If α and β are solutions of $x^2 - 10x + 10 = 0$ such that $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} = b$, then roots of equation $2x^2 + 10x + 3b = 0$ 2.

are

RACE # 23

1.

3.

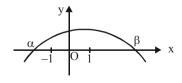
TIME : 45 Min.

(A) rational and distinct

(A) $q^3 - 2q^2 - p^3 + 4p + q = 0$ (C) $q^3 - 2q^2 - p^2 - 4pq + q = 0$

- (D) irrational and disti (C) imaginary A right triangle has perimeter of length 7 and hypotenuse of length 3.
- in the triangle, then the value of $\cos \theta$ equals-

(A)
$$\frac{\sqrt{6} - \sqrt{2}}{4}$$
 (B) $\frac{4 + \sqrt{2}}{6}$ (C) $\frac{4 - \sqrt{2}}{3}$ (D) $\frac{4 - \sqrt{2}}{6}$


SECTION-I(ii)

SECTION-I(i) Straight Objective Type (3 Marks each, -1 for wrong answer)

If both roots of $x^2 + px + q = 0$ are positive and one root is cube of other root, then -

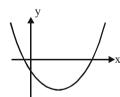
Multiple Correct Answer Type (4 Marks each, -1 for wrong answer)

- Number of real value(s) of c for which system of equations $x^2 + cx 1 = 0$ and $cx^2 + x 1 = 0$ have 4. (A) a common root, is 1 (B) two common roots, is 1 (C) exactly one common solution, is 1 (D) a common root, is 2.
- If the graph of $y = ax^2 + bx + c$ is as shown in figure, then -5.
 - (A) a > 0
 - (B) b < 0
 - (C) c < 0
 - (D) $b^2 > 4ac$
- The graph of quadratic polynomial $f(x) = ax^2 + bx + c$ is shown below. 6.

Which of the following are correct?

(A) $\frac{c}{a} < -1$ (B) $|\beta - \alpha| > 2$ (C) $f(\mathbf{x}) > 0 \forall \mathbf{x} \in (0,\beta)$ (D) abc < 0

If
$$\theta$$
 is the largest non right angle


(B) $q^3 - 2q^2 - p^4 + 4p^2q + q = 0$ (D) $q^3 - 2q^2 - p^3 - 4pq + q = 0$

(B) real and equal

E (MAIN + ADVANCED) 2023 **NURTURE COURSE**

MATHEMATICS

M.M. : 35

SECTION-I(iii)

Linked Comprehension Type (Single Correct Answer Type) (3 Marks each, -1 for wrong answer)

Paragraph for Question 7 & 8

Let
$$f(x) = x^2 + 3x + 1$$
 and $g(x) = x + 1$.

- 7. Let $f(x) + \lambda g(x) \ge -10 \forall x \in \mathbb{R}$, then sum of all possible integral values of λ is -(A) -11 (B) -13 (C) 11 (D) 13
- 8. Range of $\frac{f(x)}{g(x)}$, $x \in \mathbb{R}$ is -
 - (A) $\left(-\infty, -3\right] \cup \left[1, \infty\right)$ (B) $\left(-\infty, 1\right] \cup \left[3, \infty\right)$ (C) $\left(-\infty, -1\right] \cup \left[3, \infty\right)$ (D) $\left(-\infty, \infty\right)$

SECTION-III(i)

Numerical Grid Type (Single digit Ranging from 0 to 9) (4 Marks each, -1 for wrong answer)

9. If α and β are roots of $x^2 - 21x + 4 = 0$ and $\frac{\sqrt{\alpha}}{\beta}$, $\frac{\sqrt{\beta}}{\alpha}$ are roots of $px^2 + qx + 2 = 0$, then value of

of (26p + q) is

10. Find the range of values of 'a' for which the system of equations

x + ay = 3 satisfy x > 1; y > 0and ax + 4y = 6

RACE # 22									MATHEMATICS
SECTION-I	Q.	1	2	3	4	5	6	7	
	Α.	D	D	В	D	В	Α	B,C,D	
SECTION-III	Q.	8	9	10					
	Α.	0	7	2					

MATHS /R # 23