Some Basic Concepts of Chemistry

🕥 Trend Analysis with Important Topics & Sub-Topics 🖉

		20	020 2019		2018		20	17	202	16	
Topic Name	Sub-Topic	QNS.	LOD	QNS.	LOD	QNS.	LOD	QNS.	LOD	QNS.	LOD
Significant figures, law	mole concept	1	Е	1	Е	1	Е				
of chemical											
mole concept											
	stoichiometric										
Stoichiometric	calculations					1	A				
carculations											
LOD - Level of Difficulty	E - Easy		A - Av	erage		D - Dif	ficult	Qns -	No. o	f Quest	tions
Topic 1 : Significant I	Figures, Laws of Che	mical		(a)	4:1			(b)	16:1		
Combinations a	and Mole Concept			(c)	2:1	1		(d)	1:4:	5. T	he
1 Which one of the	followings has max	imum	nu	mber o	of wate	er molec	ules 15	maxir	num i	n : <i>1201</i>	5 R S
number of atoms ?		[2020]		(a)	18 n	nolecule	es of w	ater		[201	5 КБ
(a) 1 g of Mg(s) [A	tomic mass of $Mg = 2$	4]	(b) 1.8 gram of water (c)								
(b) 1 g of $O_2(g)$ [At	tomic mass of $O = 16$]				18 g	ram of v	water ((d)			
(c) 1 g of Li(s) [Ato	mic mass of Li = 7	101			18 n	noles of	water				
(d) I g of Ag(s) [A 2 The number of mo	tomic mass of Ag = 10 les of hydrogen molec	18] sule	6.	If	Avog	adro n	umbe	r N _A ,	is ch	anged	from
required to produ	ace 20 moles of ami	monia		6.0	22 × 1	10^{23} mc	ol ⁻¹ to	6.022	$\times 10^{2}$	²⁰ mol ⁻	⁻¹ this
through Haber' s p	process is:	[2019]		WO	uld ch	ange :				[201	5 RSJ
(a) 10	(b) 20 (d) 40			(a)	the	mass of	on of f	nass ir nole of	² carbo	s of gra	ims
(c) 50 3 In which case is ni	(a) 40 under of molecules of	water		(-)	the	ratio of	chem	ical sp	ecies t	to each	other
maximum?		[2018]		(1)	in a	balance	ed equ	ation.	1		
(a) 18 mL of wate	r			(a)	the	ratio oi	elem	ients t	o eac	n otne	r in a
(b) 0.18 g of wate	r			Wh	ren 22	4 litres	ofH ₂ ()	g) is mi `P_th/	xed w	1th 11.2	2 litres
(c) 10^{-3} mol of wa	ater	mand		for	med is	s equal t	at 5.1 :0:	.1., 110		LS 01 1	2014
(u) 0.00224 L 01 273 K	water vapours at 1 at	in and		(a)	1 m	ole of H	(C <i>l</i> (g))			
4. A mixture of gases	contains H_2 and O_2 ga	ases in		(b)	2 m	oles of 1	HCl (g	g)			
the ratio of $1:4 (w/$	w). What is the molar r	atio of		(c)	0.51	moles of	f HC <i>l</i>	(g)			
the two gases in th	e mixture ?	2015]		(d)	1.51	moles of	I HCl	(g)			

8. 1.0 g of magnesium is burnt with 0.56 g O_2 in a closed vessel. Which reactant is left in excess and how much? [2014] (At. wt. Mg = 24; O = 16) (a) Mg, 0.16 g (b) $O_2, 0.16 g$ (d) $\tilde{O_2}, 0.28 \text{ g}$ (c) Mg, 0.44 g 9. Which has the maximum number of molecules among the following? [2011 M] (b) $48 g O_3$ (a) $44 \,\mathrm{g}\,\mathrm{CO}_{2}$ (c) $8 g H_2$ (d) $64 g SO_2$ 10. The number of atoms in 0.1 mol of a triatomic [2010] gas is : $(N_{\rm A} = 6.02 \times 10^{23} \, {\rm mol}^{-1})$ (a) 6.026×10^{22} (b) 1.806×10^{23} (c) 3.600×10^{23} (d) 1.800×10^{22} What volume of oxygen gas (O_2) measured at 11. 0°C and 1 atm, is needed to burn completely 1L of propane gas (C_3H_8) measured under the same conditions ? [2008] (b) 6L (a) 7L (c) 5L (d) 10L Number of moles of MnO₄⁻ required to oxidize 12. one mole of ferrous oxalate completely in acidic medium will be: [2008] (a) 0.6 moles (b) 0.4 moles(c) 7.5 moles (d) 0.2 molesVolume occupied by one molecule of water 13. $(\text{density} = 1 \text{ g cm}^{-3}) \text{ is }$: [2008] (b) $6.023 \times 10^{-23} \text{ cm}^3$ (a) $9.0 \times 10^{-23} \,\mathrm{cm}^3$ (c) $3.0 \times 10^{-23} \text{ cm}^3$ (d) $5.5 \times 10^{-23} \, \text{cm}^3$ The number of moles of KMnO₄ that will be 14. needed to react with one mole of sulphite ion in acidic solution is [2007] (a) 4/5 (b) 2/5 (d) 3/5 (c) 1 An element, X has the following isotopic 15. composition : [2007] $^{202}X: 2.0\%$ $^{200}X:90\%$ $^{199}X: 8.0\%$ The weighted average atomic mass of the naturally occuring element X is closest to (a) 201 amu (b) 202 amu (c) 199 amu (d) 200 amu The number of moles of $KMnO_4$ reduced by one 16. mole of KI in alkaline medium is: [2005] (a) one (b) two (c) five (d) one fifth 17. The maximum number of molecules is present in (a) 15 L of H_2 gas at STP [2004] (b) $5 L \text{ of } N_2 \text{ gas at STP}$

	(c) $0.5 \text{ g of H}_2 \text{ gas}$
	(d) 10 g of O_2 gas
18.	Which has maximum number of molecules?
	(a) $7 g N_2$ (b) $2 g H_2$ [2002]
10	(c) 16 g NO_2 (d) 16 g O_2
19.	Specific volume of cylindrical virus particle is $(22 - 10^{-2})$
	6.02×10^{-2} cc/g whose radius and length are / A
	& 10 A respectively. If $N_A = 6.02 \times 10^{23}$, find
	molecular weight of virus [2001] (a) $2.08 \times 10^3 \text{ kg/mol}$ (b) $2.08 \times 10^4 \text{ kg/mol}$
	(a) 5.06×10^{6} kg/mol (b) 5.06×10^{6} kg/mol
20	Assuming fully decomposed the volume of CO
20.	released at STP on heating 9.85 g of BaCO ₂
	(Atomic mass. $Ba = 137$) will be 120001
	(a) 2.24 (b) 4.96 [2000]
	(a) $2.24L$ (b) $4.50L$
21	Haemoglobin contains () 334% of iron by weight
21.	The molecular weight of haemoglobin is
	approximately 67200 The number of iron atoms
	(at wt of Fe is 56) present in one molecule of
	haemoglobin are [1998]
	(a) 1 (b) 6
	(c) 4 (d) 2
22.	The number of significant figures for the
	three numbers 161 cm, 0.161 cm, 0.0161 cm are
	(a) 3, 4 and 5 respectively [1998]
	(b) 3, 4 and 4 respectively
	(c) 3, 3 and 4 respectively
	(d) 3, 3 and 3 respectively
23.	The weight of one molecule of a compound
	$C_{60}H_{122}$ is [1995]
	(a) 1.2×10^{-20} gram (b) 1.4×10^{-21} gram
	(c) 5.025×10^{23} gram (d) 6.023×10^{23} gram
24.	In the final answer of the expression
	$(29.2 - 20.2)(1.79 \times 10^5)$
	1.37
	the number of significant figures is : [1994]
	(a) 1 (b) 2
	(c) 3 (d) 4
25.	If N_{i} is Avogadro's number then number of
	valence electrons in 4.2g of nitride ions (N^{3-}) is
	(a) $2.4N_{\star}$ (b) $4.2N_{\star}$ [1994]
	(c) $16N$, (d) $32N$,
26	The molecular weight of O_2 and SO_2 are 32 and
	64 respectively. At 15°C and 150 mm Hg pressure.
	one litre of O_2 contains 'N' molecules. The
	number of molecules in two litres of SO ₂ under
	the same conditions of temperature and p^2 ressure
	will be: /1990/

27. 28. 29.	(a) N/2 (c) 2N Boron has two stable is ¹¹ B (81%). Average ato the periodic table is (a) 10.8 (c) 11.2 The number of oxygen a (a) 1.2×10^{23} (c) 6×10^{23} The number of gram r 6.02×10^{24} CO molecul (a) 10 g molecules (c) 1 g molecules	(b) (d) sotop mic (b) (d) toms (b) (d) molec es is (b) (d)	N 4N weight ^{10}B (19 weight for 10.2 10.0 s in 4.4 g of 6×10^{22} 12×10^{23} cules of ox 5 g molec 0.5 g molec	9%) and boron in [1990] CO ₂ is [1990] cygen in [1990] cules ecules	35. 36. 37.	Percentage enzyme is minimum dase anhy (a) 1.568 (c) 2.136 An organi gave on a empirical (a) C_3H_6 (c) CH_2C An organ gave the fi C = 40%; Its empiric (a) C_2H_7 (c) CH_4N
30.	What is the weight of c complete combustion o (a) 2.8 kg (c) 9.6 kg	oxyg f 2.8 (b) (d)	en required kg of ethyl 6.4 kg 96 kg	d for the lene ? <i>[1989]</i>	38.	The perce $[ZnSO_4.7]$ (Zn = 65, (z) = 22.65
31. 32.	(c) 1.8 kg Ratio of C_p and C_v of a gi of atoms of the gas 'X' p at NTP will be (a) 6.02×10^{23} (c) 3.01×10^{23} 1 c.c. N ₂ O at NTP conta (a) $\frac{1.8}{2} \times 10^{22}$ atoms	(d) as 'X orese (b) (d) ains :) is 1.4. The nt in 11.2 li 1.2×10^{23} 2.01×10^{2}	e number itres of it <i>[1989]</i> ¹³ <i>[1988]</i>	39.	 (a) 33.03 (c) 23.65 A metal o reduced b water. 0.13 of hydroge weight of (a) 27.9 (c) 79.8
	(b) $\frac{6.02}{\times 10^{23}} \times 10^{23}$ mole	ecule	s		40.	Topic 3: A mixture
33.	(c) $\frac{1.32}{224} \times 10^{23}$ electr (d) all the above At S.T.P. the density of be nearest to : (a) 6.87 (c) 10.26	ons CCl ₄ (b) (d)	vapours in 3.42 4.57	g/L will [1988]	41.	acid is tre gaseous m Weight (in STP will b (a) 1.4 (c) 4.4 20.0 g of decompos and 8.0 g
	Topic 2: Percent Co Empirical	omp l Fo:	osition ar rmula	ıd		percentag the sample (a) 75
34.	An organic compound hydrogen and oxygen. gave C, 38.71% and H formula of the compound (a) CH ₃ O	nd o Its , 9.6 nd w (b)	contains elemental 7%. The en ould be : /2 CH ₂ O	carbon, analysis mpirical 2008J	42.	(c) 60 What is th mL of 16.9 mL of 5.89 (Ag=107.

(c) CHO (d) CH_4O

ge of Se in peroxidase anhydrase 0.5% by weight (at. wt. = 78.4) then n molecular weight of peroxiydrase enzyme is [2001] $\times 10^3$ (b) 15.68 5×10^{4} (d) 1.568×10^4 ic compound containing C, H and O nalysis C -40% and H -6.66%. Its formula would be [1999, 94] 0 (b) CHO) (d) CH₄O ic compound containing C, H and N ollowing analysis : H = 13.33%; N = 46.67%cal formula would be [1998] N_2 (b) CH₅N V (d) C_2H_7N entage weight of Zn in white vitriol 'H₂O] is approximately equal to S = 32, O = 16 and H = 1)[1995] % (b) 32.56% % (d) 22.65% xide has the formula Z_2O_3 . It can be by hydrogen to give free metal and 596 g of the metal oxide requires 6 mg en for complete reduction. The atomic the metal is [1989] (b) 159.6 (d) 55.8 Stoichiometric Calculations e of 2.3 g formic acid and 4.5 g oxalic ated with conc. H_2SO_4 . The evolved ixture is passed through KOH pellets. n g) of the remaining product at [2018] e (b) 3.0 (d) 2.8 f a magnesium carbonate sample ses on heating to give carbon dioxide magnesium oxide. What will be the e purity of magnesium carbonate in e? [2015 RS] (b) 96 (d) 84

42. What is the mass of precipitate formed when 50 mL of 16.9% solution of $AgNO_3$ is mixed with 50 mL of 5.8% NaCl solution ? [2015 RS] (Ag=107.8, N=14, O=16, Na=23, Cl=35.5) (a) 28 g (b) 3.5 g (c) 7 g (d) 14 g

I

43.	In an solut solut be the	exper ion of ion of e forn ol of t	f chlo AgN AgN nula o the ele	t it sho ride 1 O ₃ , w of the ement	owed t equir hich o chlori t other	that 10 ed 10 of the ide (λ	0 mL 0 mL follo (stan (chlor	of 0.0 of 0.1 wing ds for rine):	5 M M will the	50.
44	(a) $(c) = \frac{1}{2}$	X_2 Cl XCl ₂	20	10 01-1	(b) (d)	$\begin{bmatrix} NE \\ X_2 \\ XC \end{bmatrix}$	ETK Cl ₂ l ₄	ar. 20	013]	
44.	6.02 100 1 solut (a) (c)	× 10 ⁴ mL of ion is 0.01 M 0.1 M	f its s : //	solutio	on. The contract of the contra	urea he co) 0.0) 0.0	are p ncent <i>[NEI</i> 01 M 2 M	ration ET 20	1 in 1 of 13]	
45.	What	t is the	e [OH	_ [] in tl	he fin	al sol	ution	prepa	red	51.
	by mi 0.101 (a)	xing 2 M Ba(0.40 N	0.0 m OH) ₂ A	Lof0. ?	.050 M (b)	1 HCl	with 3 050 M	0.0 m <i>[20</i> [L of 09]	
46	(c) 10 g	0.12 N of hvd	/l Iroger	and	(d) 64 g c) 0.1 foxy	0 M gen w	vere fi	lled	
т0.	inas	teel v	essel a	and ex	kplod	ed. Ai	noun	t of wa	ater	
	produ	uced i	n this	react	ion w	ill be		[20	09]	52
	(a)	3 mol			(b)) 4 m	ol		_	52.
	(c)	1 mol			(d)) 2 m	iol			
47.	How	many	/ mol	es of	lead ((II) cl	ilorid	e wil	l be	
	and 3	2α	III a I FHCI	2	on be	tween	0.3	י ו ט פ <i>ורו</i>	180	
	(a)	0.2 g 0 0.044	inci	1	(h)	03	33	[20	00]	
	(c)	0.011			(d)	0.0	29			
48.	Conc	entra	ted ad	queou	is sul	phuri	c acio	t is 9	8%	
	H ₂ SC	D ₄ by r	nass a	nd ha	s a de	nsity (of 1.80) g mI		53
	Volur	neofa	acid re	quire	d to m	ake o	ne litro	e of 0.	1M	55.
	H ₂ SC	0 ₄ solu	ution	is				[20	<i>07]</i>	
	(a)	16.651	mL		(b)) 22.	20mL	,		
40	(C)	5.55 m	1L of oor	hond	(d) bond) 11.	IOmL	i 1 (air	ina	
49.	only	carbo	on di	ovide	anoue	the 1	arodu	(giv	ing of	54.
	270 k	g of a	lumii	nium	metal	from	baux	ite bv	the	
	Hall	proces	ss is (Atom	nic ma	iss: A	l = 27) [20	05]	
	(a)	270 k	g		(b)) 540) kg	-	-	
	(c)	90 kg			(d)) 180) kg			
								Aľ	NSWE	ER K
1	(c)	7	(a)	13	(c)	19	(d)	25	(a)	31
2	(c)	8	(a)	14	(b)	20	(c)	26	(c)	32

30 litres of dinitrogen were taken for reaction which yielded only 50% of the expected product. What will be the composition of gaseous mixture under the aforesaid condition in the end? [2003] (a) 20 litres ammonia, 25 litres nitrogen, 15 litres hydrogen (b) 20 litres ammonia, 20 litres nitrogen, 20 litres hydrogen (c) 10 litres ammonia, 25 litres nitrogen, 15 litres hydrogen (d) 20 litres ammonia, 10 litres nitrogen, 30 litres hydrogen In the reaction $4 \operatorname{NH}_3(g) + 5 \operatorname{O}_2(g) \rightarrow 4 \operatorname{NO}(g) + 6 \operatorname{H}_2\operatorname{O}(l)$ When 1 mole of ammonia and 1 mole of O_2 are made to react to completion, [1998] (a) $1.0 \text{ mole of H}_2\text{O is produced (b)}$ 1.0 mole of NO will be produced all the oxygen will be consumed (c) (d) all the ammonia will be consumed 2. Liquid benzene (C_6H_6) burns in oxygen according to the equation $2C_6H_6(l) + 15O_2(g) \longrightarrow 12CO_2(g) + 6H_2O(g)$ How many litres of O₂ at STP are needed to complete the combustion of 39 g of liquid benzene? (Mol. wt. of $O_2 = 32, C_6 H_6 = 78$) [1996] (a) 74L (b) 11.2L (c) 22.4 L (d) 84L A 5 molar solution of H_2SO_4 is diluted from 1 litre to a volume of 10 litres, the normality of the solution will be : [1991] (a) 1 N (b) 0.1 N (d) 0.5 N (c) 5 N One litre hard water contains 12.00 mg Mg^{2+} . 4. Mili-equivalents of washing soda required to remove its hardness is : [1988] (b) 12.16 (a) 1

In Haber process 30 litres of dihydrogen and

()	-	(-)	
(c)	1×10^{-3}	(d)	12.16×

 10^{-3}

	ANSWER KEY																		
1	(c)	7	(a)	13	(c)	19	(d)	25	(a)	31	(a)	37	(c)	43	(c)	49	(c)		
2	(c)	8	(a)	14	(b)	20	(c)	26	(c)	32	(d)	38	(d)	44	(a)	50	(c)		
3	(a)	9	(c)	15	(d)	21	(c)	27	(a)	33	(a)	39	(d)	45	(d)	51	(c)		
4	(a)	10	(b)	16	(b)	22	(d)	28	(a)	34	(a)	40	(d)	46	(b)	52	(d)		
5	(d)	11	(c)	17	(a)	23	(b)	29	(b)	35	(d)	41	(d)	47	(d)	53	(a)		
6	(b)	12	(b)	18	(b)	24	(c)	30	(c)	36	(c)	42	(c)	48	(c)	54	(a)		

Hints & Solutions

1. (c) Number of atoms

$= \frac{W}{\text{Molar mass}} \times N_A \times \text{atomicity}$

(a) Number of Mg atoms = $\frac{1}{24} \times N_A \times 1$

(b) Number of O atoms
$$= \frac{1}{32} \times N_A \times 2$$

(c) Number of Li atoms = $\frac{1}{7} \times N_A \times 1$

(d) Number of Ag atoms =
$$\frac{1}{108} \times N_A \times 1$$

- 2. (c) $N_2 + 3H_2 \longrightarrow 2NH_3$ 1 Mol $NH_3 = \frac{3}{2} \mod H_2$ 20 mol $NH_3 = \frac{3}{2} \times 20 \mod H_2 = 30 \mod H_2$ $\therefore 30 \mod H_2 \text{ are required.}$
- 3. (a)

4.

5.

(1) Mass of water = $18 \times 1 = 18$ g Molecules of water = mole $\times N_A$ $= \frac{18}{N} = N$

$$=\frac{1}{18}N_A=N_A$$

(2) Molecules of water = mole $\times N_A$

$$= \frac{0.18}{18} N_A = 10^{-2} N_A$$

- (3) Molecules of water = mole $\times N_A = 10^{-3} N_A$
- (4) Moles of water = $\frac{0.00224}{22.4} = 10^{-4}$ Molecules of water = mole $\times N_A = 10^{-4} N_A$ (a) Ratio of weight of gases = $w_{H_2} : w_{O_2} = 1 : 4$

Ratio of moles of gases =
$$n_{H_2}$$
: $n_{O_2} = \frac{1}{2}$
 \therefore Molar Ratio = $\frac{1}{2} \times \frac{32}{2} = 4:1$

(d) No. of moles of water
In 1.8 g of
$$H_2O = 0.1$$
 moles

In 18 g of $H_2O = 1$ moles 1 mole contains 6.022×10^{23} molecules of water therefore maximum number of molecules is in 18 moles of water.

6. (b) If 6.022×10^{23} changes to 6.022×10^{20} /mol then this would change mass of one mole of carbon.

Mass of ${}_{12}C$ carbon is used to define the atomic mass unit. In this system, 12C is assigned a mass of exactly 12 a.m.u.

Earlier one mole was defined as the amount of substance that contains as many particles as there are atoms in exactly 12 g of the $_{12}C$ isotope. From November 2018, one mole is defined as exactly 6.02214076 \times 10^{23} constitutive particles, which may be atoms, molecules, ions or electrons. Hence, if we change the value of NA from 6.022 \times 10^{23} mol^{-1} to 6.022 \times 10^{20} mol^{-1} then mass of one

mole of carbon will also change. The definition of mass is independent of Avogadro number N_A .

7. (a)
$$H_2(g) + Cl_2(g) \longrightarrow 2HCl(g)$$

22.4 L 11.2 L 0 initial
= 1 mole = 0.5 mole
1 - 0.5 0.5 - 0.5 2 × 0.5 final
Moles of HCl formed = 2 × 0.5 = 1

8. (a) Initially Mg
$$1g$$
 0.56
or $\frac{1}{24}$ mole 0.56
 0.0417 mole 0.0175 mole
 $(0.0417 - 2)$ 0 mole
 $\times 0.0175$
 $= 0.0067$ mole
 \therefore Mass of Mg = 0.0067 × 24 = 0.16g

Moles of
$$CO_2 = \frac{44}{44} = 1$$
, N_A

Moles of
$$O_3 = \frac{48}{48} + 1$$
, N_A
Moles of $H_2 = \frac{8}{4} + 4$
Moles of $SO_2 = \frac{64}{64} + 1$, $N_A + 10$. (b) The
number of atoms in 0.1 mol of a triatomic
gas = 0.1 × 3 × 6.023 × 10²³.
= 1.806 × 10²³

11. (c) Writing the equation of combustion of propane
$$(C_3H_8)$$
, we get

$$\begin{array}{c} C_{3}H_{8} + 5O_{2} \rightarrow 3CO_{2} + 4H_{2}O \\ \stackrel{1 \text{vol}}{\text{IL}} & \stackrel{5 \text{vol}}{\text{SL}} \end{array}$$

From the above equation we find that we need 5 L of oxygen at N.T.P. to completely burn 1 L of propane at N.T.P.

If we change the conditions for both the gases from N.T.P. to same conditions of temperature and pressure. The same results are obtained. *i.e.* 5 L is the correct answer.

12. (b)
$$5^{\text{COO}^-}_{\text{COO}^-} + 2 \text{ MnO}_4^- + 16 \text{ H}^+ \longrightarrow 0$$

$$2 \text{ Mn}^{-} + 10 \text{CO}_2 + 8 \text{H}_2 \text{O}$$

From above equation 2 moles of MnO₄ required to oxidise 5 moles of oxalate.

Thus number of moles of MnO_4^- required to oxidise one mole of oxalate = $2 \times 2/5 = 0.4$ moles

In KMnO₄ the oxidation state of Mn is +7. In acidic medium Mn takes up five electrons and making it an oxidizing agent. In strongly alkaline solution it takes up only 1 electrons and making it much weaker oxidising agent. In neutral medium it gives up 3 electrons to form MnO₂. Acidic medium:

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{2+} + 4H_2O$ M A

Alkaline medium:
$$MnO_4^- + e^- \rightarrow MnO_4^2$$

Neutral medium:

$$\Delta trai medium:$$

$$MnO_4 + 4H^2 + 3e^- \rightarrow MnO_2 + 2H_2O_2$$

(c) \therefore Volume occupied by 1 gram water = 1 cm³ 13. or Volume occupied by

$$\frac{6.023 \times 10^{23}}{18} \text{ molecules of water} = 1 \text{ cm}^3$$
$$[\therefore 1 \text{ g water} = \frac{1}{18} \text{ moles of water}]$$

Thus, volume occupied by 1 molecule of water

$$= \frac{1 \times 18}{6.023 \times 10^{23}} \text{ cm}^3 = 3.0 \times 10^{-23} \text{ cm}^3.$$

=

$$2MnO_4^- 6H^+ 5SO_3^{2-} \longrightarrow$$
$$2Mn^{2+} 5SO_4^{2-} 3H_2O_4^{2-}$$

From the equation it is clear that Moles of MnO_4^{-} require to oxidise 5 moles of SO_3^{2-} are 2 Moles of MnO_4^- require to oxidise 1 mole of SO₃²⁻ are 2/5. (d) Average isotopic mass of

15.

$$X = \frac{200 \times 90 + 199 \times 8 + 202 \times 2}{90 - 8 - 2}$$

$$\frac{18000 - 1592 - 404}{100}$$

$$\frac{19996}{100} = 199.96 \simeq 200 \text{ amu}$$
Average atomic mass

= (Mass of isotope A \times % natural abundance) +

(Mass of isotope $B \times \%$ natural abundance) +

(% Natural abundance of A + % natural abundance of B) +.

16. (b) In weak alkaline medium, the equation is: $2MnSO_4^- + H_2O + \Gamma \longrightarrow 2MnO_2^- + IO_4^- + 2OH^-$ Hence, one mole of KI reduce, 2 moles of KMnO₄.

= 6.023×10^{23} molecule of H₂ $\therefore 15 \text{ litre at STP contains} = \frac{15}{22.4} \times 6.023 \times 10^{23}$

(b) : 22.4 litre at STP contains = 6.023×10^{23} molecule of N₂

∴ 5 litre at STP contians =
$$\frac{5}{22.4} \times 6.023 \times 10^{23}$$

(c) ∴ 2 g of H₂= 6.023×10²³ molecules of H₂
∴ 0.5 g of H₂= $\frac{0.5}{22.4} \times 6.023 \times 10^{23}$

(d) Similarly 10 g of
$$O_{2}$$
 gas

$$=\frac{10}{32} \times 6.023 \times 10^{23} \text{ molecules}$$

Thus (a) will have maximum number of molecules

- 18. (b) 2g of H₂ means one mole of H₂, hence contains 6.023×10^{23} molecules. Others have less than one mole, so have less no. of molecules.
- 19. (d) Specific volume (volume of 1 g) of cylindrical virus particle= 6.02×10^{-2} cc/g Radius of virus (r) = 7 Å = 7×10^{-8} cm Length of virus = 10×10^{-8} cm Volume of virus = $\pi r l = - \times \times - \times - 2$ = 154×10^{-25} cc $r c = 10 \times 10^{-8}$ cm

Wt. of one virus particle = $\frac{\text{volume}}{\text{specific volume}}$

Mol. wt. of virus = Wt. of
$$N_A$$
 particle

$$= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$$
$$= 15400 \text{ g/mol} = 15.4 \text{ kg/mol}$$

20. (c) $BaCO_3 \rightarrow BaO CO_2$ $^{197 g}$ As 197 g of BaCO₃ will release 22.4 litre of CO₂ at STP \therefore 1 g of BaCO₃ will release $= \frac{22.4}{197}$ litre of CO₂

And 9.85 g of BaCO₃ will release carbon dioxide = $\frac{22.4}{197} \times 9.85 = 1.12$ litre of CO₂

21. (c) Given : Percentage of the iron = 0.334%; Molecular weight of the haemoglobin = 67200 and atomic weight of iron = 56. We know that the number of iron atoms

 $\frac{\text{Molecular wt. of haemoglobin} \times \% \text{ of iron}}{100 \times \text{Atomic weight of iron}}$ 67200×0.334

 $=\frac{67200\times0.334}{100\times56}=4$

- 22. (d) Number 161 cm, 0.161 cm and 0.0161 cm have 3, 3 and 3 significant figures respectively.
 - All non-zero digits are significant and the zeros at the beginning of a number are not significant.
- 23. (b) Molecular weight of $C_{60}H_{122}$ = (12×60) + 122 = 842. Therefore, weight of one molecule

$$= \frac{\frac{Molecular weight of C_{60}H_{122}}{Avogadro's number}}{\frac{842}{6.023 \times 10^{23}} \quad 1.36 \times 10^{-21} \text{g} \simeq 1.4 \times 10^{-21} \text{g}}$$

24. (c)
$$\frac{(29.2 - 20.2)(1.79 \times 10^5)}{1.37}$$

As the least precise number contains 3 significant figures therefore, answers should also contains 3 significant figures.

25. (a) No of moles of nitride ion

$$\frac{4.2}{14}$$
 0.3 mol 0.3× $N_{\rm A}$ nitride ions

Valence electrons = $8 \times 0.3 N_A = 2.4 N_A$

Nitride ion has seven protons in the nucleus and ten electrons surrounding the nucleus. Therefore total no. of electrons is 10. Number of valence electrons is (5 + 3) = 8.

- 26. (c) According to Avogadro's law "equal volumes of all gases contain equal numbers of molecules under similar conditions of temperature and pressure". Thus if 1 L of one gas contains N molecules, 2 L of any gas under the same conditions will contain 2N molecules.
 27. (a) Avarage stemic means
- 27. (a) Average atomic mass = $\frac{12 \times 10 + 017}{100}$

28. (a)
$$1 \mod \text{of CO}_2 = 44 \mod \text{of CO}_2$$

$$4.4 \text{ g CO}_{2} = \frac{4.4}{44} = 0.1 \text{ mol CO}_{2}$$

= 6 × 10²² molecules
= 2 × 6 × 10²² atoms or 1.2 × 10²³ atoms of oxygen.

29. (b)
$$6.02 \times 10^{23}$$
 molecules of CO =1 mole of CO
 6.02×10^{24} CO molecules = 10 moles of CO

- $(c) 10 \mathfrak{grations of } O = \mathfrak{Sgnolecules}_2 of 28 kg 96 kg_2$
- 30. As 28 kg of C_2H_4 undergo complete combustion by 96 kg of O_2

 \therefore 2.8 kg of C₂H₄ undergo complete combustion by 9.6 kg of O₂.

31. (a) $C_p/C_v = 1.4$ shows that the gas is diatomic. 22.4 litre at NTP = 6.02×10^{23} molecules 11.2 L at NTP = 3.01×10^{23} molecules No. of atoms in gas = $3.01 \times 10^{23} \times 2$ atoms = 6.02×10^{23} atoms

 $r \quad \frac{C_p}{C_v} \quad 1 \quad \frac{2}{F}, \text{ where F} = \text{degree of freedom of}$ the gas molecules For mono atomic gas, F = 3 $\therefore \quad \gamma \quad \frac{C_p}{C_v} \quad 1 \quad \frac{2}{3} \quad \frac{5}{3} \quad 1.67$

- CHEMISTRY

For diatomic gas, F = 5 $\therefore \gamma \frac{C_p}{C_v} = 1 \frac{2}{5} \frac{7}{5} = 1.40$ For triatomic gas, F = 6 or 7 (depending upon the nature of the gas) $\therefore \gamma \frac{C_p}{C_v} = 1 \frac{2}{6} = 1.33$ $\gamma \frac{C_p}{C_v} = 1 \frac{2}{7} = 1.29$ 32. (d) At NTP, 22400 cc of N₂O = 6.02×10^{23} molecules $\therefore 1 \text{ cc of N}_2O \text{ contain}$ $= \frac{6.02 \times 10^{23}}{22400} \text{ molecules}$ $\frac{3 \times 6.02 \times 10^{23}}{22400} = \frac{1.8}{224} \times 10^{22} \text{ atoms}$ ($\because N_2O$ molecule has 3 atoms) No. of electrons in a molecule of N₂O = 7 + 7 + 8 = 22Hence, no. of electrons $= \frac{6.02 \times 10^{23}}{22400} \times 22 = \frac{1.32 \times 10^{23}}{224} \text{ electrons}$

33. (a) 1 mol CCl₄ vapour = $12 + 4 \times 35.5$ = 154 g $\equiv 22.4$ L at STP

$$\therefore$$
 Density = $\frac{154}{22.4}$ gL⁻¹ = 6.875 gL⁻¹

34. (a)

Element	%	Atomic weight	Atomic ratio	Simple ratio
С	38.71	12	$\frac{38.71}{12} = 3.23$	$\frac{3.23}{3.23} = 1$
Н	9.67	1	$\frac{9.67}{1} = 9.67$	$\frac{9.67}{3.23} = 3$
0	100 - (38.71 + 9.67) = 51.62	16	$\frac{51.62}{16} = 3.23$	$\frac{3.23}{3.23} = 1$

Thus, empirical formula is CH₂O.

35. (d) Suppose the mol. wt. of enzyme = x Given 100 g of enzyme wt of Se = 0.5 g \therefore In x g of enzyme wt. of Se = $\frac{0.5}{100} \times x$ Hence 78.4 $\frac{0.5 \times x}{100}$ \therefore x = 15680 = 1.568 × 10⁴

(c) Tab	(c) Table for empirical formula :									
Element	%	At. wt	Relative number	Ratio						
С	40	12	$\frac{40}{12} = 3.33$	$\frac{3.33}{3.33} = 1$						
Н	6.66	1	$\frac{6.66}{1} = 6.66$	$\frac{6.66}{3.33} = 2$						
0	53.34	16	$\frac{53.34}{16} = 3.33$	$\frac{3.33}{3.33} = 1$						

(% of O in organic compound

36.

=100 - (40 + 6.66) = 53.34%)

 \therefore Empirical formula of organic compound = CH₂O.

37. (c) As the sum of the percentage of C, H & N is 100. Thus, it does not contains O atom.

T 1 1 C		10 1
I abla tor	omniri	cal tarmula
	CHIDIT	cai iui illula
	-	

Element	%	At. wt.	Relative Number	Ratio
С	40.00	12	$\frac{40}{12}$ 3.33	$\frac{3.33}{3.33}$ 1
Н	13.33	1	$\frac{13.33}{1} = 13.33$	$\frac{13.33}{3.33} = 4$
N	46.67	14	$\frac{46.67}{14} = 3.33$	$\frac{3.33}{3.33} = 1$
			1.6 1 011	` N T

Hence, empirical formula = CH_4N

38. (d) Molecular weight of $ZnSO_4.7H_2O$ = $65 + 32 + (4 \times 16) + 7(2 \times 1 + 16) = 287$. \therefore percentage mass of zinc (Zn)

$$=\frac{65}{287} \times 100 = 22.65\%$$

39. (d) The reaction can be given as $Z_2 O_3 + 3H_2 \longrightarrow 2Z + 3H_2O$ $0.1596 \text{ g of } Z_2O_3 \text{ react with } H_2 = 6 \text{ mg} = 0.006 \text{ g}$ $\therefore 1 \text{ g of } H_2 \text{ react with}$ $= \frac{0.1596}{0.006} = 26.6 \text{ g of } Z_2O_3$ $\therefore \text{ Eq. wt. of } Z_2O_3 = 26.6$

(from the definition of eq. wt.) Eq. wt. of Z + Eq. wt. of O (8) = 26.6 \Rightarrow Eq. wt. of Z = 26.6 - 8 = 18.6 Valency of metal in Z_2O_3 = 3

valencv : At. wt. of $Z = 18.6 \times 3 = 55.8$ (d) HCOOH $\xrightarrow{H_2SO_4}$ CO + H₂O 40. [H2O absorbed by H2SO4] $\begin{array}{l} \text{At start} \\ \text{(moles)} \end{array} = \begin{array}{c} \frac{2.3}{46} \quad \frac{1}{20} \end{array}$ 0 0 $\frac{1}{20}$ $\frac{1}{20}$ Final moles 0 $H_2C_2O_4 \xrightarrow{H_2SO_4} CO + CO_2 + H_2O \\ [H_2O \text{ absorbed by } H_2SO_4]$ At start = $\frac{4.5}{90} \frac{1}{20}$ 0 0 0 (moles) $\frac{1}{20}$ $\frac{1}{20}$ $\frac{1}{20}$ 0 Final moles

> CO₂ is absorbed by KOH. So, the remaning product is only CO. Moles of CO formed from both reactions

$$\frac{1}{20} \quad \frac{1}{20} \quad \frac{1}{10}$$
Left mass of CO = moles × molar mass
= $\frac{1}{10} \times 28 \quad 2.8 \text{ g}$

41. (d) MgCO₃
$$\longrightarrow$$
 MgO CO₂
84 g of MgCO₃ form 40 g of MgO
 \therefore 20g of MgCO₃ form $\frac{40 \times 20}{84}$ g of MgO
= 9.52 g of MgO
Since 8.0 g of MgO is formed
Purity of sample = $\frac{8}{9.52} \times 100 = 84.0\%$
42. (c) 50 mL of 16.9% solution of AgNO₃
 $\left(\frac{16.9}{100} \times 50\right) = 8.45$ g of Ag NO₃
 $n_{\text{mole}} = \frac{8.45 \text{ g}}{(107.8 + 14 + 16 \times 3) \text{ g/mol}}$
 $= \left(\frac{8.45 \text{ g}}{169.8 \text{ g/mol}}\right) = 0.0497$ moles
50 mL of 5.8% solution of NaCl contain

$$NaCl = \left(\frac{5.8}{100} \times 50\right) = 2.9 g$$

 $n_{\text{NaCl}} = \frac{2.9\text{g}}{(23+35.5)\text{ g/mol}} = 0.0495 \text{ moles}$ $AgNO_3 + NaCl \rightarrow AgCl \downarrow + Na^+ + NO_3^-$ 1 mole 1 mole 1 mole ∴ 0.049 mole 0.049 mole 0.049 mole of AgCl $n = \frac{w}{M} \rightarrow w = (n_{AgCl}) \times \text{Molecular Mass}$ $=(0.049) \times (107.8 + 35.5) = 7.02 \text{ g}$ 43. (c) Millimoles of solution of chloride $=0.05 \times 10 = 0.5$ Millimoles of AgNO₃ solution = $10 \times 0.1 = 1$ So, the millimoles of AgNO3 are double than the chloride solution. $\therefore XCl_2 + 2AgNO_3 \longrightarrow 2AgCl + X(NO_3)_2$ (a) $M = \frac{6.02 \times 10^{20} \times 1000}{100 \times 6.02 \times 10^{23}} = \frac{6.02 \times 10^{21}}{6.02 \times 10^{23}}$ 44. $= 0.01 \,\mathrm{M}$ 45. (d) No. of milli equivalent of HCl $=20 \times 0.05 = 1.0$ No. of milli equivalent of Ba (OH), $= 30 \times 0.1 \times 2 = 6.0$ After neutralization, no. of milli equivalents in 50 mL. of solution = (6-1)=5Total volume of the solution = 20 + 30 = 50 mL: No. of equivalent of OH⁻ in 50 mL is $[OH^{-}] = \frac{5 \times 1000}{50} \times 10^{-3} = 0.1 \text{ M}$

46. (b)
$$H_2 + \frac{1}{2}O_2 \longrightarrow H_2O$$

10g 64g
(5 mol) (2 mol)

In this reaction oxygen is the limiting agent. Hence, amount of H_2O produced depends on the amount of O_2 taken.

$$\therefore$$
 0.5 mole of O₂ gives H₂O = 1 mol
 \therefore 2 mole of O₂ gives H₂O = 4 mol

When there is not enough of one reactant in a chemical reaction, the reaction stops. To find the amount of product produced, we must determine reactant that will limit the chemical reaction (the limiting reagent) we can find the limiting reagent by calculating the amount of product that can be formed by each reactant, the one that produces less product is the limiting reagent.

(d) Writing the equation for the reaction, we get 47. $PbO + 2HCl \longrightarrow PbCl_2 + H_2O$ $207 + 16 \quad 2 \times 36.5$ 207 + 71= 223 g = 73 g= 278 gFrom this equation we find 223 g of PbO reacts with 73 g of HCl to form 278 g of PbCl₂. If we carry out the reaction between 3.2 g HCl and 6.5 g PbO. Amount of PbO that reacts with 3.2 g HCl $=\frac{223}{73}\times 3.2=9.77$ g. Since amount of PbO present is only 6.5 g so PbO is the limiting reagent. Amount of PbCl, formed by 6.5 g of PbO $=\frac{278}{223}\times 6.5 \,\mathrm{g}$ Number of moles of PbCl₂ formed $=\frac{278}{223} \times \frac{6.5}{278}$ moles = 0.029 moles. 48. (c) Molarity of H_2SO_4 solution $=\frac{98\times1000}{98\times100}\times1.80$ 18.0 Suppose $V \,\mathrm{mL}$ of this $\mathrm{H}_2\mathrm{SO}_4$ is used to prepare 1 lit. of 0.1M H₂SO₄ :. $V \times 18.0 = 1000 \times 0.1$ or $V = \frac{1000 \times 0.1}{18.0} = 5.55 \,\mathrm{mL}.$ (c) $2Al_2O_3 + 3C \longrightarrow Al \quad 3CO_2$ 49. Gram equivalent of $Al_2O_3 \equiv g$ equivalent of C Now equivalent weight of Al = $\frac{27}{3}$ = 9 Equivalent weight of C $=\frac{12}{4}=3 (\overset{0}{C} \rightarrow \overset{+4}{C}O_2)$ No. of gram equivalent of Al = $\frac{270 \times 10^3}{9 \times 30 \times 10^3}$ Hence. No. of gram equivalent of $C = 30 \times 10^3$

Again. No. of gram equivalent of C $= \frac{\text{mass in gram}}{\text{gram equivalent weight}}$ $\Rightarrow 30 \times 10^3 = \frac{\text{mass}}{3}$ \Rightarrow mass = 90 × 10³ g = 90 kg (c) $N_2 + 3H_2 \rightarrow 2NH_3$ 1 vol. 3 vol. 2 vol. 10 litre 30 litre 20 litre 50. It is given that only 50% of the expected product is formed hence, only 10 litre of NH₂ is formed. N_2 used = 5 litres, left = 30 - 5 = 25 litres H_{2} used = 15 litres, left = 30 - 15 = 15 litres 51. (c) According to Stoichiometry, they should react as follow: $\begin{array}{ccc} 4NH_3 &+ 5O_2 & \longrightarrow & 4NO \\ 4 \text{ moles} & 5 \text{ moles} & 1 \text{ mole} & & 0.8 \text{ moles} & 6 \text{ moles} \\ 1.2 \text{ moles} & 1.2 \text{ moles} & & 1.2 \text{ moles} \end{array}$ Thus, for 1 mole of O₂ only 0.8 moles of NH₃ is consumed. Hence O₂ is consumed completely. (d) $2C_6H_6+15O_2(g) \longrightarrow 12CO_2(g) \quad 6H_2O(g)$ $_{2(78)} \quad _{15(32)}$ 52. :: 156 g of benzene, required oxygen $= 15 \times 22.4$ litre : 1g of benzene, required oxygen $=\frac{15\times22.4}{156}$ litre : 39 g of benzene, required oxygen $=\frac{15\times22.4\times39}{156}=84.0$ litre 53. (a) $5 \text{ M H}_2 \text{SO}_4 = 10 \text{ N H}_2 \text{SO}_4$; (\therefore Basicity of H₂SO₄=2) $N_1V_1 = N_2V_2$, 10 × 1 = N_2 × 10 or N_2 = 1 N 54. (a) $Mg^2 + Na_2CO_3 \longrightarrow MgCO_3$ 2Na

1 g eq. 1 g eq. 1 g eq. of $Mg^{2+} = 12$ g of $Mg^{2+} = 12000$ mg = 1000 milli eq. of Na_2CO_3 ∴ 12 mg $Mg^{2+} = 1$ milli eq. Na_2CO_3