17. Increasing and Decreasing Functions

Exercise 17.1

1. Question

Prove that the function $f(x) = \log_e x$ is increasing on $(0, \infty)$.

Answer

let
$$x_1, x_2 \in (0, \infty)$$

We have,
$$x_1 < x_2$$

$$\Rightarrow \log_e x_1 < \log_e x_2$$

$$\Rightarrow f(x_1) < f(x_2)$$

So, f(x) is increasing in $(0,\infty)$

2. Question

Prove that the function $f(x) = \log_a x$ is increasing on $(0, \infty)$ if a > 1 and decresing on $(0, \infty)$, if 0 < a < 1.

Answer

case I

When a > 1

let $x_1, x_2 \in (0, \infty)$

We have, $x_1 < x_2$

$$\Rightarrow \log_e x_1 < \log_e x_2$$

$$\Rightarrow f(x_1) < f(x_2)$$

So, f(x) is increasing in $(0,\infty)$

case II

When 0 < a < 1

$$f(x) = \log_a x = \frac{\log x}{\log a}$$

when $a < 1 \Rightarrow log a < 0$

let $x_1 < x_2$

$$\Rightarrow \log x_1 < \log x_2$$

$$\Rightarrow \frac{\log x_1}{\log a} > \frac{\log x_2}{\log a} \left[\because \log a < 0\right]$$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is decreasing in $(0,\infty)$

3. Question

Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R.

Answer

we have,

$$f(x) = ax + b, a > 0$$

let $x_1, x_2 \in R$ and $x_1 > x_2$

 \Rightarrow ax₁ > ax₂ for some a > 0

 \Rightarrow ax₁ + b> ax₂ + b for some b

$$\Rightarrow f(x_1) > f(x_2)$$

Hence, $x_1 > x_2 \Rightarrow f(x_1) > f(x_2)$

So, f(x) is increasing function of R

4. Question

Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R.

Answer

we have,

$$f(x) = ax + b, a < 0$$

 $let \ x_1, x_2 \in R \ and \ x_1 > x_2$

$$\Rightarrow$$
 ax₁ < ax₂ for some a > 0

$$\Rightarrow$$
 ax₁ + b< ax₂ + b for some b

$$\Rightarrow f(x_1) < f(x_2)$$

Hence, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$

So, f(x) is decreasing function of R

5. Question

Show that $f(x) = \frac{1}{x}$ is a decreasing function on (0, ∞).

Answer

we have

$$f(x) = \frac{1}{x}$$

let $x_1, x_2 \in (0, \infty)$ We have, $x_1 > x_2$

$$\Rightarrow \frac{1}{x_1} < \frac{1}{x_2}$$

$$\Rightarrow \mathsf{f}(\mathsf{x}_1) < \mathsf{f}(\mathsf{x}_2)$$

Hence, $x_1 > x_2 \Rightarrow f(x_1) < f(x_2)$

So, f(x) is decreasing function

6. Question

Show that $f(x) = \frac{1}{1+x^2}$ decreases in the interval $[0, \infty)$ and increases in the interval $(-\infty, 0]$.

Answer

We have,

$$f(x) = \frac{1}{1 + x^2}$$

Case 1

When $x \in [0, \infty)$

Let $_{\mathbb{X}_{1}},\,_{\mathbb{X}_{2}}\in(0,\,\infty]$ and $_{\mathbb{X}_{1}}>\,_{\mathbb{X}_{2}}$

$$\Rightarrow$$
 $x_1^2 > x_2^2$

$$\Rightarrow 1 + x_1^2 > 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} < \frac{1}{1+x_2^2}$$

$$\Rightarrow f(x_1) < f(x_2)$$

 $_{x}$ f(x) is decreasing on[0,∞).

Case 2

When $x \in (-\infty, 0]$

Let
$$_{X_1} > _{X_2}$$

$$\Rightarrow$$
 $x_1^2 < x_2^2$

$$\Rightarrow 1 + x_1^2 < 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} > \frac{1}{1+x_2^2}$$

$$\Rightarrow f(x_1) > f(x_2)$$

x f(x) is increasing on(-∞,0].

Thus, f(x) is neither increasing nor decreasing on R.

7. Question

Show that $f(x) = \frac{1}{1+x^2}$ is neither increasing nor decreasing on R.

Answer

We have,

$$f(x) = \frac{1}{1+x^2}$$

Case 1

When $x \in [0, \infty)$

Let
$$_{X_1} > _{X_2}$$

$$\Rightarrow x_1^2 > x_2^2$$

$$\Rightarrow 1 + x_1^2 > 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} < \frac{1}{1+x_2^2}$$

$$\Rightarrow f(x_1) < f(x_2)$$

 \Rightarrow f(x) is decreasing on[0, ∞).

Case 2

When $x \in (-\infty, 0]$

Let
$$_{X_1} > _{X_2}$$

$$\Rightarrow$$
 $x_1^2 < x_2^2$

$$\Rightarrow 1 + x_1^2 < 1 + x_2^2$$

$$\Rightarrow \frac{1}{1+x_1^2} > \frac{1}{1+x_2^2}$$

$$\Rightarrow f(x_1) > f(x_2)$$

 $_{x}$ f(x) is increasing on(-∞,0].

Thus, f(x) is neither increasing nor decreasing on R.

8. Question

Without using the derivative, show that the function f(x) = |x| is

A. strictly increasing in $(0, \infty)$

B. strictly decreasing in $(-\infty, 0)$.

Answer

We have,

$$f(x) = |x| = \{x, x > 0$$

(a)Let
$$x_1, x_2 \in (0, \infty)$$
 and $x_1 > x_2$

$$\Rightarrow f(x_1) > f(x_2)$$

So, f(x) is increasing in $(0, \infty)$

(b) Let
$$x_1, x_2 \in (-\infty, 0)$$
 and $x_1 > x_2$

$$\Rightarrow -x_1 < -x_2$$

$$\Rightarrow f(x_1) > f(x_2)$$

 $_{\bullet}$ f(x) is strictly decreasing on(-∞, 0).

9. Question

Without using the derivative show that the function f(x) = 7x - 3 is strictly increasing function on R.

Answer

Given,

$$f(x) = 7x - 3$$

Lets $x_1, x_2 \in R$ and $x_1 > x_2$

$$\Rightarrow 7_{X_1} > 7_{X_2}$$

$$\Rightarrow 7_{X_1} - 3 > 7_{X_2} - 3$$

$$\Rightarrow f(x_1) > f(x_2)$$

f(x) is strictly increasing on R.

Exercise 17.2

1 A. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 10 - 6x - 2x^2$$

Answer

Given:- Function $f(x) = 10 - 6x - 2x^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing.

Here we have,

$$f(x) = 10 - 6x - 2x^2$$

$$\Rightarrow f'(x) = \frac{d}{dx}(10 - 6x - 2x^2)$$

$$\Rightarrow$$
 f'(x) = -6 - 4x

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow$$
 -6 -4x > 0

$$\Rightarrow -4x > 6$$

$$\Rightarrow X < -\frac{6}{4}$$

$$\Rightarrow X < -\frac{3}{2}$$

$$\Rightarrow x \in (-\infty, -\frac{3}{2})$$

Thus f(x) is increasing on the interval $\left(-\infty, -\frac{3}{2}\right)$

Again, For f(x) to be increasing, we must have

$$\Rightarrow$$
 -6 -4x < 0

$$\Rightarrow -4x < 6$$

$$\Rightarrow$$
 X $>$ $-\frac{6}{4}$

$$\Rightarrow X > -\frac{3}{2}$$

$$\Rightarrow x \in \left(-\frac{3}{2}, \infty\right)$$

Thus f(x) is decreasing on interval $x \in \left(-\frac{3}{2}, \infty\right)$

1 B. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = x^2 + 2x - 5$$

Answer

Given:- Function $f(x) = x^2 + 2x - 5$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing.

Here we have,

$$f(x) = x^2 + 2x - 5$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^2 + 2x - 5)$$

$$\Rightarrow$$
 f'(x) = 2x + 2

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow$$
 2x + 2 > 0

$$\Rightarrow 2x < -2$$

$$\Rightarrow X < -\frac{2}{2}$$

$$\Rightarrow$$
 x \in ($-\infty$, -1)

Thus f(x) is increasing on interval $(-\infty,-1)$

Again, For f(x) to be increasing, we must have

$$\Rightarrow$$
 2x + 2 < 0

$$\Rightarrow 2x > -2$$

$$\Rightarrow x > -\frac{2}{2}$$

$$\Rightarrow$$
 x> -1

$$\Rightarrow x \in (-1, \infty)$$

Thus f(x) is decreasing on interval $x \in (-1, \infty)$

1 C. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 6 - 9x - x^2$$

Answer

Given:- Function $f(x) = 6 - 9x - x^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 6 - 9x - x^2$$

$$\Rightarrow f'(x) = \frac{d}{dx}(6 - 9x - x^2)$$

$$\Rightarrow$$
 f'(x) = -9 - 2x

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow$$
 -9 - 2x > 0

$$\Rightarrow -2x > 9$$

$$\Rightarrow X < -\frac{9}{2}$$

$$\Rightarrow X < -\frac{9}{2}$$

$$\Rightarrow x \in (-\infty, -\frac{9}{2})$$

Thus f(x) is increasing on interval $\left(-\infty, -\frac{9}{2}\right)$

Again, For f(x) to be decreasing, we must have

$$\Rightarrow$$
 -9 - 2x < 0

$$\Rightarrow$$
 -2x < 9

$$\Rightarrow X > -\frac{9}{2}$$

$$\Rightarrow x > -\frac{9}{2}$$

$$\Rightarrow x \in \left(-\frac{9}{2}, \infty\right)$$

Thus f(x) is decreasing on interval $x \in \left(-\frac{9}{2}, \infty\right)$

1 D. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 2x^3 - 12x^2 + 18x + 15$$

Answer

Given:- Function $f(x) = 2x^3 - 12x^2 + 18x + 15$

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 2x^3 - 12x^2 + 18x + 15$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}(2x^3 - 12x^2 + 18x + 15)$

$$\Rightarrow$$
 f'(x) = 6x² - 24x + 18

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 6x^2 - 24x + 18 = 0$$

$$\Rightarrow 6(x^2 - 4x + 3) = 0$$

$$\Rightarrow$$
 6(x² - 3x - x + 3) = 0

$$\Rightarrow 6(x-3)(x-1)=0$$

$$\Rightarrow (x-3)(x-1)=0$$

$$\Rightarrow x = 3, 1$$

clearly, f'(x) > 0 if x < 1 and x > 3

and
$$f'(x) < 0$$
 if $1 < x < 3$

Thus, f(x) increases on $(-\infty,1) \cup (3, \infty)$

and f(x) is decreasing on interval $x \in (1,3)$

1 E. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 5 + 36x + 3x^2 - 2x^3$$

Answer

Given:- Function $f(x) = 5 + 36x + 3x^2 - 2x^3$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 5 + 36x + 3x^2 - 2x^3$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (5 + 36x + 3x² - 2x³)

$$\Rightarrow f'(x) = 36 + 6x - 6x^2$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 36 + 6x - 6x^2 = 0$$

$$\Rightarrow$$
 6(-x² + x + 6) = 0

$$\Rightarrow$$
 6(-x² + 3x - 2x + 6) = 0

$$\Rightarrow -x^2 + 3x - 2x + 6 = 0$$

$$\Rightarrow x^2 - 3x + 2x - 6 = 0$$

$$\Rightarrow (x - 3)(x + 2) = 0$$

$$\Rightarrow$$
 x = 3, -2

clearly,
$$f'(x) > 0$$
 if $-2 < x < 3$

and
$$f'(x) < 0$$
 if $x < -2$ and $x > 3$

Thus, f(x) increases on $x \in (-2,3)$

and f(x) is decreasing on interval $(-\infty, -2) \cup (3, \infty)$

1 F. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 8 + 36x + 3x^2 - 2x^3$$

Answer

Given:- Function $f(x) = 8 + 36x + 3x^2 - 2x^3$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 8 + 36x + 3x^2 - 2x^3$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}$ (8 + 36x + 3x² - 2x³)

$$\Rightarrow$$
 f'(x) = 36 + 6x - 6x²

For f(x) lets find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow$$
 36 + 6x - 6x² = 0

$$\Rightarrow 6(-x^2 + x + 6) = 0$$

$$\Rightarrow$$
 6(-x² + 3x - 2x + 6) = 0

$$\Rightarrow -x^2 + 3x - 2x + 6 = 0$$

$$\Rightarrow x^2 - 3x + 2x - 6 = 0$$

$$\Rightarrow (x-3)(x+2)=0$$

$$\Rightarrow$$
 x = 3, -2

clearly,
$$f'(x) > 0$$
 if $-2 < x < 3$

and
$$f'(x) < 0$$
 if $x < -2$ and $x > 3$

Thus, f(x) increases on $x \in (-2,3)$

and f(x) is decreasing on interval $(-\infty, -2) \cup (3, \infty)$

1 G. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 5x^3 - 15x^2 - 120x + 3$$

Answer

Given:- Function $f(x) = 5x^3 - 15x^2 - 120x + 3$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 5x^3 - 15x^2 - 120x + 3$$

$$\Rightarrow f'(x) = \frac{d}{dx}(5x^3 - 15x^2 - 120x + 3)$$

$$\Rightarrow$$
 f'(x) = 15x² - 30x - 120

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 15x^2 - 30x - 120 = 0$$

$$\Rightarrow 15(x^2 - 2x - 8) = 0$$

$$\Rightarrow 15(x^2 - 4x + 2x - 8) = 0$$

$$\Rightarrow x^2 - 4x + 2x - 8 = 0$$

$$\Rightarrow (x - 4)(x + 2) = 0$$

$$\Rightarrow x = 4$$
, -2

clearly, f'(x) > 0 if x < -2 and x > 4

and
$$f'(x) < 0$$
 if $-2 < x < 4$

Thus, f(x) increases on $(-\infty,-2) \cup (4, \infty)$

and f(x) is decreasing on interval $x \in (-2,4)$

1 H. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = x^3 - 6x^2 - 36x + 2$$

Answer

Given:- Function $f(x) = x^3 - 6x^2 - 36x + 2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^3 - 6x^2 - 36x + 2$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^3 - 6x^2 - 36x + 2)$$

$$\Rightarrow$$
 f'(x) = 3x² - 12x - 36

For f(x) lets find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 3x^2 - 12x - 36 = 0$$

$$\Rightarrow 3(x^2 - 4x - 12) = 0$$

$$\Rightarrow$$
 3(x² - 6x + 2x - 12) = 0

$$\Rightarrow x^2 - 6x + 2x - 12 = 0$$

$$\Rightarrow (x-6)(x+2)=0$$

$$\Rightarrow$$
 x = 6, - 2

clearly, f'(x) > 0 if x < -2 and x > 6

and
$$f'(x) < 0$$
 if $-2 < x < 6$

Thus, f(x) increases on $(-\infty, -2) \cup (6, \infty)$

and f(x) is decreasing on interval $x \in (-2,6)$

1 I. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

Answer

Given:- Function $f(x) = 2x^3 - 15x^2 + 36x + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 2x^3 - 15x^2 + 36x + 1$$

$$\Rightarrow f'(x) = \frac{d}{dx}(2x^3 - 15x^2 + 36x + 1)$$

$$\Rightarrow f'(x) = 6x^2 - 30x + 36$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 6x^2 - 30x + 36 = 0$$

$$\Rightarrow 6(x^2 - 5x + 6) = 0$$

$$\Rightarrow 3(x^2 - 3x - 2x + 6) = 0$$

$$\Rightarrow x^2 - 3x - 2x + 6 = 0$$

$$\Rightarrow (x - 3)(x - 2) = 0$$

 \Rightarrow x = 3, 2

clearly, f'(x) > 0 if x < 2 and x > 3

and f'(x) < 0 if 2 < x < 3

Thus, f(x) increases on $(-\infty, 2) \cup (3, \infty)$

and f(x) is decreasing on interval $x \in (2,3)$

1 J. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 2x^3 + 9x^2 + 12x + 20$$

Answer

Given:- Function $f(x) = 2x^3 + 9x^2 + 12x + 20$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 2x^3 + 9x^2 + 12x + 20$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}(2x^3 + 9x^2 + 12x + 20)$

$$\Rightarrow$$
 f'(x) = 6x² + 18x + 12

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 6x^2 + 18x + 12 = 0$$

$$\Rightarrow 6(x^2 + 3x + 2) = 0$$

$$\Rightarrow$$
 6(x² + 2x + x + 2) = 0

$$\Rightarrow x^2 + 2x + x + 2 = 0$$

$$\Rightarrow (x+2)(x+1) = 0$$

$$\Rightarrow$$
 x = -1, -2

clearly,
$$f'(x) > 0$$
 if $-2 < x < -1$

and
$$f'(x) < 0$$
 if $x < -1$ and $x > -2$

Thus, f(x) increases on $x \in (-2,-1)$

and f(x) is decreasing on interval $(-\infty, -2) \cup (-2, \infty)$

1 K. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 2x^3 - 9x^2 + 12x - 5$$

Answer

Given:- Function $f(x) = 2x^3 - 9x^2 + 12x - 5$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 2x^3 - 9x^2 + 12x - 5$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}(2x^3 - 9x^2 + 12x - 5)$

$$\Rightarrow$$
 f'(x) = 6x² - 18x + 12

For f(x) lets find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 6x^2 - 18x + 12 = 0$$

$$\Rightarrow 6(x^2 - 3x + 2) = 0$$

$$\Rightarrow$$
 6(x² - 2x - x + 2) = 0

$$\Rightarrow x^2 - 2x - x + 2 = 0$$

$$\Rightarrow (x-2)(x-1)=0$$

$$\Rightarrow$$
 x = 1, 2

clearly,
$$f'(x) > 0$$
 if $x < 1$ and $x > 2$

and
$$f'(x) < 0$$
 if $1 < x < 2$

Thus, f(x) increases on $(-\infty, 1) \cup (2, \infty)$

and f(x) is decreasing on interval $x \in (1,2)$

1 L. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 6 + 12x + 3x^2 - 2x^3$$

Answer

Given:- Function $f(x) = -2x^3 + 3x^2 + 12x + 6$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = -2x^3 + 3x^2 + 12x + 6$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}(-2x^3 + 3x^2 + 12x + 6)$

$$\Rightarrow$$
 f'(x) = -6x² + 6x + 12

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow -6x^2 + 6x + 12 = 0$$

$$\Rightarrow 6(-x^2 + x + 2) = 0$$

$$\Rightarrow$$
 6(-x² + 2x - x + 2) = 0

$$\Rightarrow x^2 - 2x + x - 2 = 0$$

$$\Rightarrow (x-2)(x+1) = 0$$

$$\Rightarrow$$
 x = -1, 2

clearly, f'(x) > 0 if -1 < x < 2

and f'(x) < 0 if x < -1 and x > 2

Thus, f(x) increases on $x \in (-1, 2)$

and f(x) is decreasing on interval $(-\infty, -1) \cup (2, \infty)$

1 M. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 2x^3 - 24x + 107$$

Answer

Given:- Function $f(x) = 2x^3 - 24x + 107$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 2x^3 - 24x + 107$$

$$\Rightarrow f'(x) = \frac{d}{dx}(2x^3 - 24x + 107)$$

$$\Rightarrow$$
 f'(x) = 6x² - 24

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 6x^2 - 24 = 0$$

$$\Rightarrow 6(x^2 - 4) = 0$$

$$\Rightarrow (x-2)(x+2) = 0$$

$$\Rightarrow$$
 x = -2, 2

clearly, f'(x) > 0 if x < -2 and x > 2

and
$$f'(x) < 0$$
 if $-2 < x < 2$

Thus, f(x) increases on $(-\infty, -2) \cup (2, \infty)$

and f(x) is decreasing on interval $x \in (-2,2)$

1 N. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = -2x^3 - 9x^2 - 12x + 1$$

Answer

Given:- Function $f(x) = -2x^3 - 9x^2 - 12x + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = -2x^3 - 9x^2 - 12x + 1$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}(-2x^3 - 9x^2 - 12x + 1)$

$$\Rightarrow$$
 f'(x) = -6x² - 18x - 12

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow$$
 -6x² - 18x - 12 = 0

$$\Rightarrow 6x^2 + 18x + 12 = 0$$

$$\Rightarrow$$
 6(x² + 3x + 2) = 0

$$\Rightarrow$$
 6(x² + 2x + x + 2) = 0

$$\Rightarrow x^2 + 2x + x + 2 = 0$$

$$\Rightarrow (x+2)(x+1) = 0$$

$$\Rightarrow$$
 x = -1, -2

clearly, f'(x) > 0 if x < -2 and x > -1

and
$$f'(x) < 0$$
 if $-2 < x < -1$

Thus, f(x) increases on $(-\infty, -2) \cup (-1, \infty)$

and f(x) is decreasing on interval $x \in (-2, -1)$

1 O. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = (x - 1) (x - 2)^2$$

Answer

Given:- Function $f(x) = (x - 1) (x - 2)^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = (x - 1) (x - 2)^2$$

$$\Rightarrow f'(x) = \frac{d}{dx}((x-1)(x-2)^2)$$

$$\Rightarrow$$
 f'(x) =(x - 2)² +2(x - 2)(x - 1)

$$\Rightarrow$$
 f'(x) = (x - 2)(x - 2 + 2x - 2)

$$\Rightarrow f'(x) = (x - 2)(3x - 4)$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow (x-2)(3x-4)=0$$

$$\Rightarrow x = 2, \frac{4}{2}$$

clearly,
$$f'(x) > 0$$
 if $x < \frac{4}{3}$ and $x > 2$

and
$$f'(x) < 0$$
 if $\frac{4}{3} < x < 2$

Thus, f(x) increases on $\left(-\infty, \frac{4}{3}\right) \cup \left(2, \infty\right)$

and f(x) is decreasing on interval $x \in {4 \choose 3}, 2$

1 P. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = x^3 - 12x^2 + 36x + 17$$

Answer

Given:- Function $f(x) = x^3 - 12x^2 + 36x + 17$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^3 - 12x^2 + 36x + 17$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}$ (x³ - 12x² + 36x + 17)

$$\Rightarrow$$
 f'(x) = 3x² - 24x + 36

For f(x) lets find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow 3x^2 - 24x + 36 = 0$$

$$\Rightarrow 3(x^2 - 8x + 12) = 0$$

$$\Rightarrow 3(x^2 - 6x - 2x + 12) = 0$$

$$\Rightarrow$$
 x² - 6x - 2x + 12 = 0

$$\Rightarrow (x-6)(x-2) = 0$$

$$\Rightarrow$$
 x = 2, 6

clearly,
$$f'(x) > 0$$
 if $x < 2$ and $x > 6$

and
$$f'(x) < 0$$
 if $2 < x < 6$

Thus, f(x) increases on $(-\infty, 2) \cup (6, \infty)$

and f(x) is decreasing on interval $x \in (2, 6)$

1 Q. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 2x^3 - 24x + 7$$

Answer

Given:- Function $f(x) = 2x^3 - 24x + 7$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 2x^3 - 24x + 7$$

$$\Rightarrow f'(x) = \frac{d}{dx}(2x^3 - 24x + 7)$$

$$\Rightarrow f'(x) = 6x^2 - 24$$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow$$
 6x² - 24 > 0

$$\Rightarrow x^2 < \frac{24}{\epsilon}$$

$$\Rightarrow x^2 < 4$$

$$\Rightarrow$$
 x < -2, +2

$$\Rightarrow$$
 x \in ($-\infty$, -2) and x \in (2, ∞)

Thus f(x) is increasing on interval $(-\infty, -2) \cup (2, \infty)$

Again, For f(x) to be increasing, we must have

$$\Rightarrow$$
 6x² - 24< 0

$$\Rightarrow$$
 $\chi^2 > \frac{24}{6}$

$$\Rightarrow x^2 < 4$$

$$\Rightarrow$$
 x \in (-1, ∞)

Thus f(x) is decreasing on interval $x \in (-1, \infty)$

1 R. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

Answer

Given:- Function
$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11$$

$$\Rightarrow f'(x) = \frac{d}{dx} (\frac{3}{10}x^4 - \frac{4}{5}x^3 - 3x^2 + \frac{36}{5}x + 11)$$

$$\Rightarrow$$
 f'(x) = $4 \times \frac{3}{10}$ x³ - $3 \times \frac{4}{5}$ x² - 6 x + $\frac{36}{5}$

For f(x) lets find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow \frac{12}{10}x^3 - \frac{12}{5}x^2 - 6x + \frac{36}{5} = 0$$

$$\Rightarrow \frac{6}{5}(x-1)(x+2)(x-3) = 0$$

$$\Rightarrow$$
 x = 1, -2, 3

Now, lets check values of f(x) between different ranges

Here points x=1, -2, 3 divide the number line into disjoint intervals namely, $(-\infty, -2), (-2, 1), (1, 3)$ and $(3, \infty)$

Lets consider interval $(-\infty, -2)$

In this case, we have x - 1 < 0, x + 2 < 0 and x - 3 < 0

Therefore, f'(x) < 0 when $-\infty < x < -2$

Thus, f(x) is strictly decreasing on interval $x \in (-\infty, -2)$

consider interval (-2, 1)

In this case, we have x - 1 < 0, x + 2 > 0 and x - 3 < 0

Therefore, f'(x) > 0 when -2 < x < 1

Thus, f(x) is strictly increases on interval $x \in (-2, 1)$

Now, consider interval (1, 3)

In this case, we have x - 1 > 0, x + 2 > 0 and x - 3 < 0

Therefore, f'(x) < 0 when 1 < x < 3

Thus, f(x) is strictly decreases on interval $x \in (1, 3)$

finally, consider interval $(3, \infty)$

In this case, we have x - 1 > 0, x + 2 > 0 and x - 3 > 0

Therefore, f'(x) > 0 when x > 3

Thus, f(x) is strictly increases on interval $x \in (3, \infty)$

1 S. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = x^4 - 4x$$

Answer

Given:- Function $f(x) = x^4 - 4x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^4 - 4x$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (x⁴ - 4x)

$$\Rightarrow$$
 f'(x) = 4x³ - 4

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 4x^3 - 4 = 0$$

$$\Rightarrow 4(x^3 - 1) = 0$$

$$\Rightarrow x = 1$$

clearly, f'(x) > 0 if x > 1

and
$$f'(x) < 0$$
 if $x < 1$

Thus, f(x) increases on $(1, \infty)$

and f(x) is decreasing on interval $x \in (-\infty, 1)$

1 T. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7$$

Answer

Given:- Function $f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \frac{1}{4}x^4 + \frac{2}{3}x^3 - \frac{5}{2}x^2 - 6x + 7$$

$$\Rightarrow f'(x) = \frac{d}{dx} \left(\frac{1}{4} x^4 + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7 \right)$$

$$\Rightarrow$$
 f'(x) = x³ + 2x² - 5x - 6

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow x^3 + 2x^2 - 5x - 6 = 0$$

$$\Rightarrow (x+1)(x-2)(x+3) = 0$$

$$\Rightarrow$$
 x = -1, 2, -3

clearly, f'(x) > 0 if -3 < x < -1 and x > 2

and
$$f'(x) < 0$$
 if $x < -3$ and $-3 < x < -1$

Thus, f(x) increases on $(-3, -1) \cup (2, \infty)$

and f(x) is decreasing on interval $(\infty, -3) \cup (-1, 2)$

1 U. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = x^4 - 4x^3 + 4x^2 + 15$$

Answer

Given:- Function $f(x) = x^4 - 4x^3 + 4x^2 + 15$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing.

Here we have,

$$f(x) = x^4 - 4x^3 + 4x^2 + 15$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^4 - 4x^3 + 4x^2 + 15)$$

$$\Rightarrow$$
 f'(x) = 4x³ - 12x² + 8x

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 4x^3 - 12x^2 + 8x = 0$$

$$\Rightarrow 4(x^3 - 3x^2 + 2x) = 0$$

$$\Rightarrow x(x^2 - 3x + 2) = 0$$

$$\Rightarrow x(x^2 - 2x - x + 2) = 0$$

$$\Rightarrow$$
 x(x - 2)(x - 1)

$$\Rightarrow$$
 x = 0, 1, 2

clearly, f'(x) > 0 if 0 < x < 1 and x > 2

and
$$f'(x) < 0$$
 if $x < 0$ and $1 < x < 2$

Thus, f(x) increases on $(0, 1) \cup (2, \infty)$

and f(x) is decreasing on interval $(-\infty, 0) \cup (1, 2)$

1 V. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 5x^{\frac{3}{2}} - 3x^{\frac{5}{2}}, x > 0$$

Answer

Given:- Function
$$f(x) = 5x^{\frac{3}{2}} - 3x^{\frac{5}{2}}, x > 0$$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing.

Here we have,

$$f(x) = 5x^{\frac{3}{2}} - 3x^{\frac{5}{2}}, x > 0$$

$$\Rightarrow f'(x) = \frac{d}{dx} (5x^{\frac{3}{2}} - 3x^{\frac{5}{2}})$$

$$\Rightarrow$$
 f'(x) = $\frac{15}{2}$ x $\frac{1}{2}$ - $\frac{15}{2}$ x $\frac{3}{2}$

$$\Rightarrow$$
 f(x) = $\frac{15}{2}$ x $\frac{1}{2}$ (1-x)

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow \frac{15}{2} x^{\frac{1}{2}} (1-x) = 0$$

$$\Rightarrow x^{\frac{1}{2}} (1-x) = 0$$

$$\Rightarrow$$
 x = 0, 1

Since x > 0, therefore only check the range on the positive side of the number line.

clearly, f'(x) > 0 if 0 < x < 1

and
$$f'(x) < 0 \text{ if } x > 1$$

Thus, f(x) increases on (0, 1)

and f(x) is decreasing on interval $x \in (1, \infty)$

1 W. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = x^8 + 6x^2$$

Answer

Given:- Function $f(x) = x^8 + 6x^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^8 + 6x^2$$

$$\Rightarrow f'(x) = \frac{d}{dx}(8x^7 + 12x)$$

$$\Rightarrow$$
 f'(x) = 8x⁷ + 12x

$$\Rightarrow f'(x) = 4x(2x^6 + 3)$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 4x(2x^6+3) = 0$$

$$\Rightarrow x(2x^6+3)=0$$

$$\Rightarrow$$
 x = 0 , $\sqrt[\frac{1}{6}]{-\frac{3}{2}}$

Since $x = \sqrt[\frac{1}{6}]{-\frac{3}{2}}$ is a complex number, therefore only check range on 0 sides of number line.

clearly, f'(x) > 0 if x > 0

and
$$f'(x) < 0$$
 if $x < 0$

Thus, f(x) increases on $(0, \infty)$

and f(x) is decreasing on interval $x \in (-\infty, 0)$

1 X. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = x^3 - 6x^2 + 9x + 15$$

Answer

Given:- Function $f(x) = x^3 - 6x^2 + 9x + 15$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^3 - 6x^2 + 9x + 15$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (x³ - 6x² + 9x + 15)

$$\Rightarrow f'(x) = 3x^2 - 12x + 9$$

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow 3x^2 - 12x + 9 = 0$$

$$\Rightarrow 3(x^2 - 4x + 3) = 0$$

$$\Rightarrow 3(x^2 - 3x - x + 3) = 0$$

$$\Rightarrow x^2 - 3x - x + 3 = 0$$

$$\Rightarrow (x-3)(x-1)=0$$

$$\Rightarrow$$
 x = 1, 3

clearly, f'(x) > 0 if x < 1 and x > 3

and
$$f'(x) < 0$$
 if $1 < x < 3$

Thus, f(x) increases on $(-\infty, 1) \cup (3, \infty)$

and f(x) is decreasing on interval $x \in (1, 3)$

1 Y. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \{x (x - 2)\}^2$$

Answer

Given:- Function $f(x) = \{x (x - 2)\}^2$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \{x (x - 2)\}^2$$

$$\Rightarrow f(x) = \{[x^2 - 2x]\}^2$$

$$\Rightarrow f'(x) = \frac{d}{dx}([x^2 - 2x]^2)$$

$$\Rightarrow$$
 f'(x)= 2(x²-2x)(2x-2)

$$\Rightarrow$$
 f'(x)= 4x(x-2)(x-1)

For f(x) lets find critical point, we must have

$$\Rightarrow$$
 f'(x) = 0

$$\Rightarrow$$
 4x(x-2)(x-1)= 0

$$\Rightarrow x(x-2)(x-1)=0$$

$$\Rightarrow$$
 x = 0, 1, 2

Now, lets check values of f(x) between different ranges

Here points x = 0, 1, 2 divide the number line into disjoint intervals namely, $(-\infty, 0), (0, 1), (1, 2)$ and $(2, \infty)$

Lets consider interval $(-\infty, 0)$ and (1, 2)

In this case, we have x(x-2)(x-1) < 0

Therefore, f'(x) < 0 when x < 0 and 1 < x < 2

Thus, f(x) is strictly decreasing on interval $(-\infty, 0) \cup (1, 2)$

Now, consider interval (0, 1) and $(2, \infty)$

In this case, we have x(x-2)(x-1) > 0

Therefore, f'(x) > 0 when 0 < x < 1 and x < 2

Thus, f(x) is strictly increases on interval $(0, 1) \cup (2, \infty)$

1 Z. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

Answer

Given:- Function $f(x) = 3x^4 - 4x^3 - 12x^2 + 5$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = 3x^4 - 4x^3 - 12x^2 + 5$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}$ (3x⁴ - 4x³ - 12x² + 5)

$$\Rightarrow$$
 f'(x) = 12x³ - 12x² - 24x

$$\Rightarrow f'(x) = 12x(x^2 - x - 2)$$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow$$
 12x(x² - x - 2)> 0

$$\Rightarrow x(x^2 - 2x + x - 2) > 0$$

$$\Rightarrow x(x-2)(x+1) > 0$$

$$\Rightarrow$$
 -1 < x < 0 and x > 2

$$\Rightarrow$$
 x \in (-1,0) \cup (2, ∞)

Thus f(x) is increasing on interval $(-1,0)\cup(2,\infty)$

Again, For f(x) to be decreasing, we must have

$$\Rightarrow 12x(x^2 - x - 2) < 0$$

$$\Rightarrow x(x^2 - 2x + x - 2) < 0$$

$$\Rightarrow x(x-2)(x+1) < 0$$

$$\Rightarrow$$
 $-\infty$ < x < -1 and 0 < x < 2

$$\Rightarrow$$
 x \in ($-\infty$, -1) \cup (0, 2)

Thus f(x) is decreasing on interval $(-\infty, -1) \cup (0, 2)$

1 A1. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$$

Answer

Given:- Function
$$f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have.

$$f(x) = \frac{3}{2}x^4 - 4x^3 - 45x^2 + 51$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}(\frac{3}{2}x^4 - 4x^3 - 45x^2 + 51)$

$$\Rightarrow$$
 f'(x) = 6x³ - 12x² - 90x

$$\Rightarrow$$
 f'(x) = 6x(x² - 2x - 15)

$$\Rightarrow$$
 f'(x) = 6x(x² - 5x + 3x - 15)

$$\Rightarrow f'(x) = 6x(x - 5)(x + 3)$$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow$$
 6x(x - 5)(x + 3)> 0

$$\Rightarrow x(x-5)(x+3) > 0$$

$$\Rightarrow$$
 -3 < x < 0 or 5 < x < ∞

$$\Rightarrow$$
 x \in (-3,0) \cup (5, ∞)

Thus f(x) is increasing on interval (-3,0) \cup $(5, \infty)$

Again, For f(x) to be decreasing, we must have

$$\Rightarrow 6x(x-5)(x+3) > 0$$

$$\Rightarrow x(x-5)(x+3) > 0$$

$$\Rightarrow$$
 $-\infty$ < x < -3 or 0 < x < 5

$$\Rightarrow$$
 x \in ($-\infty$, -3) \cup (0, 5)

Thus f(x) is decreasing on interval $(-\infty, -3)\cup(0, 5)$

1 B1. Question

Find the intervals in which the following functions are increasing or decreasing.

$$f(x) = \log(2+x) - \frac{2x}{2+x}$$

Answer

Given:- Function
$$f(x) = log(2 + x) - \frac{2x}{2+x}$$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = log(2 + x) - \frac{2x}{2 + x}$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\log(2 + x) - \frac{2x}{2+x})$$

$$\Rightarrow$$
 f'(x) = $\frac{1}{2+x} - \frac{(2+x)2-2x \times 1}{(2+x)^2}$

$$\Rightarrow$$
 f'(x) = $\frac{1}{2+x} - \frac{4+2x-2x}{(2+x)^2}$

$$\Rightarrow f'(x) = \frac{1}{2+x} - \frac{4}{(2+x)^2}$$

$$\Rightarrow f'(x) = \frac{2+x-4}{(2+x)^2}$$

$$\Rightarrow f'(x) = \frac{x-2}{(2+x)^2}$$

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow \frac{x-2}{(2+x)^2} > 0$$

$$\Rightarrow$$
 (x - 2) > 0

$$\Rightarrow$$
 2 < x < ∞

$$\Rightarrow$$
 x \in (2, ∞)

Thus f(x) is increasing on interval $(2, \infty)$

Again, For f(x) to be decreasing, we must have

$$\Rightarrow \frac{x-2}{(2+x)^2} < 0$$

$$\Rightarrow$$
 (x - 2) < 0

$$\Rightarrow -\infty < x < 2$$

$$\Rightarrow$$
 x \in ($-\infty$, 2)

Thus f(x) is decreasing on interval $(-\infty, 2)$

2. Question

Determine the values of x for which the function $f(x) = x^2 - 6x + 9$ is increasing or decreasing. Also, find the coordinates of the point on the curve $y = x^2 - 6x + 9$ where the normal is parallel to the liney = x + 5.

Answer

Given:- Function $f(x) = x^2 - 6x + 9$ and a line parallel to y = x + 5

Theorem:- Let f be a differentiable real function defined on an open interval (a, b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^2 - 6x + 9$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^2 - 6x + 9)$$

$$\Rightarrow$$
 f'(x) = 2x - 6

$$\Rightarrow$$
 f'(x) = 2(x - 3)

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow$$
 2(x - 3) = 0

$$\Rightarrow$$
 (x - 3) = 0

$$\Rightarrow x = 3$$

clearly, f'(x) > 0 if x > 3

and
$$f'(x) < 0$$
 if $x < 3$

Thus, f(x) increases on $(3, \infty)$

and f(x) is decreasing on interval $x \in (-\infty, 3)$

Now, lets find coordinates of point

Equation of curve is

$$f(x) = x^2 - 6x + 9$$

slope of this curve is given by

$$\Rightarrow$$
 m₁ = $\frac{dy}{dx}$

$$\Rightarrow m_1 = \frac{d}{dx}(x^2 - 6x + 9)$$

$$\Rightarrow$$
 m₁ = 2x - 6

and Equation of line is

$$y = x + 5$$

slope of this curve is given by

$$\Rightarrow$$
 $m_2 = \frac{dy}{dx}$

$$\Rightarrow m_2 = \frac{d}{dx}(x+5)$$

$$\Rightarrow$$
 m₂ = 1

Since slope of curve (i.e slope of its normal) is parallel to line

Therefore, they follow the relation

$$\Rightarrow \frac{-1}{m_1} = m_2$$

$$\Rightarrow \frac{-1}{2x-6} = 1$$

$$\Rightarrow$$
 2x - 6 = -1

$$\Rightarrow X = \frac{5}{2}$$

Thus putting the value of x in equation of curve, we get

$$\Rightarrow y = x^2 - 6x + 9$$

$$\Rightarrow$$
 y = $(\frac{5}{2})^2 - 6(\frac{5}{2}) + 9$

$$\Rightarrow$$
 y = $\frac{25}{4} - 15 + 9$

$$\Rightarrow$$
 y $=\frac{25}{4}-6$

$$\Rightarrow y = \frac{1}{4}$$

Thus the required coordinates is $(\frac{5}{2}, \frac{1}{4})$

3. Question

Find the intervals in which $f(x) = \sin x - \cos x$, where $0 < x < 2\pi$ is increasing or decreasing.

Answer

Given:- Function $f(x) = \sin x - \cos x$, $0 < x < 2\pi$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \sin x - \cos x$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\sin x - \cos x)$$

$$\Rightarrow$$
 f'(x) = cos x + sin x

For f(x) lets find critical point, we must have

$$\Rightarrow f'(x) = 0$$

$$\Rightarrow$$
 cos x + sin x = 0

$$\Rightarrow tan(x) = -1$$

$$\Rightarrow$$
 $\chi = \frac{3\pi}{4}$, $\frac{7\pi}{4}$

Here these points divide the angle range from 0 to 2Π since we have x as angle

clearly, f'(x) > 0 if 0 < x <
$$\frac{3\pi}{4}$$
 and $\frac{7\pi}{4}$ < x < 2π

and
$$f'(x) < 0$$
 if $\frac{3\pi}{4} < x < \frac{7\pi}{4}$

Thus, f(x) increases on $(0, \frac{3\pi}{4})$ U $(\frac{7\pi}{4}, 2\pi)$

and f(x) is decreasing on interval $(\frac{3\pi}{4}, \frac{7\pi}{4})$

4. Question

Show that $f(x) = e^{2x}$ is increasing on R.

Answer

Given:- Function $f(x) = e^{2x}$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = e^{2x}$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (e^{2x})

$$\Rightarrow$$
 f'(x) = 2e^{2x}

For f(x) to be increasing, we must have

$$\Rightarrow f'(x) > 0$$

$$\Rightarrow$$
 2e^{2x} > 0

$$\Rightarrow e^{2x} > 0$$

since, the value of e lies between 2 and 3

so, whatever be the power of e (i.e x in domain R) will be greater than zero.

Thus f(x) is increasing on interval R

5. Question

Show that $f(x) = e^{\frac{1}{x}}$, $x \neq 0$ is a decreasing function for all $x \neq 0$.

Answer

Given:- Function $f(x) = e^{\frac{1}{x}}$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = e^{\frac{1}{x}}$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx} \left(e^{\frac{1}{x}} \right)$

$$\Rightarrow$$
 f'(x) = $e_{x}^{\frac{1}{2}} \left(\frac{-1}{x^2} \right)$

$$\stackrel{\Rightarrow}{}$$
 f'(x) = $-\frac{e^{\frac{1}{x}}}{x^2}$

As given $x \in R$, $x \neq 0$

$$\Rightarrow \frac{1}{v^2} > 0$$
 and $e^{\frac{1}{x}} > 0$

Their ratio is also greater than 0

$$\Rightarrow \frac{e^{\frac{1}{x}}}{v^2} > 0$$

$$\Rightarrow -\frac{e^{\frac{1}{x}}}{e^{x^2}} < 0$$
; as by applying -ve sign change in comparision sign

$$\Rightarrow f'(x) < 0$$

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all $x \neq 0$

6. Question

Show that $f(x) = \log_a x$, 0 < a < 1 is a decreasing function for all x > 0.

Answer

Given:- Function $f(x) = log_a x$, 0 < a < 1

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = log_a x, 0 < a < 1$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}(\log_a x)$

$$\Rightarrow f'(x) = \frac{1}{x \log a}$$

As given 0 < a < 1

$$\Rightarrow \log(a) < 0$$

and for x > 0

$$\Rightarrow \frac{1}{x} > 0$$

Therefore f'(x) is

$$\Rightarrow \frac{1}{\text{xloga}} < 0$$

$$\Rightarrow$$
 f'(x) < 0

Hence, condition for f(x) to be decreasing

Thus f(x) is decreasing for all x > 0

7. Question

Show that $f(x) = \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$ and neither increasing nor decreasing in $(0, \pi)$.

Answer

Given:- Function $f(x) = \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \sin x$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (sin x)

$$\Rightarrow$$
 f'(x) = cosx

Taking different region from 0 to 2π

a) let
$$x \in (0, \frac{\pi}{2})$$

$$\Rightarrow \cos(x) > 0$$

$$\Rightarrow f'(x) > 0$$

Thus f(x) is increasing in $(0, \frac{\pi}{2})$

b) let
$$x \in (\frac{\pi}{2}, \pi)$$

$$\Rightarrow \cos(x) < 0$$

$$\Rightarrow f'(x) < 0$$

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Therefore, from above condition we find that

$$\Rightarrow$$
 f(x) is increasing in $(0,\frac{\pi}{2})$ and decreasing in $(\frac{\pi}{2},\pi)$

Hence, condition for f(x) neither increasing nor decreasing in $(0,\pi)$

8. Question

Show that $f(x) = \log \sin x$ is increasing on $(0, \pi/2)$ and decreasing on $(\pi/2, \pi)$.

Answer

Given:- Function $f(x) = \log \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \log \sin x$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\log \sin x)$$

$$\Rightarrow f'(x) = \frac{1}{\sin x} \times \cos x$$

$$\Rightarrow$$
 f'(x) = cot(x)

Taking different region from 0 to $\boldsymbol{\pi}$

a) let
$$x \in (0, \frac{\pi}{2})$$

$$\Rightarrow \cot(x) > 0$$

$$\Rightarrow f'(x) > 0$$

Thus f(x) is increasing in $(0, \frac{\pi}{2})$

b) let
$$x \in (\frac{\pi}{2}, \pi)$$

$$\Rightarrow$$
 cot(x) < 0

$$\Rightarrow f'(x) < 0$$

Thus f(x) is decreasing in $(\frac{\pi}{2}, \pi)$

Hence proved

9. Question

Show that $f(x) = x - \sin x$ is increasing for all $x \in R$.

Answer

Given:- Function $f(x) = x - \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x - \sin x$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x - \sin x)$$

$$\Rightarrow f'(x) = 1 - \cos x$$

Now, as given

 $x \in R$

$$\Rightarrow$$
 -1 < cosx < 1

$$\Rightarrow$$
 -1 > cos x > 0

$$\Rightarrow f'(x) > 0$$

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

10. Question

Show that $f(x) = x^3 - 15x^2 + 75x - 50$ is an increasing function for all $x \in \mathbb{R}$.

Answer

Given:- Function $f(x) = x^3 - 15x^2 + 75x - 50$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^3 - 15x^2 + 75x - 50$$

⇒
$$f'(x) = \frac{d}{dx}(x^3 - 15x^2 + 75x - 50)$$

$$\Rightarrow$$
 f'(x) = 3x² - 30x + 75

$$\Rightarrow$$
 f'(x) = 3(x² - 10x + 25)

$$\Rightarrow f'(x) = 3(x - 5)^2$$

Now, as given

 $x \in R$

$$\Rightarrow (x - 5)^2 > 0$$

$$\Rightarrow 3(x - 5)^2 > 0$$

$$\Rightarrow f'(x) > 0$$

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

11. Question

Show that $f(x) = \cos^2 x$ is a decreasing function on $(0, \pi/2)$.

Answer

Given:- Function $f(x) = \cos^2 x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \cos^2 x$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\cos^2 x)$$

$$\Rightarrow$$
 f'(x) = 3cosx(-sinx)

$$\Rightarrow$$
 f'(x) = -2sin(x)cos(x)

 \Rightarrow f'(x) = -sin2x; as sin2A = 2sinA cosA

Now, as given

$$x \in \left(0, \frac{\pi}{2}\right)$$

$$\Rightarrow 2x \in (0, \pi)$$

$$\Rightarrow$$
 Sin(2x)> 0

$$\Rightarrow$$
 -Sin(2x)< 0

$$\Rightarrow f'(x) < 0$$

hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(0, \frac{\pi}{2}\right)$

Hence proved

12. Question

Show that $f(x) = \sin x$ is an increasing function on $(-\pi/2, \pi/2)$.

Answer

Given:- Function $f(x) = \sin x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \sin x$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (sin x)

$$\Rightarrow$$
 f'(x) = cosx

Now, as given

$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

That is 4th quadrant, where

$$\Rightarrow$$
 cosx> 0

$$\Rightarrow f'(x) > 0$$

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

13. Question

Show that $f(x) = \cos x$ is a decreasing function on $(0, \pi)$, increasing in $(-\pi, 0)$ and neither increasing nor

decreasing in $(-\pi, \pi)$.

Answer

Given:- Function $f(x) = \cos x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \cos x$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (cos x)

$$\Rightarrow f'(x) = -\sin x$$

Taking different region from 0 to 2π

- a) let $x \in (0,\pi)$
- $\Rightarrow \sin(x) > 0$
- \Rightarrow -sinx < 0
- $\Rightarrow f'(x) < 0$

Thus f(x) is decreasing in $(0,\pi)$

- b) let $x \in (-\pi, 0)$
- $\Rightarrow \sin(x) < 0$
- \Rightarrow -sinx > 0
- $\Rightarrow f'(x) > 0$

Thus f(x) is increasing in $(-\pi, 0)$

Therefore, from above condition we find that

 \Rightarrow f(x) is decreasing in $(0,\pi)$ and increasing in $(-\pi,0)$

Hence, condition for f(x) neither increasing nor decreasing in $(-\pi,\pi)$

14. Ouestion

Show that $f(x) = \tan x$ is an increasing function on $(-\pi/2, \pi/2)$.

Answer

Given:- Function $f(x) = \tan x$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \tan x$$

$$\Rightarrow$$
 f'(x) = $\frac{d}{dx}$ (tan x)

$$\Rightarrow$$
 f'(x) = sec²x

Now, as given

$$x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$

That is 4th quadrant, where

$$\Rightarrow$$
 sec²x> 0

$$\Rightarrow f'(x) > 0$$

hence, Condition for f(x) to be increasing

Thus f(x) is increasing on interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

15. Question

Show that $f(x) = \tan^{-1} (\sin x + \cos x)$ is a decreasing function on the interval $(\pi/4, \pi/2)$.

Answer

Given:- Function $f(x) = tan^{-1} (sin x + cos x)$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \tan^{-1} (\sin x + \cos x)$$

$$\Rightarrow f'(x) = \frac{d}{dx}(\tan^{-1}(\sin x + \cos x))$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given

$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

 \Rightarrow Cosx - sinx < 0; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

$$\Rightarrow$$
 f'(x) < 0

hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

16. Question

Show that the function
$$f(x) = \sin\left(2x + \frac{\pi}{4}\right)$$
 is decreasing on $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$

Answer

Given:- Function $f(x) = \sin(2x + \frac{\pi}{4})$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \sin(2x + \frac{\pi}{4})$$

$$\Rightarrow f'(x) = \frac{d}{dx} \{ \sin(2x + \frac{\pi}{4}) \}$$

$$\Rightarrow f(x) = \cos\left(2x + \frac{\pi}{4}\right) \times 2$$

$$\Rightarrow f'(x) = 2\cos\left(2x + \frac{\pi}{4}\right)$$

Now, as given

$$x \in \left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$$

$$\Rightarrow \frac{3\pi}{9} < X < \frac{5\pi}{9}$$

$$\Rightarrow \frac{3\pi}{4} < 2x < \frac{5\pi}{4}$$

$$\Rightarrow \pi < 2x + \frac{\pi}{4} < \frac{3\pi}{2};$$

as here $2x + \frac{\pi}{4}$ lies in 3rd quadrant

$$\Rightarrow \cos\left(2x + \frac{\pi}{4}\right) < 0$$

$$\Rightarrow 2\cos\left(2x + \frac{\pi}{4}\right) < 0$$

$$\Rightarrow f'(x) < 0$$

hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{3\pi}{8}, \frac{5\pi}{8}\right)$

17. Question

Show that the function $f(x) = \cot^{-1} (\sin x + \cos x)$ is decreasing on $(0, \pi/4)$ and increasing on $(\pi/4, \pi/2)$.

Answer

Given:- Function $f(x) = \cot^{-1} (\sin x + \cos x)$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = \cot^{-1} (\sin x + \cos x)$$

$$\Rightarrow f'(x) = \frac{d}{dx} \{ \cot^{-1} (\sin x + \cos x) \}$$

$$\Rightarrow f'(x) = \frac{1}{1 + (\sin x + \cos x)^2} \times (\cos x - \sin x)$$

$$\Rightarrow f'(x) = \frac{(\cos x - \sin x)}{1 + \sin^2 x + \cos^2 x + 2\sin x \cos x}$$

$$\Rightarrow f'(x) = \frac{\cos x - \sin x}{2(1 + \sin x \cos x)}$$

Now, as given

$$x \in \left(\frac{\pi}{4}, \frac{\pi}{2}\right)$$

⇒ Cosx - sinx < 0; as here cosine values are smaller than sine values for same angle

$$\Rightarrow \frac{\cos x - \sin x}{2(1 + \sin x \cos x)} < 0$$

$$\Rightarrow f'(x) < 0$$

hence, Condition for f(x) to be decreasing

Thus f(x) is decreasing on interval $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$

18. Question

Show that $f(x) = (x - 1) e^{x} + 1$ is an increasing function for all x > 0.

Answer

Given:- Function $f(x) = (x - 1) e^{x} + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a, b)$, then f(x) is decreasing on (a, b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = (x - 1) e^{x} + 1$$

$$\Rightarrow f'(x) = \frac{d}{dx}((x-1)e^x + 1)$$

$$\Rightarrow$$
 f'(x) = e^x + (x - 1) e^x

$$\Rightarrow$$
 f'(x) = e^x(1+ x - 1)

$$\Rightarrow$$
 f'(x) = xe^x

as given

$$\Rightarrow e^{x} > 0$$

$$\Rightarrow xe^{x} > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval x > 0

19. Question

Show that the function $x^2 - x + 1$ is neither increasing nor decreasing on (0, 1).

Answer

Given:- Function $f(x) = x^2 - x + 1$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = x^2 - x + 1$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^2 - x + 1)$$

$$\Rightarrow f'(x) = 2x - 1$$

Taking different region from (0, 1)

a) let
$$x \in (0, \frac{1}{2})$$

$$\Rightarrow 2x - 1 < 0$$

$$\Rightarrow f'(x) < 0$$

Thus f(x) is decreasing in $(0,\frac{1}{2})$

b) let
$$x \in (\frac{1}{2}, 1)$$

$$\Rightarrow 2x - 1 > 0$$

$$\Rightarrow f'(x) > 0$$

Thus f(x) is increasing in $(\frac{1}{2}, 1)$

Therefore, from above condition we find that

 \Rightarrow f(x) is decreasing in $(0,\frac{1}{2})$ and increasing in $(\frac{1}{2},1)$

Hence, condition for f(x) neither increasing nor decreasing in (0, 1)

20. Question

Show that $f(x) = x^9 + 4x^7 + 11$ is an increasing function for all $x \in \mathbb{R}$.

Answer

Given:- Function $f(x) = x^9 + 4x^7 + 11$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing.

Here we have,

$$f(x) = x^9 + 4x^7 + 11$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^9 + 4x^7 + 11)$$

$$\Rightarrow f'(x) = 9x^8 + 28x^6$$

$$\Rightarrow$$
 f'(x) = x⁶(9x² + 28)

as given

 $x \in R$

$$\Rightarrow$$
 $x^6 > 0$ and $9x^2 + 28 > 0$

$$\Rightarrow x^6(9x^2 + 28) > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

21. Question

Prove that the function $f(x) = x^3 - 6x^2 + 12x - 18$ is increasing on R.

Answer

Given:- Function $f(x) = x^3 - 6x^2 + 12x - 18$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

- (i) If f'(x) > 0 for all $x \in (a,b)$, then f(x) is increasing on (a,b)
- (ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

- (i) Obtain the function and put it equal to f(x)
- (ii) Find f'(x)
- (iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain, it is decreasing.

Here we have,

$$f(x) = x^3 - 6x^2 + 12x - 18$$

$$\Rightarrow$$
 f(x) = $\frac{d}{dx}$ (x³ - 6x² + 12x - 18)

$$\Rightarrow$$
 f'(x) = 3x² - 12x + 12

$$\Rightarrow$$
 f'(x) = 3(x² - 4x + 4)

$$\Rightarrow f'(x) = 3(x - 2)^2$$

as given

 $x \in R$

$$\Rightarrow$$
 (x - 2)²> 0

$$\Rightarrow 3(x-2)^2 > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in R$

22. Question

State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function $f(x) = x^2 - 6x + 3$ is increasing on the interval [4, 6].

Answer

Given:- Function
$$f(x) = f(x) = x^2 - 6x + 3$$

Theorem:- Let f be a differentiable real function defined on an open interval (a,b).

(i) If f'(x) > 0 for all $x \in (a, b)$, then f(x) is increasing on (a, b)

(ii) If f'(x) < 0 for all $x \in (a,b)$, then f(x) is decreasing on (a,b)

Algorithm:-

(i) Obtain the function and put it equal to f(x)

(ii) Find f'(x)

(iii) Put f'(x) > 0 and solve this inequation.

For the value of x obtained in (ii) f(x) is increasing and for remaining points in its domain it is decreasing.

Here we have,

$$f(x) = f(x) = x^2 - 6x + 3$$

$$\Rightarrow f'(x) = \frac{d}{dx}(x^2 - 6x + 3)$$

$$\Rightarrow$$
 f'(x) = 2x - 6

$$\Rightarrow$$
 f'(x) = 2(x - 3)

Here A function is said to be increasing on [a,b] if f(x) > 0

as given

$$x \in [4, 6]$$

$$\Rightarrow 4 \le x \le 6$$

$$\Rightarrow 1 \le (x-3) \le 3$$

$$\Rightarrow$$
 (x - 3) > 0

$$\Rightarrow 2(x-3) > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, condition for f(x) to be increasing

Thus f(x) is increasing on interval $x \in [4, 6]$

23. Question

Show that $f(x) = \sin x - \cos x$ is an increasing function on $(-\pi/4, \pi/4)$?

Answer

we have,

$$f(x) = \sin x - \cos x$$

$$f'(x) = \cos x + \sin x$$

$$=\sqrt{2}\big(\frac{1}{\sqrt{2}}\cos x+\frac{1}{\sqrt{2}}\sin x\big)$$

$$= \sqrt{2} \left(\frac{\sin \pi}{4} \cos x + \frac{\cos \pi}{4} \sin x \right)$$

$$=\sqrt{2}\sin\left(\frac{\pi}{4}+x\right)$$

Now,

$$x \in \left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$$

$$\Rightarrow -\frac{\pi}{4} < x < \frac{\pi}{4}$$

$$\Rightarrow 0 < \frac{\pi}{4} + x < \frac{\pi}{2}$$

$$\Rightarrow \sin 0^{\circ} < \sin \left(\frac{\pi}{4} + x\right) < \sin \frac{\pi}{2}$$

$$\Rightarrow 0 < \sin\left(\frac{\pi}{4} + x\right) < 1$$

$$\Rightarrow \sqrt{2}\sin\left(\frac{\pi}{4} + x\right) > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing function on $(-\pi/4, \pi/4)$

24. Question

Show that $f(x) = \tan^{-1} x - x$ is a decreasing function on R?

Answer

we have,

$$f(x) = \tan^{-1} x - x$$

$$f'(x) = \frac{1}{1 + x^2} - 1$$

$$= -\frac{x^2}{1+x^2}$$

Now.

 $x \in R$

$$\Rightarrow x^2 > 0 \text{ and } 1 + x^2 > 0$$

$$\Rightarrow \frac{x^2}{1+x^2} > 0$$

$$\Rightarrow -\frac{x^2}{1+x^2} < 0$$

$$\Rightarrow f'(x) < 0$$

Hence, f(x) is an decreasing function for R

25. Question

Determine whether $f(x) = x/2 + \sin x$ is increasing or decreasing on $(-\pi/3, \pi/3)$?

Answer

we have,

$$f(x) = -\frac{x}{2} + \sin x$$

$$= f'(x) = -\frac{1}{2} + \cos x$$

Now,

$$x \in \left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$$

$$\Rightarrow -\frac{\pi}{3} < x < \frac{\pi}{3}$$

$$\Rightarrow \cos \left(-\frac{\pi}{3} \right) < \cos x < \cos \frac{\pi}{3}$$

$$\Rightarrow \cos\left(\frac{\pi}{3}\right) < \cos x < \cos\frac{\pi}{3}$$

$$\Rightarrow \frac{1}{2} < \cos x < \frac{1}{2}$$

$$\Rightarrow -\frac{1}{2} + \cos x > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing function on $(-\pi/3, \pi/3)$

26. Question

Find the interval in which $f(x) = log(1+x) - \frac{x}{1+x}$ is increasing or decreasing ?

Answer

we have

$$f(x) = \log(1+x) - \frac{x}{1+x}$$

$$f'(x) = \frac{1}{1+x} - \left(\frac{(1+x)-x}{(1+x)^2}\right)$$

$$=\frac{1}{1+x}-\left(\frac{1}{(1+x)^2}\right)$$

$$=\frac{x}{(1+x)^2}$$

Critical points

$$f'(x) = 0$$

$$\Rightarrow \frac{x}{(1+x)^2} = 0$$

$$\Rightarrow x = 0, -1$$

Clearly, f'(x) > 0 if x>0

And
$$f'(x) < 0$$
 if $-1 < x < 0$ or $x < -1$

Hence, f(x) increases in $(0,\infty)$, decreases in $(-\infty, -1)$ U (-1, 0)

27. Question

Find the intervals in which $f(x) = (x + 2)e^{-x}$ is increasing or decreasing?

Answer

we have,

$$f(x) = (x + 2)e^{-x}$$

$$f'(x) = e^{-x} - e^{-x} (x+2)$$

$$= e^{-x} (1 - x - 2)$$

$$= -e^{-x} (x+1)$$

Critical points

$$f'(x) = 0$$

$$\Rightarrow -e^{-X}(x+1)=0$$

Clearly
$$f'(x) > 0$$
 if $x < -1$

$$f'(x) < 0 \text{ if } x > -1$$

Hence f(x) increases in $(-\infty,-1)$, decreases in $(-1,\infty)$

28. Question

Show that the function f given by $f(x) = 10^x$ is increasing for all x?

Answer

we have,

$$f(x) = 10^{x}$$

∴f' (x) =
$$10^{x} \log 10$$

Now,

 $x \in R$

$$\Rightarrow 10^x \log 10 > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) in an increasing function for all x

29. Question

Prove that the function f given by f(x) = x - [x] is increasing in (0, 1)?

Answer

we have,

$$f(x) = x - [x]$$

$$f'(x) = 1 > 0$$

 \therefore f(x) is an increasing function on (0,1)

30. Question

Prove that the following function is increasing on r?

i.
$$f(x) = 3x^5 + 40x^3 + 240x$$

ii.
$$f(x) = 4x^3 - 18x^2 + 27x - 27$$

Answer

(i) we have

$$f(x) = 3x^5 + 40x^3 + 240x$$

$$f'(x) = 15x^4 + 120x^2 + 240$$

$$=15(x^4+8x^2+16)$$

$$=15(x^2+4)^2$$

Now,

$$x \in R$$

$$\Rightarrow (x^2 + 4)^2 > 0$$

$$\Rightarrow 15(x^2+4)^2 > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing function for all x

(ii) we have

$$f(x) = 4x^3 - 18x^2 + 27x - 27$$

$$f'(x) = 12x^2 - 36x + 27$$

$$=12x^2-18x-18x+27$$

$$=3(2x-3)^2$$

Now,

$$\Rightarrow (2x-3)^2 > 0$$

$$\Rightarrow 3(2x-3)^2 > 0$$

$$\Rightarrow f'(x) > 0$$

Hence, f(x) is an increasing fuction for all x

31. Question

Prove that the function f given by $f(x) = \log \cos x$ is strictly increasing on $(-\pi/2, 0)$ and strictly decreasing on $(0, \pi/2)$?

Answer

we have,

$$f(x) = \log \cos x$$

$$f'(x) = \frac{1}{\cos x}(-\sin x) = -\tan x$$

In Interval $(0,\frac{\pi}{2})$, $\tan x > 0 \Rightarrow -\tan x < 0$

$$\therefore f'(x) < 0 \text{ on } \left(0, \frac{\pi}{2}\right)$$

$$\therefore$$
 f is strickly decreasing on $\left(0, \frac{\pi}{2}\right)$

In interval $(\frac{\pi}{2}, \pi)$, $\tan x < 0 \Rightarrow -\tan x > 0$

$$\therefore f'(x) > 0 \text{ on } \left(\frac{\pi}{2}, \pi\right)$$

32. Question

Prove that the function f given by $f(x) = x^3 - 3x^2 + 4x$ is strictly increasing on R?

Answer

given
$$f(x) = x^3 - 3x^2 + 4x$$

$$f(x) = 3x^2 - 6x + 4$$

$$=3(x^2-2x+1)+1$$

$$=3(x-1)^2+1>0$$
 for all $x \in R$

Hence f(x) is strickly increasing on R

33. Question

33 Prove that the function $f(x) = \cos x$ is :

i. strictly decreasing on $(0, \pi)$

ii. strictly increasing in $(\pi, 2\pi)$

iii. neither increasing nor decreasing in (0, 2 π)

Answer

Given $f(x) = \cos x$

$$f'(x) = -\sin x$$

(i) Since for each $x \in (0, \pi)$, $\sin x > 0$

$$\Rightarrow$$
 : f'(x) < 0

So f is strictly decreasing in $(0, \pi)$

(ii) Since for each $x \in (\pi, 2\pi)$, $\sin x < 0$

$$\Rightarrow$$
 : f'(x) > 0

So f is strictly increasing in $(\pi, 2\pi)$

(iii) Clearly from (1) and (2) above, f is neither increasing nor decreasing in $(0,2\pi)$

34. Question

Show that $f(x) = x^2 - x \sin x$ is an increasing function on $(0, \pi/2)$?

Answer

We have,

$$f(x) = x^2 - x \sin x$$

$$f'(x) = 2x - \sin x - x \cos x$$

Now.

$$X \in (0, \frac{\pi}{2})$$

$$\Rightarrow 0 \le \sin x \le 1, 0 \le \cos x \le 1,$$

$$\Rightarrow$$
 2x-sin x -x cos x > 0

$$\Rightarrow$$
 f'(x) \geq 0

Hence, f(x) is an increasing function on $(0, \frac{\pi}{2})$.

35. Question

Find the value(s) of a for which $f(x) = x^3 - ax$ is an increasing function on R?

Answer

We have,

$$f(x) = x^3 - ax$$

$$f'(x) = 3x^2 - a$$

Given that f(x) is on increasing function

∴
$$f'(x)$$
0 for all $x \in R$

$$\Rightarrow$$
 3x² - a > 0 for all x \in R

$$\Rightarrow$$
 a $< 3x^2$ for all $x \in R$

But the last value of $3x^2 = 0$ for x = 0

36. Question

Find the values of b for which the function $f(x) = \sin x - bx + c$ is a decreasing function on R?

Answer

We have,

$$f(x) = \sin x - bx + c$$

$$f'(x) = \cos x - b$$

Given that f(x) is on decreasing function on R

$$f'(x) < 0$$
 for all $x \in R$

$$\Rightarrow$$
 cos x - b > 0 for all x \in R

$$\Rightarrow$$
 b < $\cos x$ for all $x \in R$

But the last value of cos x in 1

37. Question

Show that $f(x) = x + \cos x - a$ is an increasing function on R for all values of a?

Answer

We have,

$$f(x) = x + \cos x - a$$

$$f'(x) = 1 - \sin x = \frac{2\cos^2 x}{2}$$

Now,

$$x \in R$$

$$\Rightarrow \frac{\cos^2 x}{2} > 0$$

$$\Rightarrow \frac{2\cos^2 x}{2} > 0$$

$$\Rightarrow$$
 f'(x) > 0

Hence, f(x) is an increasing function for $x \in R$

38. Question

Let F defined on [0, 1] be twice differentiable such that $|f''(x)| \le 1$ for all $x \in [0, 1]$. If f(0) = f(1), then show that |f'(x)| < 1 for all $x \in [0, 1]$?

Answer

As f(0) = f(1) and f is differentiable, hence by Rolles theorem:

$$f'(c) = 0$$
 for some $c \in [0,1]$

let us now apply LMVT (as function is twice differentiable) for point c and $x \in [0,1]$,

hence,

$$\frac{|f'(x)-f(c)|}{x-c} = f''(d)$$

$$\Rightarrow \frac{|f'(x)-0|}{x-c} = f''(d)$$

$$\Rightarrow \frac{|f'(x)|}{x-c} = f''(d)$$

A given that $|f''(d)| \le 1$ for $x \in [0,1]$

$$\Rightarrow \frac{|f'(x)|}{x-c} \le 1$$

$$\Rightarrow |f'(x)| \le x - c$$

Now both x and c lie in [0,1], hence $\mathbf{x} - \mathbf{c} \in [0,1]$

39. Question

Find the intervals in which f(x) is increasing or decreasing:

i.
$$f(x) = x |x|, x \in R$$

ii.
$$f(x) = \sin x + |\sin x|, 0 < x \le 2 \pi$$

iii.
$$f(x) = \sin x (1 + \cos x), 0 < x < \pi/2$$

Answer

(i): Consider the given function,

$$f(x) = x |x|, x \in R$$

$$\Rightarrow f(x) = \begin{cases} -x^2, x < 0 \\ x^2, x > 0 \end{cases}$$

$$\Rightarrow$$
 f'(x) = $\begin{cases} -2x, x < 0 \\ 2x, x > 0 \end{cases}$

$$\Rightarrow f'(x) > 0$$

Therefore, f(x) is an increasing function for all real values.

(ii): Consider the given function,

$$f(x) = \sin x + |\sin x|, \ 0 < x \le 2_{\pi}$$

$$\Rightarrow f(x) = \{ \begin{aligned} 2 \sin x &, 0 < x \le \pi \\ 0 &, \pi < x \le 2 \pi \end{aligned}$$

$$\Rightarrow$$
 f'(x) = $\begin{cases} 2\cos x, 0 < x \le \pi \\ 0, \pi < x < 2\pi \end{cases}$

The function 2cos x will be positive between $(0, \frac{\pi}{2})$

Hence the function f(x) is increasing in the interval $(0,\frac{\pi}{2})$

The function 2cos x will be negative between $(\frac{\pi}{2}, \pi)$

Hence the function f(x) is decreasing in the interval $(\frac{\pi}{2}, \pi)$

The value of f'(x)= 0, when, $\pi < x \le 2 \pi$

Therefore, the function f(x) is neither increasing nor decreasing in the interval $(\pi, 2\pi)$

(iii): consider the function,

$$f(x) = \sin x(1 + \cos x), 0 < x < \frac{\pi}{2}$$

$$\Rightarrow$$
 f'(x) = cos x + sin x(- sin x) + cos x (cos x)

$$\Rightarrow$$
 f'(x) = cos x - sin² x + cos² x

$$\Rightarrow f'(x) = \cos x + (\cos^2 x - 1) + \cos^2 x$$

$$\Rightarrow$$
 f'(x) = cos x + 2 cos² x - 1

$$\Rightarrow$$
 f'(x)=(2cos x - 1)(cos x + 1)

for f(x) to be increasing, we must have,

f'(x) > 0

$$\Rightarrow f'(x)) = (2\cos x - 1)(\cos x + 1)$$

$$\Rightarrow 0 < x < \frac{\pi}{3}$$

So, f(x) to be decreasing, we must have,

$$\Rightarrow f'(x) = (2\cos x - 1)(\cos x + 1)$$

$$\Rightarrow \frac{\pi}{3} < \chi < \frac{\pi}{2}$$

$$\Rightarrow X \in \left(\frac{\pi}{2}, \frac{\pi}{2}\right)$$

So, f(x) is decreasing in $(\frac{\pi}{3}, \frac{\pi}{2})$

MCQ

1. Question

Mark the correct alternative in the following:

The interval of increase of the function f(x) = x - e^x + tan $\left(\frac{2\pi}{7}\right)$ is

- A. (0, ∞)
- B. (-∞, 0)
- C. (1, ∞)
- D. (-∞, 1)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = x - e^{x} + \tan\left(\frac{2\pi}{7}\right)$$

$$d\left(\frac{f(x)}{dx}\right) = 1 - e^x = f'(x)$$

Now

X<0

 $x \in (-\infty, 0)$

2. Question

Mark the correct alternative in the following:

The function $f(x) = \cos^{-1} x + x$ increases in the interval.

- A. (1, ∞)
- B. (-1, ∞)
- C. $(-\infty, \infty)$
- D. $(0, \infty)$

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = \cos^{-1} x + x$$

$$d\left(\frac{f(x)}{dx}\right) = \frac{x^2}{1+x^2} = f'(x)$$

Now

f'(x) > 0

$$\Rightarrow \frac{x^2}{1+x^2} > 0$$

x∈R

$$\Rightarrow X \in (-\infty, \infty)$$

3. Question

Mark the correct alternative in the following:

The function $f(x) = x^{x}$ decreases on the interval.

- A. (0, e)
- B.(0,1)
- C. (0, 1/e)
- D. (1/e, e)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = x^{X}$$

$$d\left(\frac{f(x)}{dx}\right) = x^{x}(1 + \log x) = f'(x)$$

now for decreasing

$$\Rightarrow x^{x}(1+\log x)<0$$

$$\Rightarrow$$
 (1+logx)<0

$$x \in \left(0, \frac{1}{e}\right)$$

4. Question

Mark the correct alternative in the following:

The function $f(x) = 2\log(x - 2) - x^2 + 4x + 1$ increases on the interval.

- A. (1, 2)
- B. (2, 3)
- C. ((1, 3)
- D. (2, 4)

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = 2\log(x - 2) - x^2 + 4x + 1$$

$$d\left(\frac{f(x)}{dx}\right) = \frac{2}{x-2} - 2x + 4 = f'(x)$$

$$\Rightarrow f'(x) = -\frac{2(x-1)(x-3)}{x-2}$$

now for increasing

$$\Rightarrow -\frac{2(x-1)(x-3)}{x-2} < 0$$

$$x - 3 < 0$$
 and $x - 2 > 0$

$$x < 3$$
 and $x > 2$

$$x \in (2,3)$$

5. Question

Mark the correct alternative in the following:

If the function $f(x) = 2x^2 - kx + 5$ is increasing on [1, 2], then k lies in the interval.

A.
$$(-\infty, 4)$$

Answer

Formula:- The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

$$f(x) = 2x^2 - kx + 5$$

$$d\left(\frac{f(x)}{dx}\right) = 4x - k = f'(x)$$

$$\Rightarrow$$
4x-k>0

For
$$x=1$$

6. Question

Mark the correct alternative in the following:

Let $f(x) = x^3 + ax^2 + bx + 5 \sin^2 x$ be an increasing function on the set R. Then, a and b satisfy.

A.
$$a^2 - 3b - 15 > 0$$

B.
$$a^2 - 3b + 15 > 0$$

C.
$$a^2 - 3b + 15 < 0$$

D.
$$a > 0$$
 and $b > 0$

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

(ii)
$$ax^2+bx+c<0$$
 for all $x \Rightarrow a<0$ and $b^2-4ac<0$

(iii)The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = x^3 + ax^2 + bx + 5 \sin^2 x$$

$$d\left(\frac{f(x)}{dx}\right) = 3x^2 + 2ax + b + 5\sin^2 x = f'(x)$$

For increasing function f'(x)>0

$$3x^2+2ax+b+5sin2x>0$$

Then

$$3x^2+2ax+b-5<0$$

And
$$b^2$$
-4ac<0

$$\Rightarrow$$
4a²-12(b-5)<0

$$\Rightarrow a^2-3b+15<0$$

$$\Rightarrow$$
 a² - 3b + 15 < 0

7. Question

Mark the correct alternative in the following:

The function $f(x) = \log_e \left(x^3 + \sqrt{x^6 + 1} \right)$ is of the following types:

A. even and increasing

B. odd and increasing

C. even and decreasing

D. odd and decreasing

Answer

Formula:- (i)if f(-x)=f(x) then function is even

(ii) if f(-x)=-f(x) then function is odd

(iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = \log_{e}(x^{3} + \sqrt{x^{6} + 1})$$

$$d\left(\frac{f(x)}{dx}\right) = \frac{1}{x^3(x^6+1)^{\frac{1}{2}}} \left(3x^2 + \frac{6x^5}{2(x^6+1)^{\frac{1}{2}}}\right)$$

hence function is increasing function

$$f(-x) = -\log(\log_e(x^3 + \sqrt{x^6 + 1})$$

 \Rightarrow f(-x)=-f(x) is odd function

8. Question

Mark the correct alternative in the following:

If the function $f(x) = 2\tan x + (2a + 1) \log_e |\sec x| + (a - 2) x$ is increasing on R, then

A.
$$a \in \left(\frac{1}{2}, \infty\right)$$

B.
$$a \in \left(-\frac{1}{2}, \frac{1}{2}\right)$$

C.
$$a = \frac{1}{2}$$

D.
$$a \in R$$

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

(ii)
$$ax^2+bx+c<0$$
 for all $x \Rightarrow a<0$ and $b^2-4ac<0$

(iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = 2\tan x + (2a+1)\log_e |\sec x| + (a-2)x$$

$$d\left(\frac{f(x)}{dx}\right) = 2\sec^2 x + \frac{(2a+1)\sec x \cdot \tan x}{\sec x} + (a-2) = f(x)$$

$$\Rightarrow f'(x) = 2\sec^2 x + (2a+1)\tan x + (a-2)$$

$$\Rightarrow f'(x)=2(\tan^2+1)+(2a+1).\tan x+(a-2)$$

$$\Rightarrow f'(x) = 2\tan^2 x + 2a\tan x + \tan x + a$$

For increasing function

$$\Rightarrow$$
2tan²x+2atanx+tanx+ a>0

From formula (i)

$$(2a+1)^2-8a<0$$

$$\Rightarrow 4\left(a-\frac{1}{2}\right)^2 < 0$$

$$\Rightarrow a = \frac{1}{2}$$

9. Question

Mark the correct alternative in the following:

Let $f(x) = \tan^{-1}(g(x))$, where g(x) is monotonically increasing for $0 < x < \frac{\pi}{2}$. Then, f(x) is

A. increasing on
$$\left(0, \frac{\pi}{2}\right)$$

B. decreasing on
$$\left(0, \frac{\pi}{2}\right)$$

C. increasing on
$$\left(0,\frac{\pi}{4}\right)$$
 and decreasing on $\left(\frac{\pi}{4},\frac{\pi}{2}\right)$

D. none of these

Answer

Formula:-

(i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-
$$f(x) = tan^{-1} (g(x))$$

$$\frac{d(f(x))}{dx} = \frac{g'(x)}{1 + (g(x))^2} = f'(x)$$

For increasing function

$$x \in \left(0, \frac{\pi}{2}\right)$$

10. Question

Mark the correct alternative in the following:

Let
$$f(x) = x^3 - 6x^2 + 15x + 3$$
. Then,

A.
$$f(x) > 0$$
 for all $x \in R$

B.
$$f(x) > f(x + 1)$$
 for all $x \in R$

D.
$$f(x) < 0$$
 for all $x \in R$

Answer

Formula:- (i)The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

(ii)If f(x) is strictly increasing function on interval [a, b], then f^{-1} exist and it is also a strictly increasing function

Given:-
$$f(x) = x^3 - 6x^2 + 15x + 3$$

$$\frac{d(f(x))}{dx} = 3x^2 - 12x + 15 = f'(x)$$

$$\Rightarrow f'(x) = 3(x-2)^2 + \frac{1}{3}$$

$$\Rightarrow$$
 f'(x) = 3(x-2)² + $\frac{1}{3}$

Therefore f'(x) will increasing

Also $f^{-1}(x)$ is possible

Therefore f(x) is invertible function.

11. Question

Mark the correct alternative in the following:

The function $f(x) = x^2 e^{-x}$ is monotonic increasing when

A.
$$x \in R - [0, 2]$$

B.
$$0 < x < 2$$

D.
$$x < 0$$

Answer

$$f(x) = x^2 e^{-x}$$

$$\frac{d(f(x))}{dx} = xe^{-x}(2-x) = f'(x)$$

for

$$f'(x)=0$$

$$\Rightarrow$$
 $x^2 e^{-x} = 0$

$$\Rightarrow x(2-x)=0$$

$$x=2, x=0$$

f(x) is increasing in (0,2)

12. Question

Mark the correct alternative in the following:

Function $f(x) = \cos x - 2\lambda x$ is monotonic decreasing when

A.
$$\lambda > \frac{1}{2}$$

B.
$$\lambda < \frac{1}{2}$$

D.
$$\lambda > 2$$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreasing on (a,b) is that f'(x) < 0 for all $x \in (a,b)$

Given:-

$$f(x) = \cos x - 2\lambda x$$

$$\frac{d(f(x))}{dx} = -\sin x - 2\lambda = f'(x)$$

for decreasing function f'(x) < 0

⇒Sinx+2
$$\lambda$$
 >0

$$\Rightarrow$$
2 λ >1

$$\Rightarrow \lambda > \frac{1}{2}$$

13. Question

Mark the correct alternative in the following:

In the interval (1, 2), function f(x) = 2 |x - 1| + 3|x - 2| is

A. monotonically increasing

B. monotonically decreasing

C. not monotonic

D. constant

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreading on (a,b) is that f'(x)<0 for all $x\in(a,b)$

Given:-

$$f(x)=2(x-1)+3(2-x)$$

$$f(x) = -x + 4$$

$$\frac{d(f(x))}{dx} = -1 = f'(x)$$

Therefore f'(x) < 0

Hence decreasing function

14. Question

Mark the correct alternative in the following:

Function $f(x) = x^3 - 27x + 5$ is monotonically increasing when

A.
$$x < -3$$

B.
$$|x| > 3$$

D.
$$|x| ≥ 3$$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = x^3 - 27x + 5$$

$$\frac{d(f(x))}{dx} = 3x^2 - 27 = f'(x)$$

for increasing function f'(x)>0

$$3x^2 - 27 > 0$$

$$\Rightarrow (x+3)(x-3)>0$$

$$\Rightarrow |x| > 3$$

15. Question

Mark the correct alternative in the following:

Function $f(x) = 2x^3 - 9x^2 + 12x + 29$ is monotonically decreasing when

A.
$$x < 2$$

B.
$$x > 2$$

C.
$$x > 3$$

D.
$$1 < x < 2$$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreasing on (a, b) is that f'(x) < 0 for all $x \in (a,b)$

Given:-

$$f(x) = 2x^3 - 9x^2 + 12x + 29$$

$$\frac{d(f(x))}{dx} = f'(x) = 6(x-1)(x-2)$$

for decreasing function f'(x) < 0

$$\Rightarrow$$
6(x-1)(x-2)<0

16. Question

Mark the correct alternative in the following:

If the function $f(x) = kx^3 - 9x^2 + 9x + 3$ is monotonically increasing in every interval, then

- A. k < 3
- B. $k \le 3$
- C. k > 3
- D. k < 3

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

- (ii) $ax^2+bx+c<0$ for all $x \Rightarrow a<0$ and $b^2-4ac<0$
- (iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = kx^3 - 9x^2 + 9x + 3$$

$$\frac{d(f(x))}{dx} = f'(x) = 3kx^2 - 18x + 9$$

for increasing function f'(x)>0

f'(x) > 0

$$\Rightarrow$$
3kx²-18x+9>0

$$\Rightarrow kx^2-6x+3>0$$

using formula (i)

36-12k<0

⇒k>3

17. Question

Mark the correct alternative in the following:

$$f(x) = 2x - tan^{-1} \ x - log \left\{ x + \sqrt{x^2 + 1} \right\} is \ monotonically \ increasing \ when$$

- A. x > 0
- B. x < 0
- C. x ∈ R
- D. $x \in R \{0\}$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a,b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = 2x - tan^{-1}x - log\{x + \sqrt{x^2 + 1}\}$$

$$\frac{df(x)}{dx} = 2 - \frac{1}{1+x^2} - \frac{1}{\sqrt{x^2+1}} = f'(x)$$

For increasing function f'(x)>0

$$\Rightarrow 2 - \frac{1}{1 + x^2} - \frac{1}{\sqrt{x^2 + 1}} > 0$$

 $x \in R$

18. Question

Mark the correct alternative in the following:

Function f(x) = |x| - |x - 1| is monotonically increasing when

- A. x < 0
- B. x > 1
- C. x < 1
- D. 0<x<1

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

For x<0

f(x)=-1

for 0<x<1

f(x) = 2x-1

for x>1

f(x)=1

Hence f(x) will increasing in 0 < x < 1

19. Question

Mark the correct alternative in the following:

Every invertible function is

- A. monotonic function
- B. constant function
- C. identity function
- D. not necessarily monotonic function

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

If f(x) is strictly increasing function on interval [a, b], then f^{-1} exist and it is also a strictly increasing function

20. Question

Mark the correct alternative in the following:

In the interval (1, 2), function f(x) = 2|x - 1| + 3|x - 2| is

- A. increasing
- B. decreasing
- C. constant
- D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly decreasing on (a, b) is that f'(x) < 0 for all $x \in (a,b)$

Given:-

$$f(x)=2(x-1)+3(2-x)$$

$$\Rightarrow f(x) = -x + 4$$

$$\frac{d(f(x))}{dx} = f'(x) = -1$$

Therefore f'(x) < 0

Hence decreasing function

21. Question

Mark the correct alternative in the following:

If the function $f(x) = \cos|x| - 2ax + b$ increases along the entire number scale, then

$$A. a = b$$

B.
$$a = \frac{1}{2}b$$

C.
$$a \le -\frac{1}{2}$$

D.
$$a > -\frac{3}{2}$$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = \cos|x| - 2ax + b$$

$$\frac{d(f(x))}{dx} = -\sin x - 2a = f'(x)$$

For increasing f'(x) > 0

$$\Rightarrow$$
 2a ≤ -1

$$\Rightarrow a \leq -\frac{1}{2}$$

22. Question

Mark the correct alternative in the following:

The function $f(x) = \frac{x}{1+\mid x\mid}$ is

A. strictly increasing

B. strictly decreasing

C. neither increasing nor decreasing

D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

$$f(x) = \frac{x}{1 + |x|}$$

For x>0

$$\frac{d(f(x))}{dx} = \frac{1}{1+x^2} = f'(x)$$

For x<0

$$\frac{d(f(x))}{dx} = \frac{1}{1 - x^2} = f'(x)$$

Both are increasing for f'(x)>0

23. Question

Mark the correct alternative in the following:

The function $f(x) = \frac{\lambda \sin x + 2\cos x}{\sin x + \cos x}$ is increasing, if

A. $\lambda < 1$

B. $\lambda > 1$

C. $\lambda < 2$

D. $\lambda > 2$

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = \frac{\lambda \sin x + 2\cos x}{\sin x + \cos x}$$

For increasing function f'(x) < 0

$$\frac{d(f(x))}{dx} = f(x) = \frac{\lambda - 2}{(\sin x + \cos x)^2} > 0$$

 $\Rightarrow \lambda > 2$

24. Question

Mark the correct alternative in the following:

Function $f(x) = a^x$ is increasing or R, if

A. a > 0

B. a < 0

C. a > 1

D. a > 0

Answer

Let $x_1 < x_2$ and both are real number

$$a^{x_1} < a^{x_2}$$

$$\Rightarrow f(x_1) < f(x_2)$$

$$\Rightarrow x_1 < x_2 \in$$

only possible on a>1

25. Question

Mark the correct alternative in the following:

Function $f(x) = \log_a x$ is increasing on R, if

A. 0 < a < 1

B. a > 1

C. a < 1

D. a > 0

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

$$f(x) = log_a x$$

$$\frac{d(f(x))}{dx} = \frac{1}{x \log_e a} = f'(x)$$

For increasing f'(x) > 0

$$\Rightarrow \frac{1}{\text{xlog}_e a} > 0$$

For log a>1

26. Question

Mark the correct alternative in the following:

Let
$$\phi(x) = f(x) + f(2a - x)$$
 and $f''(x) > 0$ for all $x \in [0, a]$. The, $\phi(x)$

A. increases on [0, a]

B. decreases on [0, a]

C. increases on [-a, 0]

D. decreases on [a, 2a]

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

$$\phi(x) = f(x) + f(2a - x)$$

$$\Rightarrow \varphi'(x) = f'(x)-f'(2a - x)$$

$$\Rightarrow \varphi''(x) = f''(x) + f''(2a - x)$$

checking the condition

 $\phi(x)$ is decreasing in [0,a]

27. Question

Mark the correct alternative in the following:

If the function $f(x) = x^2 - kx + 5$ is increasing on [2, 4], then

- A. k ∈ (2, ∞)
- B. k∈ (-∞, 2)
- C. $k \in (4, \infty)$
- D. k∈ (-∞, 4)

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = x^2 - kx + 5$$

$$\frac{d(f(x))}{dx} = 2x - k = f'(x)$$

For increasing function f'(x)>0

2x-k>0

⇒K<2x

Putting x=2

K<4

 \Rightarrow ke $(-\infty, 4)$

28. Question

Mark the correct alternative in the following:

The function $f(x) = -\frac{x}{2} + \sin x$ defined on $\left[-\frac{\pi}{3}, \frac{\pi}{3} \right]$ is

- A. increasing
- B. decreasing
- C. constant
- D. none of these

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = -\frac{x}{2} + \sin x$$

$$\frac{d(f(x))}{dx} = -\frac{1}{2} + \cos x = f'(x)$$

checking the value of x

$$\cos -\frac{1}{2} > 0$$

hence increasing

29. Question

Mark the correct alternative in the following:

If the function $f(x) = x^3 - 9k x^2 + 27x + 30$ is increasing on R, then

- A. $-1 \le k < 1$
- B. k < -1 or k > 1
- C. 0 < k < 1
- D. -1 < k < 0

Answer

Formula:- (i) $ax^2+bx+c>0$ for all $x \Rightarrow a>0$ and $b^2-4ac<0$

- (ii) $ax^2+bx+c<0$ for all $x \Rightarrow a<0$ and $b^2-4ac<0$
- (iii) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = x^3 - 9k x^2 + 27x + 30$$

$$\frac{d(f(x))}{dx} = f'(x) = 3x^2 - 18kx + 27$$

for increasing function f'(x)>0

$$3x^2-18kx+27>0$$

$$\Rightarrow$$
x²-6kx+9>0

Using formula (i)

$$36k^2-36>0$$

$$\Rightarrow K^2 > 1$$

Therefore -1 < k < 1

30. Question

Mark the correct alternative in the following:

The function $f(x) = x^9 + 3x^7 + 64$ is increasing on

- A. R
- B. (-∞, 0)
- C. (0, ∞)

Answer

Formula:- (i) The necessary and sufficient condition for differentiable function defined on (a,b) to be strictly increasing on (a, b) is that f'(x)>0 for all $x\in(a,b)$

Given:-

$$f(x) = x^9 + 3x^7 + 64$$

$$\frac{d\big(f(x)\big)}{dx}=9x^8+21x^6=f'(x)$$

For increasing f'(x)>0

$$\Rightarrow 9x^8 + 21x^6 > 0$$