θ) is -			
			1				
	(A) a b $\sin \theta \cos \theta$	(B) a $\cos \theta \sin \theta$	(C) $\frac{1}{2}$ ab	(D) ab			
6.	(1,5) and $(7,-2)$ respectively	y. If the area of ΔABC be 2					
_	(A) 7,9	(B) 6,7	(C) 7,31/9	(D) 9,31/9			
7.			s of a ΔABC , then as $lpha$ varies				
	(A) $x^2 + y^2 - 2x - 4y + 3$		(B) $x^2 + y^2 - 2x - 4y + 1$	= 0			
	(C) $3(x^2 + y^2) - 2x - 4y +$		(D) none of these				
8.	The points with the co-or	dinates (2a, 3a), (3b, 2b) 8	& (c, c) are collinear-				
	(A) for no value of a, b,	С	(B) for all values of a, b,	С			
	(C) if a, $\frac{c}{5}$, b are in H.F.).	(D) if a, $\frac{2}{5}$ c, b are in H.	P.			
9.	floor then the locus of its	middle point is -	d a wall of a room. If the s				
	(A) $x^2 + y^2 = 2.5$	(B) $x^2 + y^2 = 25$	(C) $x^2 + y^2 = 100$	(D) none			
10.		tting an intercept of 3 units	on negative y-axis and inclined	d at an angle $tan^{-1}\frac{3}{5}$ to the			
	x-axis is - (A) $5x - 3x + 15 = 0$	(R) 5v - 3v = 15	(C) $3y - 5x + 15 = 0$	(D) none of these			
11.	The equation of a straight li	ine which passes through the	point (-3, 5) such that the po				
		he ratio 5 : 3, internally (rec		(D) . 0 0			
			(C) $x + 2y - 7 = 0$	(D) $x - y + 8 = 0$			
12.	The points $\left(0,\frac{8}{3}\right)$, $\left(1,\frac{3}{3}\right)$	B) and (82, 30) are vertices	s of-				
	(A) an obtuse angled tria		(B) an acute angled triang	ale			
	(C) a right angled triangle		(D) an isosceles triangle				
13.			y - 4 = 0 form a triangle where	hich is-			
13.	(A) isosceles	(B) equilateral					
1.4	` ,		(C) right angled	(D) none of these			
14.			uare PQRS inscribed in the vertices P, Q are on the side A				
	(A) $\left(\frac{1}{4}, 0\right)$, $\left(\frac{3}{8}, 0\right)$, $\left(\frac{3}{8}, 0\right)$	$\frac{3}{8}$, $\frac{1}{8}$) & $\left(\frac{1}{4}, \frac{1}{8}\right)$	(B) $\left(\frac{1}{2}, 0\right)$, $\left(\frac{3}{4}, 0\right)$, $\left(\frac{3}{4}\right)$	$\left(\frac{3}{4}, \frac{1}{4}\right) & \left(\frac{1}{2}, \frac{1}{4}\right)$			
	(C) $(1, 0), (\frac{3}{2}, 0), (\frac{3}{2},$	$\left(\frac{1}{2}\right) & \left(1, \frac{1}{2}\right)$	(D) $\left(\frac{3}{2}, 0\right)$, $\left(\frac{9}{4}, 0\right)$, $\left(\frac{9}{4}, 0\right)$	$\left(\frac{9}{4}, \frac{3}{4}\right) & \left(\frac{3}{2}, \frac{3}{4}\right)$			

30.	Three vertices of triangle A A is -	ABC are A(-1, 11), B(-9, -8	s) and $C(15, -2)$. The equation	on of angle bisector of angle
	(A) $4x - y = 7$	(B) $4x + y = 7$	(C) $x + 4y = 7$	(D) $x - 4y = 7$
31.	Given the four lines with t	he equations		
		x + 2y - 3 = 0, $3x + 4y -$	- 7 = 0	
		2x + 3y - 4 = 0, 4x + 5y	-6 = 0	
	then			
	(A) they are all concurrent		(B) they are the sides of a	quadrilateral
	(C) only three lines are co	ncurrent	(D) none of the above	
32.	The co-ordinates of the p	point of reflection of the or	rigin $(0, 0)$ in the line $4x$ –	2y - 5 = 0 is -
	(A) (1, -2)	(B) (2, -1)	$(C) \left(\frac{4}{5}, -\frac{2}{5}\right)$	(D) (2, 5)
33.	If the axes are rotated the	nrough an angle of 30 in	the anti-clockwise direction	n, the coordinates of point
	$(4,-2\sqrt{3})$ with respect to	new axes are-		
	(A) $(2, \sqrt{3})$	(B) $(\sqrt{3}, -5)$	(C) (2, 3)	(D) $(\sqrt{3}, 2)$
34.	If one diagonal of a square	is along the line $x = 2y$ and	one of its vertex is (3, 0), the	n its sides through this vertex
	are given by the equations			
	(A) $y - 3x + 9 = 0$, $x - 3y$		(B) $y - 3x + 9 = 0, x - 3$	•
	(C) $y + 3x - 9 = 0$, $x + 3y$		(D) $y - 3x + 9 = 0$, $x + 3$	
35.	The line $(p + 2q)x + (p - q)x +$	3q)y = p - q for different va	alues of p and q passes thro	ugh a fixed point whose co-
	(A) $\left(\frac{3}{2}, \frac{5}{2}\right)$	(B) $\left(\frac{2}{5}, \frac{2}{5}\right)$	(C) $\left(\frac{3}{5}, \frac{3}{5}\right)$	(D) $\left(\frac{2}{5}, \frac{3}{5}\right)$
36.	The equation $2x^2 + 4xy -$	$py^2 + 4x + qy + 1 = 0$ will	represent two mutually perp	pendicular straight lines, if -
	(A) $p=1$ and $q=2$ or 6		(B) $p = -2$ and $q = -2$ or	or 8
	(C) $p = 2$ and $q = 0$ or 8		(D) $p = 2$ and $q = 0$ or 6	
37.	Equation of the pair of $5x^2 - 7xy - 3y^2 = 0$ is -	straight lines through ori	gin and perpendicular to	the pair of straight lines
	(A) $3x^2 - 7xy - 5y^2 = 0$	(B) $3x^2 + 7xy + 5y^2 = 0$	(C) $3x^2 - 7xy + 5y^2 = 0$	(D) $3x^2 + 7xy - 5y^2 = 0$
38.		the origin and the points of		
				the co-ordinate axis, then the
	(A) is equal to 1	(B) is equal to -1 (C) is	s equal to 2 (D) does not ex	xist in the set of real numbers
SELE	CT THE CORRECT ALT	ΓERNATIVES (ONE OR M	MORE THAN ONE CORR	ECT ANSWERS)
39.	Coordinates of a point whi	ch is at 3 units distance from	n the point $(1, -3)$ on the lin	2x + 3y + 7 = 0 is/are -
	(A) $\left(1 + \frac{9}{\sqrt{13}}, 3 - \frac{6}{\sqrt{13}}\right)$	(B) $\left(1 - \frac{9}{\sqrt{13}}, -3 + \frac{6}{\sqrt{13}}\right)$	(C) $\left(1 + \frac{9}{\sqrt{13}}, -3 - \frac{6}{\sqrt{13}}\right)$	(D) $\left(1 - \frac{9}{\sqrt{13}}, 3 - \frac{6}{\sqrt{13}}\right)$
40.	The angle between the line	es $y - x + 5 = 0$ and $\sqrt{3} x$	- y + 7= 0 is/are -	
	(A) 15	(B) 60	(C) 165	(D) 75
41.	If line $y - x + 2 = 0$ is shi	fted parallel to itself towards	the x-axis by a perpendicular	distance of $3\sqrt{2}$ units, then

the equation of the new line is may be -

(A)
$$y = x + 4$$
 (B) $y = x + 1$ (C) $y = x - (2 + 3\sqrt{2})$ (D) $y = x - 8$

42. Three lines
$$px + qy + r = 0$$
, $qx + ry + p = 0$ and $rx + py + q = 0$ are concurrent if -

(A)
$$p + q + r = 0$$

(B)
$$p^2 + q^2 + r^2 = pr + qr + pq$$

(C)
$$p^3 + q^3 + r^3 = 3pqr$$

(D) none of these

43. All points lying inside the triangle formed by the points
$$(1, 3)$$
, $(5, 0)$ and $(-1, 2)$ satisfy -

(A)
$$3x + 2y \ge 0$$

(B)
$$2x + y - 13 \ge 0$$

(B)
$$2x + y - 13 \ge 0$$
 (C) $2x - 3y - 12 \le 0$ (D) $-2x + y \ge 0$

$$(D) -2x + v \ge 0$$

44. The diagonals of a square are along the pair of lines whose equation is
$$2x^2 - 3xy - 2y^2 = 0$$
. If (2, 1) is a vertex of the square, then the vertex of the square adjacent to it may be -

(B)
$$(-1, -4)$$

$$(C) (-1, 2)$$

(D)
$$(1, -2)$$

45. Equation of two equal sides of a triangle are the lines
$$7x + 3y - 20 = 0$$
 and $3x + 7y - 20 = 0$ and the third side passes through the point (-3, 3), then the equation of the third side can be -

(A)
$$x + y = 0$$

(B)
$$x - y + 6 = 0$$

(C)
$$x + 3 = 0$$

(D)
$$y = 3$$

Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	Α	С	Α	D	С	С	D	В	Α
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	D	Α	D	С	С	D	D	С	Α
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	Α	Α	В	С	D	В	D	Α	С	В
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	С	В	В	D	D	С	Α	В	B,C	A,C
Que.	41	42	43	44	45					
Ans.	A,D	A,B,C	A,C	C,D	A,B					·

EXTRA PRACTICE QUESTIONS ON STRAIGHT LINES

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

1.	The co-ordinates of a point and B is $(2, -4)$ will be -	t P on the line $2x - y + 5$	= 0 such that F	PA - PB is	maximum where A is	s (4, – 2)
	(A) (11, 27)	(B) (-11, - 17)	(C) (-11, 17)		(D) (0, 5)	
2.		the axis of x and y at A				
		e origin, with right angle at				the area
	of the triangle APQ is 3/	⁷ 8 th of the area of the tria	ngle OAB, then	$\frac{AQ}{BQ}$ is eq	ual to -	
	(A) 2	(B) 2/3	(C) 1/3		(D) 3	
3.	Lines, L_i : $x + \sqrt{3}y = 2$, a	$\operatorname{nd} L_2 : \operatorname{ax} + \operatorname{by} = 1, \operatorname{meet}$	at P and enclose	e an angle o	f 45 between them.	Line L_3 :
	$y = \sqrt{3}x$, also passes through					
		(B) $a^2 + b^2 = 2$				
4.	A triangle is formed by the	lines $2x - 3y - 6 = 0$; $3x -$	-y + 3 = 0 and 3	3x + 4y - 12	t = 0. If the points P	$(\alpha,0)$ and
	Q $(0,\beta)$ always lie on or ins	ide the ΔABC , then range	of α & β -			
	(A) $\alpha \in [-1, 2]$ & $\beta \in [-1, 2]$	2, 3]	(B) $\alpha \in [-1, 3]$	$\beta \in [-2]$	2, 4]	
	(C) $\alpha \in [-2, 4] \& \beta \in [-4]$	3, 4]	(D) $\alpha \in [-1, 3]$] & β ∈ [-2	2, 3]	
5.	The line $x + 3y - 2 = 0$	bisects the angle between	en a pair of str	raight lines	of which one has	equation
	x - 7y + 5 = 0. The equation					
6.	(A) $3x + 3y - 1 = 0$		(C) 5x + 5y -		(D) none	
0.	through (5, 3). Then the ed	gh the point A $(1,\ 2)$ is reflection of AB is -	ected at a point i	o on the x-ax	as line mirror and me	en passes
		(B) $5x - 4y = -3$	(C) $4x + 5y =$	14	(D) $4x - 5y = -6$	
7.		the perpendicular distance				variable
	straight line be zero, ther	n the line passes through			inates are-	
	(A) (3, 2)	(B) (2, 3)	$(C) \left(\frac{3}{5}, \frac{3}{5}\right)$		(D) $\left(\frac{5}{3}, \frac{5}{3}\right)$	
8.		nes respresented by $ax^2 + 2$			nirror $y = 0$ is :	
	(A) $ax^2 - 2hxy + by^2 = 0$		(B) $bx^2 - 2h x$	-		
	(C) $bx^2 + 2h xy + ay^2 = 0$		(D) $ax^2 - 2h x$	-		
9.		2 - 4xy + y 2 = 0 together v			= 0 form a triangle v	vhich is :
	(A) right angled but not is	osscles	(B) right isosc	eles		
	(C) scalene		(D) equilateral			
10.	Let $A \equiv (3, 2)$ and $B \equiv (9, 2)$	5, 1). ABP is an equilatera	l triangle is con	structed on	the side of AB rem	ote from
		centre of triangle ABP is				
	(A) $\left(4 - \frac{1}{2}\sqrt{3}, \frac{3}{2} - \sqrt{3}\right)$	(B) $\left(4 + \frac{1}{2}\sqrt{3}, \frac{3}{2} + \sqrt{3}\right)$	(C) $\left(4 - \frac{1}{6}\sqrt{3}\right)$	$\overline{3}, \frac{3}{2} - \frac{1}{3}\sqrt{3}$	(D) $\left(4 + \frac{1}{6}\sqrt{3}, \frac{3}{2}\right)$	$+\frac{1}{3}\sqrt{3}$
11.	The line PQ whose equation	is $x - y = 2$ cuts the x axis	at P and Q is (4	,2). The line	PQ is rotated about F	through
	45 in the anticlockwise dir	rection. The equation of the	line PQ in the	new position	is -	
	$(A) y = -\sqrt{2}$	(B) $y = 2$	(C) $x = 2$. 2	(D) $x = -2$	
12.	Distance between two lines	respresented by the line p	air, x ² - 4xy + 4	4y² + x − 2y	y - 6 = 0 is -	

13. The circumcentre of the triangle formed by the lines, xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is -

(A) (-1, -1)

(A) $\frac{1}{\sqrt{5}}$

(B) (-2, -2)

(B) $\sqrt{5}$

(C) (0, 0)

(C) $2\sqrt{5}$

(D) (-1, -2)

17.	The area enc	losed by 2	x + 3 y	$ y \le 6$ is -	-					
	(A) 3 sq. units	S	(B) 4 so	ą. units	(C) 12 sq. u	nits	(D) 24	sq. units	
18.	The point (4, 1) undergoes the following three transformations successively - (i) Reflection about the line $y = x$ (ii) Translation through a distance 2 units along the positive directions of x-axis. (iii) Rotation through an angle $\pi/4$ about the origin. The final position of the point is given by the coordinates:									
	(A) $\left(\frac{7}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ (B) $\left(\frac{7}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (C) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$ (D) none of these									
19.	If the equation $ax^2 - 6xy + y^2 + bx + cx + d = 0$ represents a pair of lines whose slopes are m and m ² , then value(s) of a is/are -									
	(A) $a = -8$		(B) a	= 8		(C) $a = 2$	7	(D) $a = -27$	
20.	Given the family of lines, $a(3x + 4y + 6) + b(x + y + 2) = 0$. The line of the family situated at the greatest distance from the point P (2,3) has equation -									
	(A) $4x + 3y$	+ 8 = 0	(B) 5x	x + 3y + 1	0 = 0	(C) 15x +	8y + 30 =	0 (E) none	
21.	If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle PQR is/are always rational point (s) ?									
	(A) centriod		(B) inc	entre		(C) circum	centre	(D)	orthocentre	:
22.	Let PQR be a then the equa						If the equa	tion of the	line QR is	2x + y = 3
	(A) $3x^2 - 3y^2 + 8xy + 20x + 10y + 25 = 0$ (B) $3x^2 - 3y^2 + 8xy - 20x - 10y + 25 = 0$									
	(C) $3x^2 - 3y^2$	+ 8vu + 1	0v + 15v	+ 20 = 0		(D) $3x^2 - 3$	Su ² – Svu –	10x - 15t	, - 20 = 0	
	(C) OX Oy	ONY	.0x · 13y	. 20 0		(D) 3X C	у Олу	10% 105	20 0	
					NOWED	77577				
					NSWER					
Que		2	3	4	5	6	7	8	9	10
Ans		D	В	D	C	A 1.6	D	A 1.0	D 1.0	D
Que		12	13	14	15 D	16	17	18	19	20
Ans		B 22	Α	В	D	A,B,C,D	С	С	B,D	Α
Que										
Ans	A,C,D	В								

(A) $\frac{c^2}{2ab}$ (B) $\frac{2c^2}{ab}$ (C) $\frac{4c^2}{ab}$ (D) $\frac{ab}{4c^2}$ If the lines ax + y + 1 = 0, x + by + 1 = 0 & x + y + c = 0 where a, b & c are distinct real numbers different

16. If one vertex of an equilateral triangle of side 'a' lies at the origin and the other lies on the line $x - \sqrt{3}y = 0$,

(B) $\left(\frac{\sqrt{3} \ a}{2}, -\frac{a}{2}\right)$ (C) (0, -a)

(D) 1

(D) $\left(-\frac{\sqrt{3}}{2}, \frac{a}{2}\right)$

14. Area of the rhombus bounded by the four lines, ax \pm by \pm c = 0 is -

from 1 are concurrent, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$ (A) 4 (B) 3 (C) 2

then the co-ordinates of the third vertex are -

(A) (0, a)