UNIT-6 CONIC SECTION

SUCCESS TIP: DIVIDE AND RULE POLICY WILL HELP YOU SOLVE TOUGH PROBLEMS EASILY

- 1. The angle of intersection between the curves, $y = x^2$ and $y^2 = 4x$ at the point (0, 0) is
 - (a) $\pi/2$
- (b) 0
- (c) π
- (d) none of these
- 2. The point on the curve $y^2 = 4x$ which is nearest to the point (2, 1) is
 - (a) (1, −2)
- (b) (-2, 1)
- (c) $(1, 2\sqrt{2})$
- (d) (1, 2)
- 3. Length of latus rectum of the parabola $25[(x-1)^2 + (y-2)^2] = (3x-4y+8)^2$ is
 - (a) 6/5 units
- (b) 6 units
- (c) 3/5 units
- (d) none of these
- 4. The normal chord at a point 't' on the parabola $16y^2 = x$ subtends a right angle at the vertex. Then t is equal to
 - (a) $-\sqrt{2}$
- (b) 2
- (c) 1/64
- (d) none of these
- 5. The point on the parabola $4x = y^2 + 9 6y$ which is closest to the circle $x^2 + y^2 10x 10y + 49 = 0$ is
 - (a) (9/4, 0)
- (b) (4, 11)
- (c) (1, 1)
- (d) none of these
- 6. A ray of light moving parallel to the x-axis gets reflected from a parabolic mirror whose equation is $(y-2)^2 = 4(x+1)$. After reflection, the ray must pass through the point
 - (a) (2, 0)
- (b) (-1, 2)
- (c) (0, -2)
- (d) none of these
- 7. The locus of the point of intersection of normals at the points on the parabola where tangents drawn meet at the directrix is
 - (a) a parabola
- (b) a circle
- (c) an ellipse
- (d) a hyperbola
- 8. The tangents and normals at the ends of a focal chord of a parabola meet in P and Q respectively. Then slope of PQ is
 - (a) 1
- (b) 0
- (c) undefined
- (d) $\sqrt{3}$
- 9. The normals at the extremities of a chord PQ of the parabola $y^2 = 4ax$ meet on the parabola, then locus of the middle point of PQ is
 - (a) a straight line
- (b) a circle
- (c) a parabola
- (d) a pair of straight lines

 In the figure, a parabola is drawn to pass through the vertices B, C and D of the square ABCD. If A(2, 1), C(2, 3), then focus of this parabola is

- (a) (3, 13/4)
- (b) (2, 13/4)
- (c) (2, 11/4)
- (d) (1, 11/4)
- 11. Mutually perpendicular tangents TA and TB are drawn to $y^2 = 4ax$. Minimum length of AB is equal to
 - (a) 2a
- (b) 4a
- (c) 6a
- (d) 8a
- 12. The parabola $y^2 = 4x$ and the circle $(x 6)^2 + y^2 = r^2$ will have no common tangent if r satisfies
 - (a) $r < \sqrt{20}$
- (b) $r > \sqrt{20}$
- (c) $r > \sqrt{18}$
- (d) $r \in (\sqrt{20}, \sqrt{28})$
- 13. If the normal at three points A, B, C of $y^2 = 4ax$ meet in a point, then the centroid of \triangle ABC lies on
 - (a) X-axis
- (b) Y-axis
- (c) x = -a
- (d) x = a
- 14. The eccentricity of the ellipse which meets the straight

line $\frac{x}{7} + \frac{y}{2} = 1$ on the X-axis and the straight line

 $\frac{x}{3} - \frac{y}{5} = 1$ on the Y-axis and whose axes lie along the axes of co-ordinates, is

- (a) $\frac{\sqrt{3}}{7}$
- (b) $\frac{3\sqrt{2}}{7}$
- (c) $\frac{2\sqrt{6}}{7}$
- (d) $\frac{3}{\sqrt{7}}$
- **15.** The angle between the normals of ellipse $4x^2 + y^2 = 5$, at the intersection of 2x + y = 3 and the ellipse, is
 - (a) $tan^{-1}(3/5)$
- (b) tan-1(3/4)
- (c) $tan^{-1}(4/3)$
- (d) tan-1(4/5)

- 16. A man running around a race course notes that the sun of the distances of two flag posts from him is always 10 metres and the distance between the flag posts is 8 metres. The area of the path he encloses in square metres is
 - (a) 8π
- (b) 12π
- (c) 15π
- (d) 18π
- **17.** In this given figure, OABCDE is a regular hexagon, whose vertices B, C, D, E lie on a parabola. If OA = a, then

- (a) vertex of parabola is $(a/2, 7a\sqrt{3}/6)$
- (b) equation of parabola is

$$3ay + 2\sqrt{3}x^2 - 2\sqrt{3}ax - 3a^2\sqrt{3} = 0$$

- (c) span on X-axis is $a\sqrt{7}$
- (d) axis of parabola is x = a
- 18. The equation $\frac{x^2}{10-a} + \frac{y^2}{4-a} = 1$ represents an ellipse, if
 - (a) a > 10
- (b) a > 4
- (c) 4 < a < 10
- (d) a < 4
- 19. The sum of squares of the perpendiculars on any tangent

to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ from the points on the minor

axis, each at a distance $\sqrt{a^2 - b^2}$ from the centre is

- (a) $a^2 + b^2$
- (b) $a^2 b^2$
- (c) 2a²
- (d) 2b²
- 20. The eccentricity of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ whose latus rectum is half of its major axis is
 - (a) $\sqrt{3}/2$
- (b) $1/\sqrt{2}$
- (c) $\sqrt{2/3}$
- (d) none of these
- 21. The locus of the mid-point of the portion of a tangent

to the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ included between the axes is the curve

- 2 2
- (a) $\frac{x^2}{a^2} \frac{y^2}{b^2} = 4$ (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 4$

- (c) $\frac{a^2}{x^2} + \frac{b^2}{v^2} = 4$
- (d) none of these
- 22. The equation of the chord of the ellipse $2x^2 + 5y^2 = 20$ which is bisected at the point (2, 1) is
 - (a) 5x + 4y + 13 = 0
- (b) 5x + 4y = 13
- (c) 4x + 5y + 13 = 0
- (d) 4x + 5y = 13
- 23. If e_1 and e_2 be the eccentricities of hyperbola and its conjugate, then $1/e_1^2 + 1/e_2^2 =$
 - (a) $\sqrt{2}/8$
- (b) 1/4
- (c) 1
- (d) 4
- 24. If a tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ cuts the

ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ at P and Q, then the locus of midpoint of PQ is

(a)
$$\left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right)^2 = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

(b)
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = \left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2$$

(c)
$$\left(\frac{x^2}{a^4} + \frac{y^2}{b^4}\right) = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$

(d)
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2$$

- 25. Tangents are drawn from points on the line x y 5 = 0 to $x^2 + 4y^2 = 4$. Then, all chords of contact pass through a fixed point whose co-ordinates are
 - (a) (4/5, -1/5)
- (b) (4/5, 1/5)
- (c) (1/5, 4/5)
- (d) none of these
- **26.** The eccentricity of ellipse $ax^2 + by^2 + 2gx + 2fy + c = 0$ of its axis is parallel to x-axis is
 - (a) $\sqrt{\frac{a+b}{4}}$
- (b) $\sqrt{\frac{a-b}{2}}$
- (c) $\sqrt{\frac{b-a}{a}}$
- (d) $\sqrt{\frac{b-a}{b}}$
- 27. The foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{b^2} = 1$ and the hyperbola
 - $\frac{x^2}{144} \frac{y^2}{81} = \frac{1}{25}$ coincide. Then the value of b^2 is

(a) 9

(b) 1

(c) 5

(d) 7

Let P be the point (1, 0) and Q, a point on the locus $y^2 = 8x$. The locus of mid-point of PQ is

(a)
$$x^2 + 4y + 2 = 0$$

(b) $x^2 - 4y + 2 = 0$

(c)
$$y^2 - 4x + 2 = 0$$

(d) $y^2 + 4x + 2 = 0$

29. The locus of the vertices of the family of parabolas

$$y = \frac{a^3}{3}x^2 + \frac{a^2}{2}x - 2a$$
 is

(a)
$$xy = \frac{64}{105}$$
 (b) $xy = \frac{105}{64}$

(b)
$$xy = \frac{105}{64}$$

(c)
$$xy = \frac{3}{4}$$

(c)
$$xy = \frac{3}{4}$$
 (d) $xy = \frac{35}{16}$

The ellipse $x^2 + 4y^2 = 4$ is inscribed in a rectangle aligned with the coordinate axes, which in turn is inscribed in another ellipse that passes through the point (4, 0). Then the equation of the ellipse is

(a)
$$x^2 + 12y^2 = 16$$

(b)
$$4x^2 + 48y^2 = 48$$

(c)
$$4x^2 + 64y^2 = 48$$

(d)
$$x^2 + 16y^2 = 16$$