MOTION IN A PLANE

1. The vector that must be added to the vector i-3j+2k and 3i+6j+7k so that the resultant vector is a unit vector along the positive y-axis, is

(a)
$$4i-2j+5k$$

(b)
$$-4 i - 2 j - 9 k$$

(c)
$$3i-4j+5k$$

- (d) null vector
- 2. Two stones are projected from the same point with same speed making angles $(45^{\circ} + \theta)$ and $(45^{\circ} \theta)$ with the horizontal respectively. If $\theta \le 45^{\circ}$, then the horizontal ranges of the two stones are in the ratio of
 - (a) 1:1
- (b) 1:2
- (c) 1:3
- (d) 1:4
- 3. The angle between the two vectors

$$\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$$
 and $\vec{B} = 3\hat{i} + 4\hat{j} - 5\hat{k}$ will be

- (a) zero
- (b) 45°
- (c) 90°
- (d) 180°
- 4. An aircraft moving with a speed of 250 m/s is at a height of 6000 m, just overhead of an anti aircraft gun. If the muzzle velocity is 500 m/s, the firing angle θ should be:

- (a) 30°
- (b) 45°
- (c) 60°
- (d) 90°.

- At the height 80 m, an aeroplane is moving with a speed of 150 m/s. A bomb is dropped from it so as to hit a target. At what distance from the target should the bomb be dropped (given g = 10 m/s²)
 - (a) 605.3 m
- (b) 600m
- (c) 80m
- (d) 230m
- An object is projected with a velocity of 20 m/s making an angle of 45° with horizontal. The equation for the trajectory is $h = Ax Bx^{2}$ where h is height, x is horizontal distance, A and B are constants. The ratio A: B is $(g = 10 \text{ ms}^{-2})$
 - (a) 1:5
- (b) 5:1
- (c) 1:40
- (d) 40:1
- A largenumber of bullets are fired in all directions with the same speed v from ground. What is the maximum area on the ground on which these bullets will spread?
 - (a) $\frac{\pi v^2}{\underline{\sigma}}$
- (b) $\frac{\pi v^4}{\sigma^2}$
- (c) $\pi^2 \frac{v^2}{g^2}$
- (d) $\frac{\pi^2 v^4}{g^2}$

- 8. A man can swim in still water with a speed of 2 m/s. If he wants to cross a river of water current speed √3 m/s along the shortest possible path, then in which direction should he swim?
 - (a) At an angle 120° to the water current.
 - (b) At an angle 150° to the water current.
 - (c) At an angle 90° to the water current.
 - (d) None of these
- Initial velocity with which a body is projected is 10 m/sec and angle of projection is 60° with horizontal, find the range R

- 10. If a_r and a_t represent radial and tangential accelerations, the motion of particle will be uniformly circular, if
 - (a) $a_t = 0$ and $a_t = 0$
 - (b) $a_{i} = 0$ but $a_{i} \neq 0$
 - (c) $a_1 \neq 0$ and $a_1 = 0$
 - (d) $a_r \neq 0$ and $a_t \neq 0$
- 11. If a body moving in circular path maintains constant speed of 10 ms⁻¹, then which of the following correctly describes relation between magnitude of acceleration and radius?

- 12. A projectile thrown with velocity v making angle θ with vertical gains maximum height 20m in the time for which the projectile remains in air, the time period is
 - (a) 15 s
- (b) 25 s

- (c) 9 s
- (d) 4 s
- 13. A projectile is fired with a velocity vat right angle to the slope which is inclined at an angle θ with the horizontal. The range of the projectile along the inclined plane is:

(a)
$$\frac{2v^2 \tan \theta}{g}$$

(b)
$$\frac{v^2 \sec \theta}{g} 0$$

(d)
$$\frac{v^2 \sin \theta}{g}$$

- 14. A car is moving along a circular path of radius 500 m with a speed of 30 m/s. If at some instant, its speed increases at the rate of 2 m/s², than at that instant the magnitude of resultant acceleration will be
 - (a) $4.7 \,\mathrm{m/s^2}$
- (b) $3.8 \,\mathrm{m/s^2}$
- (c) 3 m/s^2
- (d) $2.7 \,\mathrm{m/s^2}$
- 15. A projectile reaches its highest point when it has covered exactly one half of its horizontal range. The corresponding point on the horizontal component of velocity-time (i.e. v_x -t) graph is characterized by
 - (a) negative slope
 - (b) negative slope and negative curvature
 - (c) zero slope
 - (d) positive slope

- Two bodies are thrown up at angles of 45° and 16. 60° respectively, with the horizontal. If both bodies attain same vertical height, then the ratio of velocities with which these are thrown is

- Trajectories are shown in figure are for three kicked footballs, ignoring the effect of the air on the footballs. If T_1 , T_2 and T_3 are their respective time of flights then:
 - (a) $T_1 \ge T_3$

 - (d) $T_1 = T_2 = T_3$
- A projectile is given an initial velocity of $(\hat{i} + 2\hat{j})$ m/s, where \hat{i} is along the ground and \hat{j} is along the vertical. If $g = 10 \text{ m/s}^2$, the equation of its trajectory is:

 - (a) $y = x 5x^2$ (b) $y = 2x 5x^2$

 - (c) $4v = 2x 5x^2$ (d) $4v = 2x 25x^2$
- A clock has a continuously moving second's hand of 0.1 m length. The average acceleration of the tip of the hand (in units of ms⁻²) is of the order of:
 - (a) 10^{-3}
- (b) 10^{-1}
- 10^{-2} (c)
- 10^{-1} (d)
- A particle has an initial velocity of $3\hat{l} + 4\hat{j}$ and an acceleration of $0.4\hat{i} + 0.3\hat{j}$. Its speed after $10\,\mathrm{s}\,\mathrm{is}$:
 - $7\sqrt{2}$ units
- 7 units
- (c) 8.5 units
- 10 units

- A particle is moving along a circular path with a constant speed of 10 ms⁻¹. What is the magnitude of the change in velocity of the particle, when it moves through an angle of 60° around the centre of the circle?
 - $10\sqrt{3}$ m/s
- zero
- $10\sqrt{2}$ m/s
- (d) $10 \,\mathrm{m/s}$
- A projectile is thrown in the upward direction making an angle of 60° with the horizontal direction with a velocity of 147 ms^{-1} . Then the time after which its inclination with horizontal is 45° , is
 - $15\,\mathrm{s}$
- $10.98\,\mathrm{s}$
- $5.49\,\mathrm{s}$
- $2.745\,\mathrm{s}$
- A boy playing on the roof of a 20 m high tower throws a ball with a speed of 20m/s at an angle of 45° with the horizontal. How far from the throwing point will the ball be at the height of 20 m from the ground?

$$[g = 10 \text{m/s}^2]$$

- 20m
- 4.33m
- 2.60m
- 40m (d)
- A particle is projected from a tower as shown in figure, then the distance from the foot of the tower where it will strike the ground will be
 - $4000/3 \, \mathrm{m}$

- An electric fan has blades of length 30 cm 25. measured from the axis of rotation. If the fan is rotating at 120 rpm, the acceleration of a point on the tip of the blade is
 - (a) $1600 \,\mathrm{ms}^{-2}$
- (b) $47.4 \,\mathrm{ms}^{-2}$
- (c) $23.7 \,\mathrm{ms}^{-2}$
- (d) $50.55 \,\mathrm{ms}^{-2}$

- A ball projected from ground at an angle of 45° just clears a wall in front. If point of projection is 4 m from the foot of wall and ball strikes the ground at a distance of 6 m on the other side of the wall, the height of the wall is:
 - 4.4m
- 2.4m
- 3.6m (c)
- (d) 1.6m
- A particle is projected with a certain velocity at an angle \alpha above the horizontal from the foot of an inclined plane of inclination 30°. If the particle strikes the plane normally then α is
 - (a) $30^{\circ} + \tan^{-1} \left(\frac{\sqrt{3}}{2} \right)$ (b) $30^{\circ} + \tan^{-1} \frac{1}{2}$
 - (c) $30^{\circ} + \tan^{-1}1$
- (d) 60°
- A ball is thrown from a point with a speed ' v_0 ' at an elevation angle of θ . From the same point and at the same instant, a person starts running with

- a constant speed $\frac{v_0'}{2}$ to catch the ball. Will the
- person be able to catch the ball? If yes, what should be the angle of projection θ ?
- (a) No
- (b) Yes, 30°
- (c) Yes, 60°
- (d) Yes, 45°
- A shell is fired from a fixed artillery gun with an initial speed u such that it hits the target on the ground at a distance R from it. If t_1 and t_2 are the values of the time taken by it to hit the target in two possible ways, the product t_1t_2 is :
 - (a) R/4g
- R/2g
- (d) 2R/g
- Two particles are projected from the same point with the same speed u such that they have the same range R, but different maximum heights, h_1 and h_2 . Which of the following is correct?

 - (a) $R^2 = 4 h_1 h_2$ (b) $R^2 = 16 h_1 h_2$
 - (c) $R^2 = 2h_1h_2$ (d) $R^2 = h_1h_2$

	ANSWER KEY																		
1	(b)	4	(c)	7	(b)	10	(c)	13	(c)	16	(c)	19	(a)	22	(c)	25	(b)	28	(c)
2	(a)	5	(a)	8	(b)	11	(c)	14	(d)	17	(d)	20	(a)	23	(d)	26	(b)	29	(d)
3	(c)	6	(d)	9	(d)	12	(d)	15	(c)	18	(b)	21	(d)	24	(a)	27	(a)	30	(b)

3

Motion in a Plane

(b) Unit vector along y axis = j, so the required vector

$$= j - [(i-3j+2k) + (3i+6j+7k)]$$
$$= -4i-2j-9k$$

- 2. (a) Note that the given angles of projection add upto 90°. So, the ratio of horizontal ranges is 1:1.
- 3. (c) $\vec{A} = 3\hat{i} + 4\hat{j} + 5\hat{k}$, $\vec{B} = 3\hat{i} + 4\hat{j} 5\hat{k}$ \vec{A} , $\vec{B} = (3\hat{i} + 4\hat{j} + 5\hat{k})$, $(3\hat{i} + 4\hat{j} - 5\hat{k})$ $|\vec{A}| |\vec{B}| \cos \theta = 9 + 16 - 25 = 0$ $|\vec{A}| \neq 0$, $|\vec{B}| \neq 0$, hence, $\cos \theta = 0 \Rightarrow \theta = 90^{\circ}$
- 4. (c) $500 \cos \theta = 250 \implies \cos \theta = \frac{1}{2}$ or $\theta = 60^{\circ}$.
- 5. (a) The horizontal distance covered by bomb,

$$BC = u_H \times \sqrt{\frac{2h}{g}}$$
$$= 150\sqrt{\frac{2 \times 80}{10}} = 600\text{m}$$

... The distance of target from dropping point of bomb.

$$AC = \sqrt{AB^2 + BC^2} = \sqrt{(80)^2 + (600)^2}$$

= 605.3m

6. (d) Standard equation of projectile motion

$$y = x \tan \theta - \frac{gx^2}{2u^2 \cos^2 \theta}$$

Comparing with given equation

$$A = \tan \theta$$
 and $B = \frac{g}{2u^2 \cos^2 \theta}$

So
$$\frac{A}{B} = \frac{\tan \theta \times 2u^2 \cos^2 \theta}{g} = 40$$

$$(As \theta = 45^{\circ}, u = 20 \text{ m/s}, g = 10 \text{ m/s}^2)$$

(b) Maximum possible horizontal range = v²/g
 Maximum possible area of the circle

$$= \pi \left(\frac{v^2}{g}\right)^2 = \frac{\pi v^4}{g^2}$$

8. **(b)**

9. **(d)**
$$t = \frac{2u\sin 30^{\circ}}{g\cos 30^{\circ}} = \frac{2(10)(1/2)}{10(\sqrt{3}/2)} = \frac{2}{\sqrt{3}}\sec x$$

$$R = 10 \cos 30^{\circ} t - \frac{1}{2} g \sin 30^{\circ} t^2$$

$$= \frac{10\sqrt{3}}{2} \left(\frac{2}{\sqrt{3}} \right) - \frac{1}{2} (10) \left(\frac{1}{2} \right) \frac{4}{3}$$

$$=10-\frac{10}{3}=\frac{20}{3}$$
m

- 10. (c) When a particle moves on a circular path with a constant speed, then its motion is said to be a uniform circular motion in a plane. This motion has radial acceleration whose magnitude remains constant but whose direction changes continuously, So $a_r \neq 0$ and $a_t = 0$.
- 11. (c) Speed, v = constant (from question)

Centripetal acceleration, $a = \frac{V^2}{r}$

$$ra = constant$$

Hence graph (c) correctly describes relation between acceleration and radius.

13. (c) If t is the time of flight, then

$$0 = v t - \frac{1}{2} (g \cos \theta) t^2.$$

$$\therefore t = \frac{2v}{g\cos\theta}$$

Range,
$$R = 0 + \frac{1}{2}(g\sin\theta)t^2 = \frac{1}{2}g\sin\theta\left(\frac{2v}{g\cos\theta}\right)^2$$
$$= \frac{2v^2\tan\theta\sec\theta}{g}$$

14. (d) Centripetal acc,

$$a_c = \frac{v^2}{r} = \frac{(30)^2}{500} = 1.8 \text{m/s}^2$$

Tangentical acc, $a_1 = 2 \text{ m/s}^2$

$$\therefore$$
 Resultant acc, $a = \sqrt{a_t^2 + a_c^2} = 2.7 \text{m/s}^2$

15. (c)

16. (c)
$$H_{\text{max}} = \frac{u^2 \sin^2 q}{2g}$$

According to question,

$$\frac{u_1^2 \sin^2 45^\circ}{2g} = \frac{u_2^2 \sin^2 60^\circ}{2g}$$

$$\Rightarrow \frac{u_1^2}{u_2^2} = \frac{\sin^2 60^\circ}{\sin^2 45^\circ} \Rightarrow \frac{u_1}{u_2} = \frac{\sqrt{3}/2}{1/\sqrt{2}} = \sqrt{\frac{3}{2}}.$$

17. (d) As maximum height attained by each one is same, so u_v is also same. As

$$T = \frac{2u_y}{g}$$

So
$$T_1 = T_2 = T_3$$
.

18. **(b)** From equation, $\vec{v} = \hat{i} + 2\hat{j}$

$$\Rightarrow x = t$$
 ...(i)

$$y = 2t - \frac{1}{2}(10t^2)$$
 ... (ii)

From (i) and (ii), $v = 2x - 5x^2$

19. (a) Here, $R = 0.1 \,\text{m}$

$$\omega = \frac{2\pi}{T} = \frac{2\pi}{60} = 0.105 \text{ rad/s}$$

Acceleration of the tip of the clock second's hand,

$$a = \omega^2 R = (0.105)^2 (0.1) = 0.0011$$

= $1.1 \times 10^{-3} \text{ m/s}^2$

Hence, average acceleration is of the order of 10^{-3} .

20. (a) Given $\vec{u} = 3\hat{i} + 4\hat{j}$, $\vec{a} = 0.4\hat{i} + 0.3\hat{j}.t = 10s$

From 1st equation of motion.

$$a = \frac{v - u}{t}$$

$$v = at tu$$

$$v = (0.4\hat{i} + 0.3\hat{j}) \times 10 + (3\hat{i} + 4\hat{j})$$

$$4\hat{i} + 3\hat{j} + 3\hat{j} + 4\hat{j}$$

$$v = 7\hat{i} + 7\hat{j}$$

$$|\vec{v}| = \sqrt{7^2 + 7^2} = 7\sqrt{2} \text{ unit.}$$

21. (d) \overline{v}_2 \overline{v}_1 \overline{v}_1 $(\pi - \theta)$ \overline{v}_1

Change in velocity,

$$|\Delta \overline{\mathbf{v}}| = \sqrt{\mathbf{v}_1^2 + \mathbf{v}_2^2 + 2\mathbf{v}_1 \mathbf{v}_2 \cos(\pi - \theta)}$$

$$= 2\mathbf{v}\sin\frac{\theta}{2} \qquad (\because |\overline{\mathbf{v}}_1| = |\overline{\mathbf{v}}_2|) = \mathbf{v}$$

$$= (2 \times 10) \times \sin(30^\circ) = 2 \times 10 \times \frac{1}{2}$$

$$= 10 \text{ m/s}$$

23. (d) Tower height and final height is same so, required range is:

$$R = \frac{u^2 \sin 2\theta}{g} = \frac{(20)^2 \sin(2 \times 45^\circ)}{10} = 40 \text{ m}$$

24. (a)

$$1500 = 100t + \frac{1}{2}10t^2$$
; $t = 10$ sec.

$$x = \frac{400}{3}t = \frac{4000}{3}$$
 m

- 25. **(b)**
- 26. **(b)** O 45° wall 6 m

As ball is projected at an angle 45° to the horizontal therefore Range = 4H

or
$$10 = 4H \Rightarrow H = \frac{10}{4} = 2.5 \text{ m}$$

$$(\because Range=4m+6m=10m)$$

Maximum height, $H = \frac{u^2 \sin^2 \theta}{2g}$

$$\therefore \mathbf{u}^2 = \frac{\mathbf{H} \times 2\mathbf{g}}{\sin^2 \theta} = \frac{2.5 \times 2 \times 10}{\left(\frac{1}{\sqrt{2}}\right)^2} = 100$$

or,
$$u = \sqrt{100} = 10 \text{ ms}^{-1}$$

Height of wall PA

$$= OA \tan \theta - \frac{1}{2} \frac{g(OA)^2}{u^2 \cos^2 \theta}$$

$$= 4 - \frac{1}{2} \times \frac{10 \times 16}{10 \times 10 \times \frac{1}{\sqrt{2}} \times \frac{1}{\sqrt{2}}} = 2.4 \,\mathrm{m}$$

- 27. (a)
- 28. (c) Yes, Man will catch the ball, if the horizontal component of velocity becomes equal to the constant speed of man.

$$\frac{\mathbf{v}_o}{2} = \mathbf{v}_o \cos \theta$$

or
$$\theta = 60^{\circ}$$

29. (d) R will be same for θ and $90^{\circ} - \theta$.

Time of flights:

$$t_1 = \frac{2u\sin\theta}{g}$$
 and

$$t_2 = \frac{2u\sin(90^\circ - \theta)}{g} = \frac{2u\cos\theta}{g}$$

Now,
$$t_1 t_2 = \left(\frac{2u \sin \theta}{g}\right) \left(\frac{2u \cos \theta}{g}\right)$$

$$= \frac{2}{g} \left(\frac{u^2 \sin 2\theta}{g} \right) = \frac{2R}{g}$$

30. (b) For same range, the angle of projections are:

$$\theta$$
 and $90^{\circ} - \theta$. So,

$$h_1 = \frac{u^2 \sin^2 \theta}{2g} \text{ and}$$

$$h_2 = \frac{u^2 \sin^2(90^\circ - \theta)}{2g} = \frac{u^2 \cos^2 \theta}{2g}$$

Also,
$$R = \frac{u^2 \sin 2\theta}{g}$$

$$h_1 h_2 = \frac{u^2 \sin^2 \theta}{2g} \times \frac{u^2 \cos^2 \theta}{2g}$$

$$=\frac{u^2}{16}\frac{u^2(2\sin\theta\cos\theta)^2}{g^2}$$

$$=\frac{R^2}{16}$$

or
$$R^2 = 16 h_1 h_2$$