

E Badecker reaction : This reaction involves the following chemical change.

 $Na_{2}[Fe(CN)_{5}NO] + Na_{2}SO_{3} \rightarrow Na_{4}[Fe(CN)_{5}(NO.SO_{3})]$

E **Everitt's salt :** It is $K_2[Fe(CN)_6]$ obtained by reduction of prussian blue.

\checkmark Masking : Masking is the process in which a substance without physical separation of it is so transformed that is does not enter into a particular reaction e.g., masking of Cu^{2+} by CN^{-} ion.

 \swarrow Macrocyclic effect : This term refers to the greater thermodynamic stability of a complex with a cyclic polydentate ligand when compared to the complex formed with a non-cyclic ligand. e.g., Zn(II)

 \swarrow **Prussian blue** and **Turnbull's blue** is pot. ferric ferrocyanide. However colour of Turnbull's blue is less intense than prussian blue. Decrease in colour is due to the presence in it of a white compound of the formula $K_2{Fe[Fe(CN)_6]}$ named as potassium ferrous ferrocyanide.

✓ Crystal field theory explains why certain geometries are more favoured than other by certain metals in terms of crystal field stablization energies.

 \mathcal{L} The colour of complexes are explained in terms of electronic transitions between the various d orbitals of different energies.

 \mathbf{z} In octahedral complexes, the energy of the d_{z^2} and $d_{x^2-y^2}$ orbitals increases much more than the energy of the d_{xy}, d_{yz}, d_{xz} orbitals. The potential energy increases as a result of repulsive interactions. The greater the repulsion, greater is the increases in energy.

✓ Ligands with larger groups from unstable rings than the ligands with smaller groups. This is ascribable to steric hinderance produced by a larger group.

 \swarrow When Ca^{2+} or Mg^{2+} forms complexes with EDTA, the pH of the solution decreases.

𝕊 The copper sulphate solution e.g., turns deep

blue when excess of ammonia is added. This is also due to the formation of $[Cu(NH_3)_4]SO_4$

 \swarrow Co-ordination compound with a general formula MA4, MA3B or MABCD do not show any geometric isomerism.

✓ Flexidentate character : polydentate ligand are said to have flexidentate character if they do not use all its donar atoms to get coordinated to the metal ion e.g., EDTA generally act as a hexadentate ligand but it can also act as a pentadentate and tetradentate ligand.

 \mathscr{E} Octahedral complex of the type [M(ABCDEF)] have 15 different geometrical isomers with a pair of enantiomers. Although a few geometrical isomer have been prepared but none has been resolved e.g., [*Pt* (*Py*)(*NH*₃)(*NO*₂)(*Cl*)(*Br*)*I*].

	Objective Ques	stions
	Basic Terms	
1.	In $K_4 Fe(CN)_6$	
	(a) (CN) are linked with primary valency	
	(b) (CN) are linked with secondary valence	сy
	(c) <i>K</i> are linked with secondary valency	
	(d) K are linked with non-ionic valency	
2.	1	oper in
	cuprammonium sulphate is	
	(a) 2 (b) 6 (c) 4 (d) - 4	
3.	Which of the following acts as a bidenta	te ligand
J.	in complex formation	te inguita
	(a) Acetate (b) Oxalate	
	(c) Thiocyanate (d) EDTA	
4.	The co-ordination number of cobalt	in the
	complex $[Co(en)_2 Br_2]Cl_2$ is	
	(a) 2 (b) 6	
	(c) 5 (d) 4	
5.	Which of the following ligands forms a ch	
	[MP PET/P	мГ 1998]
	(a) Acetate(b) Oxalate(c) Cyanide(d) Ammonia	
	(c) Cyanide (d) Ammonia	

- (a) Primary valency can be ionized
- (b) Secondary valency can be ionized
- (c) Primary and secondary valencies both cannot be ionized

_	(d) Only primary valen	-		(a) $[Zn(CN)_4]^{2-}$	(b) $[Cr(H_2O)_6]^{3+}$
7.	metal complex	ng is not true for ligand-		(c) $[Cu(CN)_4]^{2-}$	(d) $[Ni(NH_3)_4]^{2+}$
		[MP PET 1993]	16.		formed when cuprammonium
	(a) Larger the ligand metal-ligand bond	, the more stable is the		sulphate is dissolved	
	(b) Highly charged liga	nd forms strong bond		(a) 1	(b) 2 (d) Zono
		anent dipole moment of	17.	(c) 4 The coordination	(d) Zero number of <i>Cu</i> in complex
	ligand, the more sta		17.	$\left[Cu(H_2O)_4\right]^{++}$ is	number of <i>Cu</i> in complex
	metal, the stronger			(a) 4	(b) 3
8.		ion number of the metal in		(c) 2	(d) 1
	$\left[Co(en)_2 Cl_2\right]^+$		18.		ce of the metal ion in the co-
	(a) 4	(b) 5		ordination compoun	nd $K_2[Ni(CN)_4]$ is
	(c) 6	(d) 3		(a) Four	(b) Zero
9.	Bidentate ligand is			(c) Two	(d) Six
(en)	(a) <i>CN</i> ⁻	(b) Ethylene diammine	19.	The metal which of carbonyl is	does not form a polynuclear
(en)	(c) <i>SCN</i> ⁻	(d) EDTA		(a) <i>Mn</i>	(b) <i>Co</i>
				(c) <i>Cr</i>	(d) <i>Fe</i>
10.		per of Pt in $\left[Pt(NH_3)_4 Cl_2\right]^{++}$	20.	Which one of the fo	ollowing forms with an excess
	ion is			-	a complex having coordination
	(a) 2	[MP PET 1995] (b) 4		number two	
	(c) 6	(d) 8			[AIIMS 2004]
11.	Which is the example o			(a) <i>Cu</i> ⁺	(b) Ag^+
11.	(a) 2, 2-dipyridyl	i nexadentate ngand		(c) Ni ²⁺	(d) Fe^{2+}
	(b) Dimethyl glyoxime		21.	According to Lewis	the ligands are [MP PMT 2002]
	(c) Aminodiacetate ion			(a) Acidic in nature	
	. ,	tetra acetate ion [EDTA]		(b) Basic in nature	
12.	-	umber of a metal in		(c) Neither acidic n	or basic
	coordination compound	ls is[MP PET 1996; KCET (Engg	./Med.)	() () () () () () () () () () () () () (and others are basic
	(a) Same as primary va	lency	22.		umber of a central metal atom
	(b) Sum of primary and	-		in a complex is dete	-
	(c) Same as secondary	valency			ligands around a metal ion
	(d) None of these				a and pi-bonds both.
13.	Ligand in a complex sal			bonds	ound a metal ion bonded by pi-
	metal atom or ion	ordinate bonds to a central			ligands around a metal ion
	central metal atom				only anionic ligands bonded to
	(c) Molecules linked central metal atom	by coordinate bonds to a	23.		of which of the following,
		linked by coordinate bonds	-5.	complex ion forms	[MP PET 1989]
	to a central metal a			(a) <i>Cu</i>	(b) <i>Ag</i>
14.		function as a ligand only		(c) <i>Fe</i>	(d) <i>Na</i>
•	when		24.	Potassium ferrocyar	nide is a [AFMC 2000]
	[KCET 19	89; DCE 1999; MP PMT 2000]		(a) Normal salt	(b) Mixed salt
	(a) It is a small molecu	le		(c) Double salt	(d) Complex salt
	(b) It has an unshared	_	25.	A monodentate liga	nd has
	(c) It is a negatively ch	-		(a) One co-ordinate	site
	(d) It is a positively cha	•		(b) Two co-ordinate	e sites
	Which of the follow	ing complexes show six			a andimate sites
15.	coordination number	[RPET 2000]		(c) Any number of c	co-ordinate sites

				Co-ordinatio	on Chemistry 909	ð
6.	EDTA has coordination	number [AFMC 2004]			[A]	IIMS 1997]
	(a) 3	(b) 4		(a) <i>H</i> ⁺	(b) <i>H</i> ⁻	
	(c) 5	(d) 6		(c) H	(d) None of the	
7.		(a) reducing (b) oxidising	38.		-	[MP PET 199
		et of properties shown by		(a) Potassium ferrocya		
	CN^{-} ion towards meta			(b) Ferenze annadniur	-	
	(a) c, a	(b) b, c		(c) Potassium ferricya		
	(c) a, b	(d) a, b, c		(d) Tetrammine coppe	er (II) sulphate	
•		e which forms a complex cional metal ion is called	39.	The basic ligand is		
	(a) Recipient	(b) Ligand		(a) NH_3	(b) <i>CN</i> ⁻	
	(c) Coordinate ion	(d) No special name		(c) <i>F</i> ⁻	(d) All	
		of <i>Zn</i> in <i>ZnS</i> (zinc blende) is	40.	The negative ligand is		
•		[Orissa JEE 2004]		(a) Aqua	(b) Sulphato	
	(a) 6	(b) 4		(c) Carboxyl	(d) Nitro sodiui	n
	(c) 8	(d) 12	41.	Which has yellow colo	ur	
•		used as a homogeneous		(a) Potassium cobaltin	nitrite	
•		enation of alkenes contains		(b) Potassium hexanit	ro cobaltate (III)	
	(a) Iron	(b) Aluminium		(c) Fischer's salt		
	(c) Rhodium	(d) Cobalt		(d) All the above		
,	Given the molecula		42.	Ligands, in complex co	ompounds [MP]	PMT 2003]
	coordinated complex			(a) Accept e^- -pair		
		$4NH_3$. If the number of co-		(b) Donate e^- -pair		
		lecules in A, B and C		(c) Neither accept e^- -pair nor donate		
	-	nd 4, the primary valency in		(d) All of these happen		
	(<i>A</i>), (<i>B</i>) and (<i>C</i>) are:	[DCE 2003]	43.	Which of the followin	ig is a common do	nor atom
	(a) 6, 5, 4	(b) 3, 2, 1		in ligands	-	
	(c) 0, 1, 2	(d) 3, 3, 3			[]	BHU 2001]
•		f atoms can function as a		(a) Arsenic	(b) Nitrogen	
	ligand if			(c) Oxygen	(d) Both (b) and	d (c)
		[MP PET 1996]	44.	Trunbull's blue is a co	mpound	
	(a) They are positively	-			_	CET 1993]
	(b) They are free radio			(a) Ferricyanide	(b) Ferrous ferr	-
		r neutral molecules or		(c) Ferrous cyanide	(d) Ferriferrocy	
	negatively charged	lons	45.	Tollen's reagent is	[K	CET 1990]
	(d) None of these	n forniavonido io		(a) $[Ag(NH_3)_2]^+$	(b) Ag_2O	
•	The ligand in potassiu	-		(c) $[Cu(OH)_4]^{2-}$	(d) Cu_2O	
	(a) <i>K</i> ⁺	(b) <i>CN</i> ⁻	_		-	
	(c) Fe^{3+}	(d) $(CN)_6$	46.	Finely divided iron con		-
•	Co-ordination number	of aluminum is [MHCET 2004]		(-) = (CO)	_	EAT 2002]
	(a) 8	(b) 6		(a) $Fe(CO)_5$	(b) $Fe_2(CO)_9$	
	(c) 12	(d) 4		(c) $Fe_2(CO)_{12}$	(d) $Fe(CO)_6$	
•	In $K_4 Fe(CN)_6$, Fe is in	the form of	47.	In a complex, the high	ghest possible coo	ordination
	(a) An atom	(b) An ion		number is		
	(c) Cationic complex	(d) Anionic complex		(a) 6	(b) 12	
•		ing ligands is expected to		(c) 4	(d) 8	
	bidentate		48.	The number of neut		-
		[CBSE PMT 1994]		groups attached to th	ne central metal a	atom in a
	(a) <i>Br</i>	(b) $C_2 O_4^{2-}$		complex ion is called		_
	(c) CH_3NH_2	(d) $CH_3C \equiv N$		(a) Atomic number	(b) Effective	atomic
		im tetrahydroaluminate, the	num			
· .	ligand is	tetranyaroaraninate, tile		(c) Coordination numl EDTA combines with c		ency
			49.			

	(a) Ion-exchange resins (b) Chelates	60.	Number of ions prese	ent in $K_4[Fe(CN)_6]$ [Pb. CET 200
	(c) Clathrates (d) Polymers		(a) 2	(b) 10
0.	An example of a double salt is [MP PET 2001]		(c) 3	(d) 5
	(a) Bleaching powder (b) Hypo	61.	CH_3MgI is an organo	metallic compound due to
	(c) $K_4[Fe(CN)_6]$ (d) Potash alum			[DCE 2002]
1.	In complex compounds, metal ligand bond is		(a) $Mg - I$ bond	(b) $C-I$ bond
	(a) Coordinate bond (b) Hydrogen bond		(c) $C - Mg$ bond	(d) $C - H$ bond
	(c) Ionic bond (d) Covalent bond	62.	What is the EAN of n	
2.	Ammonia forms the complex ion $[Cu(NH_3)_4]^{2+}$ with		(a) 34	(b) 35
	copper ions in alkaline solutions but not in acidic solution. What is the reason for it [AIEEE 2003]		(a) 34 (c) 32	(d) 36
	(a) In acidic solutions hydration protects copper ions	No	menclature Oxidatio	on state and EAN number
	(b) In acidic solutions protons coordinate with			
	ammonia molecules forming NH_4^+ ions and NH_3 molecules are not available	1.	How many ions are j of $[Co(H_2O)_6]Cl_2$	produced in aqueous solution [RPMT 2002]
	(c) In alkaline solutions insoluble $Cu(OH)_2$ is			
	precipitated which is soluble in excess of any		(a) 2	(b) 3
	alkali	_	(c) 4	(d) 6
	(d) Copper hydroxide is an amphoteric substance	2.	IUPAC name of [<i>Pt</i> (<i>N</i> F	$(I_3)_3(Br)(NO_2)Cl Cl 1s$
3.	Zeigler-Natta catalyst is used for which type of			[CBSE PMT 1998]
	reaction		(a) Triamminechloro	bromonitroplatinum (IV)
	(a) Hydrogenation (b) Polymerization	chlo		
	(c) Oxidation (d) Reduction	chlo	(b) Triamminebromo	nitrochloroplatinum (IV)
4.	Which of the following is not considered as an organometallic compound.		ALLAS STAGE AT minebromo	chloronitroplatinum (IV)
	(a) Cis-platia (b) Ferrocene	chlo		
	(c) Zeise's salt (d) Gringard reagent		(d) Triamminenitroc	hlorobromoplatinum (IV)
5.	Which one is organometallic compound[MP PMT 2004] chlo		
	(a) Lithium methoxide (b) Lithium dimethyl	3.	Oxidation state of nit	rogen is incorrectly given for
	amide			
				[UPSEAT 2000, 01]
	(c) Lithium acetate (d) Methyl lithium		Compound	[UPSEAT 2000, 01] Oxidation state
6.	An aqueous solution of potash alum gives[UPSEAT 20	04]	-	
6.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion	04]	(a) $[Co(NH_3)_5 Cl]Cl_2$	Oxidation state 0
	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions	04]	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH	Oxidation state O —1
	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the	04]	(a) $[Co(NH_3)_5 Cl]Cl_2$	0
	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of	04]	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH	Oxidation state O —1
	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003]	o4] 4.	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2	Oxidation state 0 -1 +2
	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$		(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2	Oxidation state 0 -1 +2 -3 pro <i>bis</i> (urea) copper (II) is
	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003]		(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2	Oxidation state 0 -1 +2 -3 pro bis (urea) copper (II) is [CBSE PMT 1997]
7.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in		(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}O_4$	Oxidation state 0 -1 +2 -3 pro bis (urea) copper (II) is [CBSE PMT 1997] Cl ₂]
7.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^-		(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}O_4$ (b) $[CuCl_2\{O = C(NH_2)_2]O_4$	Oxidation state 0 -1 +2 -3 pro bis (urea) copper (II) is [CBSE PMT 1997] $[\mathcal{A}_2]$ $[\mathcal{A}_2]$
7.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in $Co(NH_3)_3Cl_3$ [MP PET 1994] (a) 3 (b) 4		(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}C$ (b) $[CuCl_2\{O = C(NH_2)_2\}C$ (c) $[Cu\{O = C(NH_2)_2\}C$	Oxidation state 0 -1 +2 -3 oro bis (urea) copper (II) is [CBSE PMT 1997] Cl_2])2 }2] Cl_Cl_Cl
7.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in $Co(NH_3)_3Cl_3$ [MP PET 1994] (a) 3 (b) 4 (c) 5 (d) 6	4.	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}C$ (b) $[CuCl_2\{O = C(NH_2)_2\}C$ (c) $[Cu\{O = C(NH_2)_2\}C$ (d) $[CuCl_2]\{O = C(NH_2)_2\}C$	Oxidation state 0 -1 +2 -3 pro bis (urea) copper (II) is [CBSE PMT 1997] Cl ₂] Cl ₂] Cl ₂] Cl ₂] () ₂ H ₂ }
7. 8.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in $Co(NH_3)_3Cl_3$ [MP PET 1994] (a) 3 (b) 4		(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}O_4$ (b) $[CuCl_2\{O = C(NH_2)_2\}O_4$ (c) $[Cu\{O = C(NH_2)_2\}O_4$ (d) $[CuCl_2]O_4 = C(NH_2)_2$ The IUPAC name of the second	Oxidation state 0 -1 +2 -3 oro bis (urea) copper (II) is [CBSE PMT 1997] Cl_2] cl_2] cl_2l_2] cl_2l_2 he complex $[Pt(NH_3)_2Cl_2]$ is
7 . 8.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in $Co(NH_3)_3Cl_3$ [MP PET 1994] (a) 3 (b) 4 (c) 5 (d) 6	4.	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}C$ (b) $[CuCl_2\{O = C(NH_2)_2\}C$ (c) $[Cu\{O = C(NH_2)_2\}C$ (d) $[CuCl_2]\{O = C(NH_2)_2\}C$ (d) $[CuCl_2]\{O = C(NH_2)_2\}C$ (e) $[CuCl_2]\{O = C(NH_2)_2\}C$ (f) $[CuCl_2]\{O = C(NH_2)_2\}C$ (c) $[CuCl_2]\{O = C(NH_2)_2]C$ (c) $[CuCl_2][O = C(NH_2)_2]C$ (c	Oxidation state 0 -1 +2 -3 oro bis (urea) copper (II) is [CBSE PMT 1997] Cl_2] $(l_2)_2$ } $(l_2)_2$ he complex $[Pt(NH_3)_2Cl_2]$ is mmino dichloride
8.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in $Co(NH_3)_3Cl_3$ [MP PET 1994] (a) 3 (b) 4 (c) 5 (d) 6 The formula of alum is [Pb. CET 2002]	4.	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}G$ (b) $[CuCl_2\{O = C(NH_2)_2]G$ (c) $[Cu\{O = C(NH_2)_2]G$ (d) $[CuCl_2]\{O = C(NH_2)_2]G$ (d) $[CuCl_2]\{O = C(NH_2)_2]G$ (e) $[CuCl_2]\{O = C(NH_2)_2]G$ (f) $[CuCl_2]\{O = C(NH_2)_2]G$ (c) $[Cul_2]\{O = C(NH_2)_2]G$ (c) $[Cul_3][O = C(NH_2)_$	Oxidation state 0 -1 +2 -3 oro bis (urea) copper (II) is [CBSE PMT 1997] Cl_2] cl_2l_2] cl_2l_2] he complex [$Pt(NH_3)_2Cl_2$] is mmino dichloride ro platinate (IV)
56. 57. 58.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in $Co(NH_3)_3Cl_3$ [MP PET 1994] (a) 3 (b) 4 (c) 5 (d) 6 The formula of alum is [Pb. CET 2002] (a) $K_2SO_4.Al_2(SO_4)_3.24H_2O$ (b) $K_4[Fe(CN)_6]$	4.	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}O_4$ (b) $[CuCl_2\{O = C(NH_2)_2\}O_4$ (c) $[Cu\{O = C(NH_2)_2\}O_4$ (d) $[CuCl_2]O_4 = C(NH_2)_2O_4$ (d) $[CuCl_2]O_4 = C(NH_2)_2O_4$ (e) $[CuAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA$	Oxidation state 0 -1 +2 -3 oro bis (urea) copper (II) is [CBSE PMT 1997] Cl_2] D_2 } Cl_2] $Cl_2Cl_2Cl_2$] the complex [$Pt(NH_3)_2Cl_2$] is mmino dichloride ro platinate (IV) hloro platinum (IV)
37.	An aqueous solution of potash alum gives[UPSEAT 20 (a) Two types of ions (b) Only one type of ion (c) Four types of ions (d) Three types of ions Carnallite in solution in H_2O , shows the properties of [DCE 2003] (a) K^+, Mg^{2+}, Cl^- (b) $K^+, Cl^-, SO_4^{2-}, Br^-$ (c) K^+, Mg^{2+}, CO_3^{2-} (d) K^+, Mg^{2+}, Cl^-, Br^- What is the co-ordination number of cobalt in $Co(NH_3)_3Cl_3$ [MP PET 1994] (a) 3 (b) 4 (c) 5 (d) 6 The formula of alum is [Pb. CET 2002] (a) $K_2SO_4.Al_2(SO_4)_3.24H_2O$	4.	(a) $[Co(NH_3)_5 Cl]Cl_2$ (b) NH_2OH (c) $(N_2H_5)_2SO_4$ (d) Mg_3N_2 The formula of dichlor (a) $[Cu\{O = C(NH_2)_2\}O$ (b) $[CuCl_2\{O = C(NH_2)_2\}O$ (c) $[Cu\{O = C(NH_2)_2\}O$ (d) $[CuCl_2]\{O = C(NH_2)_2\}O$ (d) $[CuCl_2]\{O = C(NH_2)_2\}O$ (e) $[CuCl_2]O$ The IUPAC name of the second secon	Oxidation state 0 -1 +2 -3 oro bis (urea) copper (II) is [CBSE PMT 1997] Cl_2] D_2 } Cl_2] $Cl_2Cl_2Cl_2$] the complex [$Pt(NH_3)_2Cl_2$] is mmino dichloride ro platinate (IV) hloro platinum (IV)

			Co-ordination Chemistry 911
	(a) $Ag(NH_3)Cl$ (b) $Ag(NH_2)Cl$		(d) Tetrapotassium ferroushexacyanide (II)
	(c) $[Ag(NH_3)_2]Cl$ (d) $[Ag(NH_2)_2]Cl$	15.	The IUPAC name of $[Ni(CO)_4]$ is [RPET 1999]
•	The formula of sodium nitroprusside is [AIIMS 1992]		(a) Tetra carbonyl nickel (II)
	(a) $Na_4[Fe(CN)_5 NOS]$ (b) $Na_2[Fe(CN)_5 NO]$		(b) Tetra carbonyl nickel (0)
	(c) $NaFe[Fe(CN)_6]$ (d) $Na_2[Fe(CN)_6NO_2]$		(c) Tetra carbonyl nickelate (II)
•	The correct name of $[Pt(NH_3)_4Cl_2][PtCl_4]$ is		(d) Tetra carbonyl nickelate (0)
•		16.	The correct nomenclature for $Fe_4[Fe(CN)_6]_3$ is
	[MP PET 2003] (a) Tetraammine dichloro platinum (iv)		[MP PMT 1994]
	tetrachloro platinate (ii)		(a) Ferroso-ferric cyanide
	(b) Dichloro tetra ammine platinium (iv)		(b) Ferric-ferrous hexacyanate
	tetrachloro platinate (ii)		(c) Iron (III) hexacyanoferrate (II)
	(c) Tetrachloro platinum (ii) tetraammine		(d) Hexacynoferrate (III-II)
	platinate (iv)	17.	The IUPAC name of compound $Na_3[Co(ONO)_6]$ will
	(d) Tetrachloro platinum (ii) dichloro		be
	tetraammine platinate (iv)		[MP PMT 2000]
•	Correct formula of potassium ferrocyanide is [CBSE PMT 1988]		(a) Hexanitritocobalt (III) sodium(b) Sodium cobalt nitrite
	(a) $K_4[Fe(CN)_6]$ (b) $K_2[Fe(CN)_6]H_2O$		(c) Sodium hexanitrocobaltate (III)
			(d) Sodium hexanitritocobaltate (III)
	(c) $K_3[Fe(CN)_6]$ (d) None of these	18.	In which of the following complexes oxidation
D.	The IUPAC name of $\left[Co(NH_3)_3(NO_2)_3\right]$ is	201	state of metal is zero [MP PET 1997
	(a) Trinitrotriammine cobalt (III)		(a) $[Pt(NH_3)_2Cl_2]$ (b) $[Cr(CO)_6]$
	(b) Trinitrotriammine cobalt (II)		(c) $[Cr(NH_3)_3Cl_3]$ (d) $[Cr(en)_2Cl_2]$
	(c) Trinitrotriammine cobalt (III) ion	19.	The oxidation number of <i>Cr</i> in $[Cr(NH_3)_6]Cl_3$ is
	(d) Trinitritriammine cobaltate (III)	19.	[CBSE PMT 2001
1.	In $K_4[Fe(CN)_6]$, the E.A.N. of Fe is [DCE 2000]		(a) 8 (b) 6
	(a) 33 (b) 35		(c) 4 (d) 3
	(c) 36 (d) 26	20.	
2.	Which of the following pairs is not correctly		(a) 34 (b) 35
	matched		(c) 36 (d) 37
	[MP PET 1993]	21.	IUPAC name of $[Co(ONO)(NH_3)_5 Cl_2]$ is
	(a) Effective atomic number of Pt in		[AMU 2002]
PtCl	$_{6}]^{2-}=84$		(a) Pentaammine nitro cobalt (III) chloride
	(b) Absorption peak for $\left[Cr^{III}(NH_3)_6\right]^{+3} = 21680 \ cm^{-1}$		(b) Pentaammine nitrito cobalt (III) chloride
	(c) Crystal field stabilization energy of d^2 in		(c) Pentaammine nitroso cobalt (III) chloride
	weak ligand field = $(-)0.8\Delta_0$		(d) Pentaammine oxo-nitro cobalt (III) chloride
		22.	The oxidation number of Pt in $[Pt(C_2H_4)Cl_3]^-$ is
	(d) Example of weak ligand field for d^5 configuration = $\left[Mn^{II}F_6\right]^{-4}$		[MNR 1993
			(a) + 1 (b) + 2
3.	The oxidation number of chromium in sodium		(c) + 3 (d) + 4
	tetrafluoro oxochromate complex is	23.	The oxidation state of cobalt in the complex
	(a) II (b) IV (c) VI (d) III		compound $\left[Co(NH_3)_6\right]Cl_3$ is
1.	The IUPAC name of $K_4[Fe(CN)_6]$ is		(a) + 3 (b) + 6
T •			(c) $+ 5$ (d) $+ 2$
	[CBSE PMT 1990; MP PET 1992; MP PMT 1995, 97; Kurukshetra CET 2002]	24.	The correct IUPAC name of potassiun
			cuprochloride is
	(a) Polassium nexacianorerrale (11)		(a) Potassium copper (I) tetrachloride
	(a) Potassium hexacyanoferrate (II)(b) Potassium ferrocyanide		(a) Potassium copper (I) tetrachloride(b) Potassium tetrachlorocuprate (I)

_		
	(d) Tetrachlorocopper (I) pot	
25.		per of cobalt in the
	complex $[Co(NH_3)_6]^{3+}$ is	[MP PET 2003]
	(a) 36 (b)	33
	(c) 24 (d)	30
26.	IUPAC name of $K_3 Fe(CN)_6$ is	
	[MP P	MT 1993; MP PET 1997]
	(a) Potassium ferrocyanide (II)
	(b) Potassium hexaferrocyan	ate (III)
	(c) Potassium ferrohexacyan	ate (II)
	(d) Potassium hexacyanoferr	ate (III)
27.	The EAN of iron in potassium	n ferricyanide is
		[Pb. CET 2000]
	(a) 18 (b)	54
	(c) 35 (d)	23
8.	In the coordination con	npound, $K_4[Ni(CN)_4]$
	oxidation state of nickel is	
	(a) -1 (b)	0
	(c) +1 (d)	+2
).		omenclature sodium
	nitroprussied is named is	
	(a) Sodium pentacyanonitros	syl ferrate (III)
	(b) Sodium nitroferricyanide	•
	(c) Sodium nitroferrocyanide	
	(d) Sodium pentacyanonitros	
•		•
	central metal atom obeys EA	
	(a) $K_4[Fe(CN)_6]$ (b)	$K_3[Fe(CN)_6]$
	(c) $[Cr(H_2O)_6]Cl_3$ (d)	$[Cu(NH_3)_4]SO_4$
,		511
•	(a) $Ni(CO)_4$ has oxidation nu	
	(b) $Ni(CO)_4$ has zero oxidatio	n number for <i>W</i>
	(c) Ni is metal	
	(d) CO is gas	
	Oxidation state of Fe in $K_3[Fe]$	<i>e</i> (<i>CN</i>) ₆] [RPMT 2002]
	(a) 2 (b)	3
	(c) 0 (d)	None of these
•	Which complexes have zero o	oxidation state
	(a) Carbonyl (b)	Ferrocyanide
	(c) Amine (d)	Cyanide
,	The proper name for $K_2[PtCl]$	6 is [MH CET 2002]
	(a) Potassium platinum hexa	
	(b) Potassium hexachloro pla	
	(c) Potassium hexachloro pla	
	-	
_	(d) Potassium hexachloro pla	
j.	IUPAC name of $K_3[Al(C_2O_4)_3]$	
		[MP PMT 1993, 02, 03]
	(a) Potassium alumino oxala	
	(b) Potassium aluminium (II	I) trioxalate
	(c) Potassium trioxalato alur	ninate (III)

- (c) Potassium trioxalato aluminate (III)
- (d) Potassium trioxalato aluminate (IV)

36.	The I.U.P.A.C. name of <i>I</i>	$K_3[In(C_2O_4)_3]$ is
		[MP PMT 2001]
	(a) Potassium tri oxalat	
	(b) Potassium tri oxalat	
	(c) Potassium tris (oxal	
	(d) Potassium tris (oxal	
37.	The charge on $[Ag(CN)_2]$	[–] complex is [AIIMS 2001]
	(a) -1	(b) +1
	(c) +2	(d) +3
38.	The IUPAC name of $Co($	$NH_3_{6}Cl_3$ is [IIT-JEE 1994]
	(a) Hexammine cobalt (
	(b) Hexammine cobalt (
	(c) Triammine cobalt (I	II) trichloride
	(d) None of these	(\mathbf{u}, \mathbf{o}) (\mathbf{d}, \mathbf{d})
39.	L	
LA	AIEEE 2003]	[MP PET 1994]
	(a) Diaquachlorodiamm	
	(c) Chlorodiamminediad	loro cobalt (III) chloride
[0	(d) Diamminediaquachle	oro cobalt (II) chloride
40.		inum (II) complex has the
40.	formula	mum (ii) complex has the
		[MP PMT 1997]
	(a) $Pt[Cl_2(NH_3)_2]$	(b) $Pt[R.(NH_2)_2]Cl_2$
3]	(c) $[PtCl_2(NH_3)_2]$	(d) $[Pt.R.(NH_2)_2]Cl_2$
41.	The formula of potass	siumdicyano <i>bis</i> (oxalato)
•	nickelate (II) is	
]	(a) $K_4[Ni(CN)_2(Ox)_2]$	(b) $K_3[Ni_2(Ni_2(CN)_2(Ox)_2)]$
	(c) $K[Ni(CN)(Ox)_2]$	(d) $K_2[Ni(CN)_2(Ox)_2]$
42.	The value of x which	appears in the complex
1	$[Ni(CN)_{A}]^{x}$ is	
	(a) + 2	(b) - 2
	(c) 0	(d) 4
43.	• •	f $[Co(NH_3)_5 Cl]Cl_2$ [AMU 2001]
43.	(a) Chloropentammine	5.5 2
	(b) Pentammine cobalt	
	(c) Chloropentammine	
	(d) Chloropentammine	
44.		
	(a) + 4	(b) + 2
	(c) - 2	(d) - 4
45.		ing compounds transition
10.	metal has zero oxidation	
	(a) <i>CrO</i> ₅	(b) $NH_2.NH_2$
	(c) NOClO ₄	(d) $[Fe(CO)_5]$
46.		mpound diaquatriammine

46. The complex chlorocompound diaquatriammine cobalt (III) chloride is represented as[CBSE PMT 2002]
(a) [Co(NH₃)₃(H₂O)₃]Cl₂

(b) $[Co(NH_2)_3 (H_2O)_2]Cl_2$ The IUPAC name of $K_2[Cr(CN)_2O_2(O)_2(NH_3)]$ is 56. (c) $[CoCl(NH_3)_3 (H_2O)_2]Cl_3$ [DCE 2003] dicyano (a) Potassium ammine (d) $[CoCl(NH_3)_3 (H_2O)_2]Cl_2$ dioxoperoxochromate (VI) The complex compound $[C_0(NH_3), NO_2ClCN]$ is 47. (b) Potassium ammine cyano dioxo peroxo named as [Mehron 1996]VI) (a) Chlorocyanonitrotriammine cobalt (III) (c) Potassium ammine cyano peroxo dioxo (b) Nitrochlorocyanotriammine cobalt (III) chromiun (VI) (c) Cyanonitrochlorotriammine cobalt (III) (d) Potassium ammine cyano dioxo peroxo (d) Triamminenitrochlorocyano cobalt (III) chromatic (IV) The oxidation number of *Pt* in $[Pt(C_2H_4)Cl_3]^-$ is The IUPAC name of the coordination compound 48. 57. [AIEEE 2005] $K_3[Fe(CN)_6]$ is [UPSEAT 1999, 01] (a) Potassium hexacyanoferrate (II) (a) +1 (b) +2 (c) +3 (d) +4 (b) Potassium hexacyanoferrate (III) What is the structural formula of lithium (c) Potassium hexacyanoiron (II) 49. tetrahydridoaluminate [MP PMT 2003] (d) Tripotassium hexacyanoiron (II) (a) $Al[LiH_4]$ (b) $Al_2[LiH_4]_3$ 58. Which compound is zero valent metal complex [KCET 200 (c) $Li[AlH_4]$ (d) $Li[AlH_4]_2$ (a) $[Cu(NH_3)_4]SO_4$ (b) $[Pt(NH_3), Cl_2]$ **50.** IUPAC name for $K[Ag(CN)_2]$ is (c) $[Ni(CO)_4]$ (d) $K_3[Fe(CN)_6]$ (a) Potassium argentocyanide (b) Potassium silver cyanide Isomerism and magnetic properties (c) Potassium dicyanoargentate (I) (d) Potassium dicyanosilver (II) Which one of the following octahedral complexes 1. The oxidation state of *Co* in $[Co(H_2O)_5 Cl]^{2+}$ is 51. will not show geometric isomerism (A and B are monodentate ligands) [CBSE PMT 2003] (a) + 2 (b) + 3(a) $[MA_5B]$ (b) $[MA_2B_4]$ (c) + 1(d) + 4The chemical formula of diammine silver (I) (c) $[MA_3B_3]$ (d) $[MA_4B_2]$ 52. chloride is The number of unpaired electrons in the complex 2. [BHU 2004] ion $[CoF_6]^{3-}$ is (Atomic no. of Co = 27) [CBSE PMT 2003] (a) $[Ag(NH_3)]Cl$ (b) $[Ag(NH_3)_2]Cl$ (a) Zero (b) 2 (c) $[Ag(NH_3)_2]Cl$ (d) $[Ag(NH_4)_2]Cl$ (c) 3 (d) 4 IUPAC name of $[Co(NH_3)_5NO_2]Cl_2$ [Pb. CET 2000] 53. Which would exhibit co-ordination isomerism 3. (a) $[Cr(NH_3)_6][Co(CN)_6]$ (b) $[Co(en)_2 Cl_2]$ (a) Pentamminenitrocobalt (III) chloride (b) Pentamminenitrosocobalt (III) chloride (c) $[Cr(NH_3)_6]Cl_3$ (d) $[Cr(en)_2 Cl_2]^+$ (c) Pentamminenitrocobalt (II) chloride $[Co(NH_3)_5 NO_2]Cl_2$ and $[Co(NH_3)_5 (ONO)]Cl_2$ 4. are (d) None of these related to each other as The pair of the compounds in which both the 54. (a) Geometrical isomers (b) Optical isomers metals are in the highest possible oxidation state (c) Linkage isomers (d) Coordination isomers is [IIT-JEE (Screening) 2004] $\left[Co(NH_3)_5 Br\right] SO_4$ $\left[Co(NH_3)_5 SO_4\right]Br$ 5٠ and are (a) $[Fe(CN)_6]^{3-}, [Co(CN)_6]^{3-}$ examples of which type of isomerism [MP PMT 1993, 94, 95; MP PET 1997; MP PET/PMT 1998] (b) CrO_2Cl_2, MnO_4^- (a) Linkage (b) Geometrical (c) TiO_3 , MnO_2 (c) Ionization (d) Optical (d) $[Co(CN)_6]^{3-}, MnO_3$ $[C_0(NH_3)_4 Cl_2]NO_2$ and $[C_0(NH_3)_4 Cl_NO_2]Cl$ are 6. isomers [MP PMT 1993; MP PET 1995, 2001] The IUPAC name of $[Cr(NH_3)_6]^{3+}$ is [Pb. CET 2001] 55. (a) Geometrical (b) Optical (a) Hexamminechromium (VI) ion (c) Linkage (d) Ionization (b) Hexamminechromium (III) ion Which would exhibit ionisation isomerism[MP PET 1997] 7. (c) Hexamminechromium (II) ion (a) $[Cr(NH_3)_6]Cl_3$ (b) $\left[Co(NH_3)_5 Br\right]SO_4$ (d) Hexamminechloride

_			$(a) \left[C \left(\lambda H \right) \right] C \left[A \left(\lambda H \right) \right] C $
	(c) $[Cr(en)_2 Cl_2]$ (d) $[Cr(en)_3 Cl_3]$		(a) $[Cu(NH_3)_4]Cl_2$ (b) $[Ag(NH_3)_2]Cl_2$
	$[Ti(H_2O)_6]^{+3}$ is paramagnetic in nature due to [RPMT 2002]		(c) NO (d) NO_2
	(a) One unpaired e^- (b) Two unpaired e^-	17.	The number of geometrical isomers for $[Pt(NH_3)_2Cl_2]$ is
	(c) Three unpaired e^- (d) No unpaired e^-		[CBSE PMT 1995]
	Coordination isomerism is caused by the interchange of ligands between the [UPSEAT 2002]		(a) Two (b) One
	(a) Cis and Trans structure		(c) Three (d) Four
	(b) Complex cation and complex anion	18.	The pair of complex compounds $\left[Cr(H_2O)_6Cl_3\right]$ and
	(c) Inner sphere and outer sphere		$[Cr(H_2O)_5 Cl]Cl_2H_2O$ are an example of [MP PMT 1997]
	(d) Low oxidation and higher oxidation states		(a) Linkage isomerism (b) Ionisation isomerism
	Which one of the following will not showgeometrical isomerism[MP PMT 2002]		(c) Coordination isomerism (d)Hydrate isomerism
	(a) $[Cr(NH_3)_4 Cl_2]Cl$ (b) $[Co(en)_2 Cl_2]Cl$	19.	The number of geometrical isomers of the complex $[Co(NO_2)_2(NH_3)_2]$ is [CBSE PMT 1997]
	(c) $[Co(NH_3)_5 NO_2]Cl_2$ (d) $[Pt(NH_3)_2 Cl_2]$		(a) 2 (b) 3 (b) 3
	Paramagnetic co-ordination compounds contain		(c) 4 (d) 0
	electrons	20.	The type of isomerism present in nitropentamine
	(a) No		chromium (III) chloride is
	(b) Both paired and unpaired		(a) Optical (b) Linkage
	(c) Paired(d) Unpaired	21.	(c) Ionization (d) Polymerisation Which of the following compounds exhibits
	Which of the following isomeric pairs shows	21,	linkage isomerism [MP PMT 2001]
	ionization isomerism [MP PET 1993]		(a) $[Co(en)_3]Cl_3$ (b) $[Co(NH_3)_6[Cr(CN)_6]$
	(a) $\left[Co(NH_3)_6\right]\left[Cr(CN)_6\right]$ and $\left[Cr(NH_3)_6\right]\left[Co(CN)_6\right]$		(c) $[Co(en)_2 NO_2 Cl]Br$ (d) $[Co(NH_3)_5 Cl]Br_2$
	(b) $[Cr(H_2O)_6]Cl_3$ and $[Cr(H_2O)_5Cl]Cl_2.H_2O$	22.	Pick out from the following complex compounds,
	(c) $\left[Pt(NH_3)_2Cl_2\right]$ and $\left[Pt(NH_3)_4\right]\left[PtCl_4\right]$		a poor electrolytic conductor in solution[MP PMT 1g
	(d) $[Co(NH_3)_5 Br]SO_4$ and $[Co(NH_3)_5 SO_4]Br$		(a) $K_2[PtCl_6]$ (b) $[Co(NH_3)_3(NO_2)_3]$
	Among the following ions which one has the		(c) $K_4[Fe(CN)_6]$ (d) $[Cu(NH_3)_4]SO_4$
	highest paramagnetism[IIT 1993; UPSEAT 2002] (a) $[a]$ (b) $[a]$ (b) $[a]$ (b) $[a]$	23.	The possible number of optical isomers in $[Co(en)_2 Cl_2]^+$ are
	(a) $[Cr(H_2O)_6]^{3+}$ (b) $[Fe(H_2O)_6]^{2+}$		(a) 2 (b) 3
	(c) $[Cu(H_2O)_6]^{2+}$ (d) $[Zn(H_2O)_6]^{2+}$		(c) 4 (d) 6
.	Amongst $Ni(CO)_4$, $[Ni(CN)_4]^{2-}$ and $[NiCl_4]^{2-}$ [IIT 1991]	24.	Magnetic moment of $[Cu(NH_3)_4]^{2+}$ ion is [RPET 2003]
	(a) $Ni(CO)_4$ and $[NiCl_4]^{2-}$ are diamagnetic and		(a) 1.414 (b) 1.73
	$[Ni(CN)_4]^{2^-}$ is paramagnetic		(c) 2.23 (d) 2.38
	(b) $[NiCl_4]^{2-}$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and	25.	What is true for $[Fe(CN)_6]^{3-}$ and $[FeF_6]^{3-}$ [RPET 199
	$Ni(CO)_4$ is paramagnetic		(a) Both are paramagnetic
	(c) $Ni(CO)_4$ and $[Ni(CN)_4]^{2-}$ are diamagnetic and		(b) Only $[Fe(CN)_6]^{3-}$ is paramagnetic
			(c) Only $[FeF_6]^{3-}$ is paramagnetic
	$[NiCl_4]^{2-}$ is paramagnetic		(d) Both are diamagnetic
	(d) $Ni(CO)_4$ is diamagnetic and $[NiCl_4]^{2-}$ and	26.	
	$[Ni(CN)_4]^{2-}$ are paramagnetic		(a) $[Ni(CO)_4]$ (b) $[Co(NH_3)_6]^{3+}$
5.	$\left[Co\left(NH_{3}\right)_{4}Cl_{2}\right]^{+}$ exhibits		(c) $[Ni(CN)_4]^{2-}$ (d) $[NiCl_4]^{2-}$
	(a) Geometrical isomerism (b) Optical isomerism	27.	The total number of possible isomers for the
	(c) Bonding isomerism (d) Ionisation isomerism		
	The compound which does not show		[CBSE PMT 1998; DPMT 2004; J & K CET 2005]
5. '	(c) Bonding isomerism (d) Ionisation isomerism	27.	complex compound $\left[Cu^{II}(NH_3)_4\right]\left[Pt^{II}Cl_4\right]$ are

			Co-or unration	chemistry 915
	-		(a) <i>Ni</i> (<i>CO</i>) ₄	(b) $Ni(Cl_4)^{2-}$
			(c) $Ni(Br)_4^{2-}$	(d) $NiCl_2.4H_2O$
• · · · • •		39.	Which one has the highe	est paramagnetism [AMU 2001]
			(a) $Ni(CO)_4$	(b) $[Ni(NH_3)_4]Cl_2$
-			(c) $[Ni(NH_3)_6]Cl_2$	(d) $[Cu(NH_3)_4]Cl_2$
(a) Linkage isomerism		40.	Which of the following would exhibit optical is	g coordiantion compounds omerism
	rism (d)Ionisation isomerism			hylenediamine) chromium
	g exhibits highest molar			ne) cobalt (III) bromide
conductivity			(c) pentaamminenitroco	obalt (III) iodide
(a) $\left[C_{0}(NH)\right]C_{1}$			(d) diamminedichloropl	atinum (II)
		41.		ng does not have optical
E (3)4 23	E (375 31		isomer	
Which of the following of	•		(a) $[C_0(NH_a), CL_a]$	[AIIMS 2004] (b) $[Co(en)_3]Cl_3$
				(d) $[Co(en)(NH_3)_2Cl_2]Cl$
2 5 4 2	2 2	42		522
. –	• · · · -	42.	yields which types of iso	omers
	exhibited by $[Mn(H_2O)_6]^{2+}$		-	(b) Geometrical (d) None of these
ion is		12		
(a) Danamagnatism		43.		wii by
•	•			(b) Ionisation
			(c) Geometrical	(d) Linkage
complex $K_2 \left[PdClBr_2(SCN) \right]$	[MP PET 1994]	44.	Which of the following with $AgNO_3$	will not give a precipitate [MP PET 2003]
			(a) $[Co(NH_3)_3 Cl_3]$	(b) $[Co(NH_3)_4 Cl_2]Cl$
			(c) $\left[Co(NH_3)_5 Cl\right]Cl_2$	(d) $[Co(NH_3)_6]Cl_3$
The number of unparred		45.	How many ions are pro	oduced from $[Co(NH_3)_6]Cl_3$
			in solution	[RPET 1999]
			(a) 6	(b) 4
	(1)		(c) 3	(d) 2
				<i>I</i> ₃ . <i>H</i> ₂ <i>O</i> is[Kerala (Med.) 2002]
		[1995]		(b) Orange
(a) 1	(b) 2		(c) Green	(d) Violet
		4-		wing is owned to be
	$Pt(NH_3)_4 Br_2 Cl_2$ are related	47•		[MP PMT 1991, 2000]
-				
	•	48.		
	• •			
ethylene diamine)				
	[KCET 1996]			L (3/43 2
		49.		produced in solution from opentammine cobalt (III)
(c) $[Pt(en)_3]^{4+}$	(d) $[Pt(en)_2]Cl_2$		chloride	
Which of the following of	complexes is diamagnetic [RPMT 1997]		(a) 1 (c) 3	(b) 2 (d) 4
	paramagnetic character (a) $[Cr(H_2O)_6]^{3+}$ (c) $[Fe(CN)_6]^{3-}$ The complexes $[Co(C_2O_4)_3]$ (a) Linkage isomerism isomerism (c) Coordination isomer Which of the following (c) $[Co(NH_3)_6]Cl_3$ (c) $[Co(NH_3)_4Cl_2]Cl$ Which of the following of (a) $Cu_2(CH_3COO)_4.2H_2O$ (c) $CuSO_4.5H_2O$ The type of magnetism ion is (a) Paramagnetism (c) Both (a) and (b) The number of isomers complex $K_2[PdClBr_2(SCN)]$ (a) 2 (c) 4 The number of unpaired (a) Zero (c) Three If the magnetic mome then the number of unpaired (a) Zero (c) Three If the magnetic mome then the number of unpaired (a) 2 (c) 4 The number of unpaired (a) 2 (c) 1 (c) 3 $[Pt(NH_3)_4Cl_2]Br_2$ and $[Ft]$ (a) Optical isomers (b) Ionization isomers Which of the follow geometrical as well as ethylene diamine) (a) $Pt(NH_3)_2Cl_2$ (c) $[Pt(en)_3]^{4+}$	(c) $[Fe(CN)_6]^{3-}$ (d) $[Cu(H_2O)_6]^{2+}$ The complexes $[Co(NH_3)_6][Cr(C_2O_4)_3]$ and $[Cr(NH_3)_6][Co(C_2O_4)_3]$ [AMU 2002] (a) Linkage isomerism (b) Geometrical isomerism (c) Coordination isomerism (d)Ionisation isomerism Which of the following exhibits highest molar conductivity [MP PET 1994] (a) $[Co(NH_3)_6]Cl_3$ (b) $[Co(NH_3)_5Cl]Cl_2$ (c) $[Co(NH_3)_4Cl_2]Cl$ (d) $[Co(NH_3)_5Cl_3]$ Which of the following compounds is colourless [MP PET 1994] (a) $Cu_2(CH_3COO)_4.2H_2O$ (b) Cu_2Cl_2 (c) $CuSO_4.5H_2O$ (d) $[Cu(NH_3)_4]SO_4.4H_2O$ The type of magnetism exhibited by $[Mn(H_2O)_6]^{2+}$ ion is [IIT 1994] (a) Paramagnetism (b) Diamagnetism (c) Both (a) and (b) (d) None of these The number of isomers possible for square planar complex $K_2[PdClBr_2(SCN)]$ is [MP PET 1994] (a) 2 (b) 3 (c) 4 (d) 6 The number of unpaired electrons in $Ni(CO)_4$ is [AIIMS 1997] (a) Zero (b) One (c) Three (d) Five If the magnetic moment of $[Ag(CN)_2]^{-1}$ is zero, then the number of unpaired electrons will be[MP PET (a) 1 (b) 2 (c) 3 (d) Zero $[Pt(NH_3)_4Cl_2]Br_2$ and $[Pt(NH_3)_4Br_2]Cl_2$ are related to each other as [MP PET 1996; AFMC 2000; CBSE PMT 2001] (a) Optical isomers (b) Coordinate isomers (c) Ionization isomers (d) Linkage isomers (b) Coordinate isomers (c) Ionization isomers (d) Linkage isomers (d) Pt(NH_3)_2Cl_2 (b) $[Pt(NH_3)Cl_4]$ (c) $[Pt(en)_3]^{4+}$ (d) $[Pt(en)_2]Cl_2$ Which of the following complexes is diamagnetic	paramagnetic character [AIIMS 1998] (a) $[Cr(H_2O)_6]^{3+}$ (b) $[Fe(CN)_6]^{4-}$ 39. (c) $[Fe(CN)_6]^{3-}$ (d) $[Cu(H_2O)_6]^{2+}$ 39. The complexes $[Co(NH_3)_6][Cr(C_2O_4)_3]$ and $[Cr(NH_3)_6][Co(C_2O_4)_3]$ [AMU 2002] (a) Linkage isomerism (b) Geometrical isomerism (c) Coordination isomerism (d)Ionisation isomerism Which of the following exhibits highest molar conductivity [MP PET 1994] (a) $[Co(NH_3)_6]G_3$ (b) $[Co(NH_3)_3G_1]$ 41. (c) $[Co(NH_3)_6]G_3$ (d) $[Co(NH_3)_3G_3]$ 41. (c) $[Co(NH_3)_4G_2]G_1$ (d) $[Co(NH_3)_3G_3]$ 41. (c) $[Co(NH_3)_4G_2]G_1$ (d) $[Cu(NH_3)_3G_4]$ 42. (a) $Cu_2(CH_3COO)_4.2H_2O$ (b) Cu_2G_2 (c) $CuSO_4.5H_2O$ (d) $[Cu(NH_3)_4]SO_4.4H_2O$ 42. The type of magnetism exhibited by $[Mn(H_2O)_6]^{2+}$ ion is [IIT 1994] 43. (a) Paramagnetism (b) Diamagnetism (c) Both (a) and (b) (d) None of these The number of isomers possible for square planar complex $K_2[PdClBr_2(SCN)]$ is [MP PET 1994] 44. (a) 2 (b) 3 (c) 4 (d) 6 The number of unpaired electrons in $Ni(CO)_4$ is [AIIMS 1997] (a) Zero (b) One (c) Three (d) Five If the magnetic moment of $[Ag(CN)_2]^{-1}$ is zero, 46. then the number of unpaired electrons will be[MP PET 1995; (a) 1 (b) 2 (c) 3 (d) Zero [$Pi(NH_3)_4G_2]G_2$ are related 47. to each other as [IMP PET 1995] (a) Optical isomers (b) Coordinate isomers (c) Inization isomers (d) Linkage isomers (e) = thylene diamine) [MP PET 1996; AFMC 2000; CBSE PMT 2001] (a) Optical isomers (d) Linkage isomers (c) Ionization isomers (d) Linkage isomers (for the following complex will show geometrical as well as optical isomeris (e) = ethylene diamine) [KCET 1996] (a) $Pi(NH_3)_2Cl_2$ (b) $[Pi(NH_3)Cl_4]$ 49. (c) $[Pi(m)_3]^{1+}$ (d) $[Pi(m)_2]Cl_2$ Which of the following complex is diamagnetic	Which one of the following shows maximum paramagnetic character[AIIMS 1998](a) $[Cr(H_3O)_6]^{1+}$ (b) $[Fe(CN)_6]^{1+}$ (c) $[N(Br)_4^{1-}]$ (c) $[Cr(CN)_6]^{1+}$ (d) $[Cu(H_3O)_6]^{1+}$ (e) $N(Br)_4^{1-}$ The complexes $[Co(NH_3)_4][Cr(2,O_4)_3]$ and $[Cr(MT_3)_6][C1, C_2O_4)_3]$ [AMU 2002](a) Linkage isomerism(b) Geometrical isomerism(c) $[N(MT_3)_6]C1_2$ (c) Corotination isomerism(b) Geometrical isomerism(c) $[N(MT_3)_6]C1_2$ (c) $[Co(NH_3)_6]C1_3$ (b) $[Co(NH_3)_5C]C2_2$ (d) diamminedichloropi(a) $[Co(NH_3)_6]C1_3$ (b) $[Co(NH_3)_5C]C2_2$ (d) diamminedichloropi(c) $[Co(NH_3)_6]C1_3$ (b) $[Co(NH_3)_6C]A_2$ (d) diamminedichloropi(a) $[Co(NH_3)_6]C1_3$ (b) $[Cu(NH_3)_6]C4_2$ (d) diamminedichloropi(a) $Cu_2(CH_3COO)_4.2H_2O$ (b) Cu_2C1_2 (a) $[Co(NH_3)_6C_3]$ (c) $CuSO_{4.5}H_2O$ (d) $[Cu(NH_3)_6R_4H_2O)_6]^{2+}$ (a) $[Co(NH_3)_6C_3]$ (a) $Cu_2(CH_3COO)_4.2H_2O$ (b) Cu_2C1_2 (c) $[Co(m)_2C1_2]C1$ (d) Paramagnetism(b) Diamagnetism(c) $[Co(MH_3)_6N_2]C1_2$ (a) $2 - (D)$ (d) 6 (d) 6 (c) $[Co(NH_3)_6C_2]C_2$ (a) $2 - (D)$ (d) 6 (d) 6 (a) $2 - (D)$ (d) 6 (d) 6 (c) Three(d) 7 (d) 7 (a) $2 - (D)$ (d) $2 - (D)$

50.	Which of the following precipitate with <i>BaCl</i> ₂	g complex will give white (<i>aq</i> .)	Ę	(b) <i>sp</i> ³ , JIPMER 19 (c) <i>dsp</i> ²
	(a) $[Co(NH_3)_4 SO_4]NO_2$	(b) $[Cr(NH_3)_5 SO_4]Cl$		(d) dsp^2
	(c) $[Cr(NH_3)_5 Cl]SO_4$	(d) Both (b) and (c)	_	-
1.	The number of precip	vitable halide ions in the	3.	One mo
	sample $[Pt(NH_3)Cl_2Br]Cl_2$	will be		gives 3 mole of
	(a) 2	(b) 3		of AgNC
	(c) 4	(d) 1		The stru
•		ne copper (II) sulphate is		
	(a) Blue	(b) Red		(a) [<i>Co</i> (
	(c) Violet	(d) Green		(b) [<i>Co</i> (
3.	$[CoCl_2.5 NH_3]Cl_2$ in aque	per mole of a complex		(c) [<i>Co</i> (
		[MP PMT 2001]		(d) [<i>Co</i> (
	(a) Nine	(b) Four	4.	Cupram
	(c) Three	(d) Two	4.	Cupium
•		ectrons are present in the		(a) Tetr
	central metal ion of [Co	-		(c) Tria
	(a) 3	(b) 4	5۰	In the
	(c) 5	(d) 2	0	present
•	What is the magnetic m	soment of $K_3[FeF_6]$		(a) Squ
		[Orissa JEE 2005]		(c) Teti
	(a) 5.91 BM	(b) 4.89 BM	6.	The typ
	(c) 3.87 BM	(d) 6.92 BM		ion of [
•	(i) $K_4[Fe(CN)_6]$ (ii) $K_3[CCN]_6$	$Cr(CN)_6$] (iii) $K_3[Fe(CN)_6]$		(a) $d^{3}s_{I}$
	(iv) $K_2[Ni(CN)_4]$			(c) sp^{3}
	Choose the complex wh		7.	In the
	(a) (i) (ii) and (iii)	[Kerala CET 2005]	,.	involved
	(a) (i), (ii) and (iii) (c) (i), (iii) and (iv)	(b) (i), (iii) and (iv) (d) (i) (ii) and (iv)		(a) sp^2
	(e) (ii) and (iv)			(c) $d^{3}s_{P}$
7.		and $[Co(en)_2 Cl_2]Cl$ which is	8.	Which
	false		0.	carbony
		[Kerala CET 2005]		ouroong
	(a) Show geometrical Is			(a) The
	(b) Show optical Isomer		carb	onyls is z
	(c) Show ionic Isomeris			(b) The
	(d) A octahedral complet(e) A cationic complex	ex		pho (c) Met
	(c) A cationic complex			(d) $d\pi$ -
	Hybridisation a	nd Geometry	carb	onyls
-	Trybridioution a		9.	An octa
	The correct structural f	ormula of zeise's salt is		orbitals
	-	-		(a) sp^{3}
	(a) $K^+ \left[PtCl_3 - \eta^2 - (C_2H_2) \right]$			(c) $sp^{3}a$
	(b) $K_2 \left[PtCl_3 - \eta^2 - C_2 H_4 \right]$	•	10.	Which o
	(c) $K^+ \left[PtCl_2 - \eta^2 - (C_2H_2) \right]$	$(1) Cl^{-}$		(a) $E_{a}E$
	(d) $K^+[PtCl_3(C_2H_4]^-$			(a) FeF_{e}
•	The correct order of hy			(c) <i>Ni</i> (C
	atom in NH_3 , $[PtCl_4]^{2-}$, Po	Cl_5 and BCl_3 is [MP PMT 200]	3] ^{11.}	Which planar g

(a) dsp^2 , dsp^3 , sp^2 and sp^3

(b) sp^3 , sp^3 , sp^3d and sp^2 **IPMER 1997]** (c) dsp^2 , sp^3 , sp^3 and dsp^3 (d) dsp^2 , sp^3 , sp^2 and dsp^3 One mole of the complex compound $Co(NH_3)_5Cl_3$,

gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of $AgNO_3$ solution to yield two moles of AgCl(s). The structure of the complex is

[AIEEE 2003]

(a) $[Co(NH_3)_5 Cl]Cl_2$

(b)
$$[Co(NH_3)_3Cl_3].2NH_3$$

- (c) $[Co(NH_3)_4 Cl_2]Cl.NH_3$
- (d) $[Co(NH_3)_4 Cl]Cl_2.NH_3$
- **4.** Cuprammonium ion $[Cu(NH_3)_4]^{2+}$ is
 - [MP PMT 1997; KCET 2002]
 - a) Tetrahedral (b) Square planar
 - c) Triangular bipyramid (d) Octahedral
 - In the complex $[SbF_5]^{2-}$, sp^3d hydridisation is present. Geometry of the complex is[**Pb. PMT 2000**] (a) Square pyramidal (b) Square bipyramidal
- (c) Tetrahedral (d) Square 6. The type of hybridization involved in the metal ion of $[Ni(H_2O)_6]^{2+}$ complex is

(a) $d^3 sp^2$	(b) $sp^{3}d^{2}$
(c) sp^{3}	(d) dsp^2

In the formation of $K_4 Fe(CN)_6$, the hybridisation involved is

111 0	0176415		
(a)	sp ²	(b)	$d^2 sp^3$
(c)	$d^3 sp^2$	(d)	$d^4 p$

8. Which of the following is not true for metal carbonyls

[MP PET 1993]

(a) The oxidation state of the metal in the carbonyls is zero

- (b) The secondary carbonyls are obtained from photo-decomposition
- (c) Metal carbonyls are single bonded species

(d) $d\pi - p\pi$ overlap is observed in metal arbonvls

- 9. An octahedral complex is formed, when hybrid orbitals of the following type are involved[DCE 2003]
 (a) sp³
 (b) dsp²
 - (a) sp^{-1} (b) asp^{-1} (c) $sp^{-3}d^{-2}$ (d) $sp^{-2}d$
 - (c) sp u (d) sp u
 - Which one is an example of octahedral complex
 [MP PET 2000]

(a) FeF_6^{3-} (b) $Zn(NH_3)_4^{2+}$ (c) $Ni(CN)_4^{2-}$ (d) $Cu(NH_3)_4^{2+}$

Which of the following complexes has a square planar geometry

				Co-ordinatio	n Chemistry 917
	(a) $Ag(NH_3)_2^+$	(b) $Cu(en)_2^{2+}$		(c) Octahedral shape	(d) Tetrahedral shape
	(c) $[MnCl_4]^{2-}$	(d) $Ni(CO)_4$	24.	Chromium hexacarbe compound involving	onyl is an octahedral
12.	The shape of $[Fe(CN)_6]^2$	^{4–} ion is		(a) $sp^{3}d^{2}$	(b) dsp^2
	(a) Hexagonal	(b) Pyrimidal		(c) $d^2 s p^3$	(d) d^3sp^2 orbitals
_	(c) Octahedral	(d) Octagonal	25.	$[CoF_6]^{-3}$ is formed by	hybridization
3.	What is the shape of <i>F</i> (a) Linear	5		(a) $d^2 s p^3$	(b) $d^3 sp^2$
	(a) Linear (c) Square planar	(b) Tetrahedral (d) Trigonal bipyramidal		(c) $d^2 s p^3$	(d) sp^3d^2
4.		ridization is involved in	26.	The species havoing te	[IIT-JEE (Screening) 2004]
		[AMU 1999]		(a) $[PdCl_4]^{2-}$	(b) $[Ni(CN)_4]^{2-}$
	(a) $d^2 s p^3$	(b) dsp^2		(c) $[Pd(CN)_4]^{2-}$	(d) $[NiCl_4]^{2-}$
	(c) $sp^{3}d^{2}$	(d) dsp^3	27.	Among $[Ni(CO)_4], [Ni(CN)_4]$	$(N)_4]^{2-}, [NiCl_4]^{2-}$ species, the
5.	The example of dsp^2 h	ybridisation is		-	at the <i>Ni</i> atom are,
	2	[MP PET 1999; AIIMS 2001]		respectively	' 1992; BHU 1995; AFMC 1997]
	(a) $Fe(CN)_6^{3-}$	(b) $Ni(CN)_4^{2-}$		(a) sp^3 , sp^3 , dsp^2	
	(c) $Zn(NH_3)_4^{2+}$	(d) FeF_6^{3-}		(c) sp^3, dsp^2, dsp^2	
5.	The shape of $[Cu(NH_3)]$	$\left(\int_{4}^{2^{+}} \right)^{2^{+}}$ is square planar, $Cu^{2^{+}}$		(At. no. of $Ni = 28$)	(u) <i>sp</i> , <i>usp</i> , <i>sp</i>
	in this complex is	[NCERT 1989; RPET 1999]	28.	The bond in $K_4[Fe(CN)_6]$] are: [MP PET 2004]
	(a) sp^3 hybridised	(b) dsp^2 hybridised		(a) All ionic	
	(c) sp^3d hybridised	(d) sp^3d^2 hybridised		(b) All covalent	
' .	The geometry of <i>Ni</i> (<i>CC</i>	$(P)_4$ and $Ni(PPh_3)_2Cl_2$ are		(c) Ionic and covalent	
		[IIT-JEE 1999; DCE 2002]	29.	(d) Ionic, covalent and Hybridization of <i>Fe</i> in	
	(a) Both square planar		29.		
	(b) Tetrahedral and sq(c) Both tetrahedral	uare planar respectively		(a) sp^3	(b) dsp^{3}
		tetrahedral respectively		(c) sp^3d^2	(d) d^2sp^3
3.		uare planar structure [JIPMER	30. 2002]	central metal atom is	has no 'd ' electrons in the [IIT-JEE Screening 2001]
	(a) $Ni(CO)_4$	(b) $[NiCl_4)^{2-}$			(b) $[Co(NH_3)_6]^{3+}$
	(c) $[Ni(H_2O)_6]^{2+}$	(d) $[Cu(NH_3)_4]^{2+}$		(c) $[Fe(CN)_6]^{3-}$	
).	$[Pt(NH_3)_4]Cl_2$ is	[DCE 2001]	31.	Which of the following	
	(a) Square planar	(b) Tetrahedral	51.	(a) $\left[Cu(NH_3)_6\right]^{2+}$ is a co	
	(c) Pyramidal	(d) Pentagonal		-	
D .	A complex involving d			(b) $[Zn(H_2O)_6]^{2+}$ ion is	
	(a) A square planar ge	-		(c) $[Ni(CN)_4]^{2-}$ ion has	
	(b) A tetrahedral geon(c) An octahedral geor	-		(d) Nickel dimethyl gly	
	(d) Trigonal planar ge	-	32.	complex	g shall form an octahedral
1.		ion is formed due to		·····I	[DCE 2001]
	hybridization	2		(a) d^4 (low spin)	(b) d^8 (high spin)
	(a) sp^2	(b) sp^{3}		(c) d^6 (low spin)	(d) None of these
	(c) dsp^2	(d) $d^2 s p^3$	33.		wing is a strong field ligand
2.		volved in which of the		(a) <i>CN</i> ⁻	(b) NO_2^-
	organometallic compo- (a) $[(CH_3)_3 Al]_2$			(c) <i>en</i>	(d) NH_3
		(b) $Mg^{-1}(C_5H_5)_2$ (d) $[(C_5H_5)_2Fe]$	34.	The strongest ligand in	the following is[MP PET 199
				(a) <i>CN</i> ⁻	(b) <i>Br</i> ⁻
3.	d^2sp^3 hybridisation le			(c) <i>HO</i> ⁻	(d) F^{-}
	(a) Hexagonal shape	(b) Trigonal bipyrimidal	35.	The neutral ligand is	

	(a) Chloro (b) Hydroxo		(a) [
	(c) Ammine (d) Oxalato	-	(c) [
36.	The ligands which can get attached to the	-	
	metal ion through more than one atom ar (a) Ambident ligands (b) Polydentate	e cuilea	
	(c) Chelate ligands (d) Neutral liga	•	(a)
37.	A strong ligand gives a complex which is		(c)
,,.	called	4 •	Whie
	(a) High spin (b) High energy	=	the s
	(c) Low spin (d) Stable		(a) I
38.	CN^- is a strong field ligand. This is d	ue to the	(b) I
	fact that		(c) I
	-	MT 2004]	(d) I
	(a) It can accept electron from metal spe		
	(b) It forms high spin complexes wi species	th metal	(a) (c)
	(c) It carries negative charge.	6.	
	(d) It is a pseudohalide		the
9.	Considering H_2O as a weak field lig	gand, the	mole
	number of unpaired electrons in $[Mn(H_2G)]$	$(0)_{6}]^{2+}$ will	aton
	be (At. No. of $Mn = 25$) [CBSE F	MT 2004]	com
	(a) Two (b) Four		solu
	(c) Three (d) Five		prec wou
0.	Which of the following is a π - complex		wou
	(a) Trimethyl aluminium(b) Ferrocene		(a)
	(c) Diethyl zinc (d) Nickel carbo	•	(b)
1.	Which of the following is a π – acid ligan		(c) [
	[KCET 1996; AI	[MS 2003]	(d) [
	(a) NH_3 (b) CO	_	
	(c) F^- (d) Ethylene dia		In ferro
2.	The value of the 'spin only' magnetic mo		whic
	one of the following configurations is the correct one	2.84 BM.	
		EEE 2005]	(a)
	(a) d^4 (in strong ligand field)		(d)
	(b) d^4 (in weak ligand field)	8.	Prus
	-		(a) I
	(c) d^3 (in weak as well as in strong fields	5)	(b) I
_	(d) d^5 (in strong ligand field)		(c) I
3.	The geometry of $Ni(CO)_4$ and $Ni(PPh_3)_2Cl$	r	eCl_3
	(a) Both square planer	BHU 2005] Fo	2
	(b) Tetrahedral and square planar respec	tivelv -	(d) A
	(c) Both tetrahedral	9 •	
	(d) Square planar and tetrahedral respec	tivelv	[<i>Co</i> ¹¹
	(a) equale planar and tetranearai respec		(a)

Complexes and complex stability

- Which of the following complexes has the highest 1. stability constant at 298 K
 - (a) $[CdCl_{A}]^{2-}$ (b) $[CdBr_4]^{2-}$
 - (c) $[CdI_4]^{2-}$ (d) $[Cd(CN)_4]^{2-}$
- The most stable ion is 2.

```
[AIEEE 2002]
```

 $[Fe(CN)_{\epsilon}]^{3-}$ (d) $[Fe(H_2O)_6]^{3+}$

most stable complex among the following is [MP PMT 2002]

- $K_{3}[Al(C_{2}O_{4})_{3}]$ (b) $[Pt(en)_2]Cl_2$ $Ag(NH_3)_2Cl$ (d) $K_2(Ni(EDTA))$
- ich of the following factors tends to increase stability of metal ion complexes Higher ionic radius of the metal ion
 - Higher charge/size ratio of the metal ion
 - Lower ionisation potential of the metal ion
 - Lower basicity of the ligand
- O₄ reacts with KCN solution and forms:[**DPMT 2004**]
 - $K_3[Cu(CN)_4]$ (b) *Cu*(*CN*)
 - $Cu(CN)_2$ (d) $K_4[Cu(CN)_6]$
- o-ordination complex compound of cobalt has molecular formulae containing five ammonia ecules, one nitro group and two chlorine ms for one cobalt atom. One mole of this pound produces three mole ions in an aqueous tion on reacting with excess of AgNO₃, AgCl cipitate. The ionic formula for this complex ld be:
 - [DPMT 2004; Kerala PMT 2004]
 - $[Co(NH_3)_5(NO_2)]Cl_2$
 - $[Co(NH_3)_5Cl][Cl(NO_2)]$
 - $[Co(NH_3)_4(No_2)Cl][(NH_3)Cl]$
 - $[Co(NH_3)_5][(NO_2)_2Cl_2]$
- any ferric salt, on adding potassium ocyanide, a prussian blue colour is obtained, ch is

[BIT 1992; BHU 2002] (b) $KFe[Fe(CN)_6]$ $K_3 Fe(CN)_6$ FeSO $_4$.Fe(CN)₆

- (d) $Fe_4[Fe(CN)_6]_3$
- ssian blue is formed when [CBSE PMT 1990] Ferrous sulphate reacts with FeCl₃
 - Ferric sulphate reacts with $K_4[Fe(CN)_6]$
- Ferrous ammonium sulphate reacts with
 - Ammonium sulphate reacts with FeCl₃
- nplex salt can be made by the combination of $^{III}(NH_3)_5 Cl]^X$ with [RPMT 2000, AFMC 2002]
 - (a) PO_4^{3-} (b) *Cl*⁻
 - (d) $2K^+$ (c) 2*Cl*⁻
- 10. Which reagent can be used to identify nickel ion (a) Resorcinol
 - (b) Dimethyl glyoxime [DMG]
 - (c) Diphenyl benzidine
 - (d) Potassium ferrocyanide
- 11. Dimethyl glyoxime forms a coloured complex with

- (b) *Ni* (a) Ag (c) Cr (d) Zn Silver chloride dissolves in excess of NH_4OH . The 12.
 - cation present in this solution is [EAMCET 1998] (a) Ag^+ (b) $[Ag(NH_3)_2]^+$

(d) $[Ag(NH_3)_6]^+$ (c) $[Ag(NH_3)_4]^+$

- Silver sulphide dissolved in a solution of sodium 13. cynamide to form the complex [AMU 1999] (a) $Na[Ag(CN)_2]$ (b) $Na_3[Ag(CN)_4]$
 - (d) $Na_2[Ag(CN)_2]$ (c) $Na_5[Ag(CN)_6]$
- Which one will give Fe^{3+} ions in solution 14.
 - (a) $[Fe(CN)_{e}]^{3-}$
 - (b) $Fe_2(SO_4)_3$
 - (c) $[Fe(CN)_6]^{4-1}$
 - (d) $NH_4(SO_4)_2$.FeSO $_4.6H_2O$
- The cation that does not form an amine complex 15. with excess of ammonia is

(a) Cd^{2+} (b)	Al^{3+}
-------------------	-----------

(c) Cu²⁺ (d) Ag^+

Application of organometallics

- Ziegler-Natta catalyst is an organometallic 1. compound of which metal (a) Iron (b) Zirconium
 - (c) Rhodium (d) Titanium
- 2. In the case of small cuts, bleeding is stopped by applying potash alum. Here alum acts as
 - [KCET (Med.) 2001] (a) Fungicide (b) Disinfectant
 - (c) Germicide (d) Coagulating agent
- The formula of ferrocene is 3.
 - (a) $[Fe(CN)_6]^{4-}$ (b) $[Fe(CN)_6]^{3-}$
 - (c) $\left[Fe(CO)_{5}\right]$ (d) $[(C_5H_5), Fe]$
- Which of the following is formed when *n*-butyl 4. lithium reacts with tin (II) chloride [AFMC 2001] (a) LiBr (b) $Et_A Pb$

(c)
$$(C_4H_9)_4Sn$$
 (d) $(C_2H_5)_4Pb$

Which of the following organo-silicon compound 5. on hydrolysis will give a three dimensional silicone

	[Orissa JEE 2003]
(a) R_3SiCl	(b) RSiCl $_3$
(c) <i>SiCl</i> ₄	(d) R_2SiCl_2
Which one is not ar	n organometallic compound

6. [J & K CET 2005; Pb. CET 2003] (a) RMgX (b) C_2H_5ONa

(c)
$$(CH_3)_4 Sn$$
 (d) $KC_4 H_9$

The complex used as an anticancer agent is[AIIMS 2003] 7.

- (a) trans $-[Co(NH_3)_3Cl_3]$ (b) cis $-[PtCl_2(NH_3)_2]$
- (c) $cis K_2[PtCl_2Br_2]$ (d) Na_2CO_3
- 8. The compound that is not olefinic organometallic is
 - (a) $K[C_2H_4PtCl_3] 3H_2O$ (b) $Be(CH_2)_2$
 - (c) $(C_2H_4PtCl_3)_2$ (d) $C_4 H_4 Fe(CO)_3$
- Among the following, which is not the π -bonded 9. organometallic compound [CBSE PMT 2003]

a)
$$(CH_3)_4 Sn$$
 (b) $K[PtCl_3(\eta^2 - C_2H_4)]$

(c) $Fe(\eta^5 - C_5H_5)_2$ (d) $Cr(\eta^6 - C_6 H_6)_2$

- 10. Wilkinson's catalyst is used in
 - (a) Polymerization (b) Condensation
 - (c) Halogenation (d) Hydrogenation
- 11. What is the use of tetraethyl lead
 - (a) As a catalyst in addition reaction of alkenes
- (b) As a catalyst in polymerization reaction of alkenes

(

- (c) For reducing knocking
- (d) For creating knocking
- Which of the following is an organo-metallic 12. compound

[MP PMT 2001]

[AIIMS 1997]

- (a) Lithium ethoxide (b) Ethyl lithium
- (c) Lithium acetate (d) Lithium carbide
- Which of the following is an organometallic 13. compound
 - [] & K CET 2005]
 - (a) $Ti(C_2H_5)_4$ (b) $Ti(OC_2H_5)_4$
 - (c) $Ti(OCOCH_3)_A$ (d) $Ti(OC_6H_5)_4$
- Which of the following is not an organometallic 14. compound

[MP PET 1996; BHU 2002]

- (a) Ethyl magnesium bromide
- (b) Tetraethyl lead
- (c) Sodium ethoxide
- (d) Trimethyl aluminium
- 15. An organometallic compound amongst the following is
 - (a) Ferrocene (b) CaC_2

(c) Tetraethyl lead (TEL) (d) All of these

Which of the following does not have a metal 16. carbon bond

(a)	$K[Pt(C_2H_4)Cl_3]$	(b)	$Ni(CO)_4$
(c)	$Al(OC_2H_5)_3$	(d)	C_2H_5MgBr

- 17. Coordination compounds have great importance in biological systems. In this context which of the following statements is incorrect
 - (a) Cyanocobalamin is B_{12} and contains cobalt.
 - (b) Haemoglobin is the red pigment of blood and contains iron.
 - (c) Chlorophylls are green pigments in plants and contains calcium.

[CBSE PMT 2004]

- (d) Carboxypepticase-*A* is an enzyme and contains zinc.
- **18.** Ziegler-Natta catalyst is
 [Pb. CET 2004]

 (a) $(Ph_3P)_3RhCl$ (b) $K[PtCl_3(C_2H_4)]$

 (c) $[Al_2(C_2H_6)_6] + TiCl_4$ (d) $[Fe(C_2H_5)_5]$
- **19.** Dimethyl glyoxime gives a red precipitate with Ni^{2+} , which is used for its detection. To get this precipitate readily the best *pH* range is[**AIIMS 2004**] (a) < 1 (b) 2-3
 - (c) 3-4 (d) 9-11
- 20. The π bonded organo metallic compound which has ethene as one of its component is [J & K CET 2005] (a) Zeise's salt (b) Ferrocene
 - (c) Dibenzene chromium (d) Tetraethyl tin.

- 1. The coordination number and oxidation state of Cr in $K_3[Cr(C_2O_4)_3]$ are, respectively[CBSE PMT 1995]
 - (a) 4 and +2 (b) 6 and +3
 - (c) 3 and +3 (d) 3 and 0
- 2. The complex compounds which result from the coordination of carbon monoxide are known as(a) Electronic(b) Carbonyls
 - (c) Carbonates (d) Carbon permono
- 3. Mixture X = 0.02 mol of $[Co(NH_3)_5 SO_4]Br$ and 0.02 mol of $[Co(NH_3)_5 Br]SO_4$ was prepared in 2 *litre* of solution

1 *litre* of mixture X + excess $AgNO_3 \rightarrow Y$.

1 *litre* of mixture *X* + excess $BaCl_2 \rightarrow Z$

Number of moles of *Y* and *Z* are

- (a) 0.01, 0.01 (b) 0.02, 0.01
- (c) 0.01, 0.02 (d) 0.02, 0.02
- 4. Which of the following organometallic compound is σ and π bonded [MH CET 2001; PCET 2002]
 (a) Fe(CH₃)₃
 - (u) 10(CH₃)₃
 - (b) $[Fe(\eta^5 C_5H_5)_2]$
 - (c) $[Co(CO)_5 NH_3]^{2+}$
 - (d) $K[PtCl_3(n^2 C_2H_4)]$
- **5.** In $[Ni(NH_3)_4]$ SO₄, the valency and coordination number of *Ni* will be respectively

(a) 3 and 6 (b) 2 and 4

(c) 4 and 2 (d) 4 and 4

6. Co-ordination number of *Fe* in the complexes $[Fe(CN)_6]^{4-}$, $[Fe(CN)_6]^{3-}$ and $[FeCl_4]^-$ would be respectively [MP PET 2003] (a) 2, 3, 3 (b) 6, 6, 4 (c) 6, 3,3 (d) 6, 4, 6

- 7. On hydrolysis $(Me)_2 SiCl_2$ will produce[IIT-JEE 2003]
 - (a) $(Me)_2 Si(OH)_2$
 - (b) $(Me)_2 Si = O$
 - (c) $-[-O (Me)_2 Si O -]_n -$
 - (d) $Me_2SiCl(OH)$

9.

- 8. Which of the following represents a chelating ligand
 [IIPMER 2002]
 - (a) H_2O (b) OH^-
 - (c) DMG (d) Cl^-

 $CuSO_4$ reacts with KCN solution and forms

- [MP PMT 1992; IIT 1996; UPSEAT 2001, 02]
- (a) $Cu(CN)_2$ (b) Cu(CN)
- (c) $K_2[Cu(CN)_4]$ (d) $K_3[Cu(CN)_4]$
- **10.** In the process of extraction of gold,
 - Roasted gold ore + CN^- + $H_2O \xrightarrow{O_2} [X] + OH^-$ [X] + $Zn \rightarrow [Y] + Au$
 - $[A] + Zh \rightarrow [I] + Au$
 - Identify the complexes [X] and [Y]
 - (a) $X = [Au(CN)_2]^-, Y = [Zn(CN)_4]^{2-1}$
 - **(b)** $X = [Au(CN)_4]^{3-}, Y = [Zn(CN)_4]^{2-}$
 - (c) $X = [Au(CN)_2]^-, Y = Zn(CN)_6]^{4-1}$
 - $[BHU]_{A99} = [Au(CN)_4]^-, Y = [Zn(CN)_4]^{2-}$
- **11.** A solution of potassium ferrocyanide would contains ions
 - (a) 2 (b) 3
 - (c) 4 (d) 5
- 12. Which one of the following complexes is an outer orbital complex [AIEEE 2004]

(a)
$$[Co(NH_{3})_{6}]^{3+}$$
 (b) $[Mn(CN)_{6}]^{4-}$
[IIT_IEE_2003]
(c) $[Fe(CN)_{6}]^{4-}$ (d) $[Ni(NH_{3})_{6}]^{2+}$

Atomic nos : Mn = 25, Fe = 26, Co = 27, Ni = 28

13. Which one of the following has largest number of isomers ?

[AIEEE 2004]

- (a) $[Ir(PP_3)_2H(CO)]^{2+}$ (b) $[Co(NH_3)_5Cl]^{2+}$
- (c) $[Ru(NH_3)_4 Cl_2]^+$ (d) $[Co(en)_2 Cl_2]^+$

(*R* = alkyl group; *en* = ethylenediamine)

- 14. Which kind of isomerism is exhibited by octahedral $Co(NH_3)_4 Br_2Cl$?
 - (a) Geometrical and Ionization
 - (b) Geometrical and Optical
 - (c) Optical and Ionization
 - (d) Geometrical only
- 15. Which one of the following is expected to exhibit optical isomerism (*en* = ethylenediamine)
 (a) *cis* [*Pt*(*NH*₃)₂*Cl*₂]
 (b) *trans* [*Co*(*en*)₂*Cl*₂]

(c) $trans - [Pt(NH_3)_2Cl_2]$ (d) $cis - [Co(en)_2Cl_2]$

- 16. [EDTA]⁴⁻ is a: [UPSEAT 2004]
 (a) Monodentate ligand (b) Bidentate ligand
- (c) Quadridentate ligand (d) Hexadentate ligand17. Which of the following statements is incorrect ?

[KCET 2004]

- (a) In $K_3[Fe(CN)_6]$, the ligand has satisfied only the secondary valency of ferric ion.
- (b) In $K_3[Fe(CN)_6]$, the ligand has satisfied both primary and secondary valencies of ferric ion.
- (c) In $K_4[Fe(CN)_6]$, the ligand has satisfied both primary and secondary valencies of ferrous ion.
- (d) In $[Cu(NH_3)_4]SO_4$, the ligand has satisfied only the secondary valency of copper.
- 18. Which of the following is considered as an anticancer species. [CBSE PMT 2004]

19. An aqueous solution of $CoCl_2$ on addition of excess of concentrated HCl turns blue due to formation of

[AIIMS 2005]

- (a) $[Co(H_2O)_4 Cl_2]$
- **(b)** $[Co(H_2O)2Cl_4]^{2-}$
- (c) $[CoCl_4]^{2-}$
- (d) $[Co(H_2O)2Cl_2]$
- **20.** The correct order for the wavelength of absorption in the visible region is
 - (a) $[Ni(NO_2)_6]^{4-} < [Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+}$
 - **(b)** $[Ni(NO_2)_6]^{4-} < [Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+}$
 - (c) $[Ni(H_2O)_6]^{2+} < [Ni(NH_3)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
 - (d) $[Ni(NH_3)_6]^{2+} < [Ni(H_2O)_6]^{2+} < [Ni(NO_2)_6]^{4-}$
- **21.** In which of the following pairs both the complexes show optical isomerism
 - (a) $cis [Cr(C_2O_4)_2Cl_2]^{3-}$, $cis [Co(NH_3)_4Cl_2]$
 - (b) $[Co(en)_3]Cl_3$, cis- $[Co(en)_2Cl_2]Cl_3$
 - (c) [PtCl(dien)]Cl, $[NiCl_2Br_2]^{2-}$
 - (d) $[Co(NO_3)_3(NH_3)_3]$, cis- $[Pt(en)_2Cl_2]$
- **22.** Which of the following compounds shows optical isomerism

[AIEEE 2005; CBSE PMT 2005](a) $[Cu(NH_3)_4]^{2+}$ (b) $[ZnCl_4]^{2-}$ (c) $[Cr(C_2O_4)_3]^{3-}$ (d) $[Co(CN)_6]^{3-}$

Assertion & Reason For ATTMS Aspirants

Read the assertion and reason carefully to mark the correct option out of the options given below :

- (a) If both assertion and reason are true and the reason is the correct explanation of the assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of the assertion.
- (c) If assertion is true but reason is false.
- (d) If the assertion and reason both are false.
- (e) If assertion is false but reason is true.
- 1. Assertion : Potassium ferrocyanide and potassium ferricyanite both are diamagnetic.
 - Reason : Both have unpaired electrons.
- **2.** Assertion : NF_3 is a weaker ligand than $N(CH_3)_3$

Reason :
$$NF_3$$
 ionizes to give F^- ions in aqueous solution.

- **3.** Assertion : The $[Ni(en)_3]Cl_2$ (en = ethylene diamine) has lower stability than $[Ni(NH_3)_6]Cl_2$
 - Reason : In $[Ni(en)_3]Cl_2$ the geometry of Ni is trigonal bipyramidal
- Assertion : The ligands nitro and nitrito are called ambidentate ligands.
 - Reason : These ligands give linkage isomers.
- 5. Assertion : Geometrical isomerism is also called *cis-trans* isomerism.
 - Reason : Tetrahedral complexes show geometrical isomerism.

6. Assertion : $\begin{bmatrix} (en)_2 Co' & Co(en)_2 \\ OH & OH \end{bmatrix}$ is named as

tetrakis (ethylene diamine) μ hydroxo-imido dicobalt (III) ion.

- Reason : In naming polynuclear complexes *i.e.*, containing two or more metal atoms [AIIMS igids d by bridging ligands, the word μ is added with hyphen before the name of such ligands.
- 7. Assertion : $[Fe(CN)_6]^{3-}$ is weakly paramagnetic while $[Fe(CN)_6]^{4-}$ is diamagnetic.
 - Reason : $[Fe(CN)_6]^{3-}$ has +3 oxidation state while $[Fe(CN)_6]^{4-}$ has +2 oxidation state.
- **8.** Assertion : $H_2N NH_2$ is a chelating ligand.
 - Reason : A chelating ligand must possess two or more lone pairs at such a distance

that it may form suitable strain free rings at the metal ion.

- Assertion : $[Ti(H_2O)_6]^{3+}$ is coloured while 9. $[Sc(H_2O)_6]^{3+}$ is colourless. : *d-d* transition is not possible in Reason $[Sc(H_2O)_6]^{3+}$. Assertion : All the octahedral complexes of Ni^{2+} 10. must be outer orbital complexes. Reason : Outer orbital octahedral complexes are given by weak ligands. Assertion : Potassium ferrocyanide 11. is diamagnetic potassium whereas fericyanide is paramagnetic.
 - Reason : Crystal field splitting in ferrocyanide ion is greater than that of ferricyanide ion.

[AIIMS 2005]

Basic Terms

1	b	2	c	3	b	4	b	5	d
6	a	7	b	8	с	9	b	10	C
11	d	12	C	13	d	14	b	15	b
16	b	17	a	18	C	19	C	20	b
21	b	22	C	23	b	24	d	25	a
26	d	27	а	28	b	29	b	30	C
31	b	32	C	33	b	34	b	35	d
36	d	37	b	38	b	39	d	40	b
41	d	42	b	43	d	44	b	45	a
46	a	47	d	48	С	49	b	50	d
51	a	52	b	53	d	54	a	55	d
56	d	57	а	58	d	59	а	60	d
61	C	62	d						

Nomenclature, oxidation State and EAN number

1	b	2	c	3	с	4	b	5	d
6	С	7	b	8	а	9	а	10	а
11	c	12	а	13	b	14	а	15	b
16	С	17	d	18	b	19	d	20	а
21	b	22	b	23	а	24	b	25	а
26	d	27	С	28	b	29	а	30	а
31	а	32	b	33	а	34	b	35	С
36	b	37	а	38	а	39	b	40	С
41	а	42	b	43	c	44	b	45	b
46	d	47	a	48	b	49	C	50	C

51	b	52	b	53	c	54	d	55	b
56	а	57	b	58	с				

Isomerism and Magnetic properties

1	а	2	d	3	а	4	С	5	C
6	d	7	b	8	а	9	а	10	C
11	d	12	d	13	b	14	С	15	a
16	b	17	а	18	d	19	а	20	b
21	С	22	b	23	b	24	а	25	а
26	d	27	d	28	а	29	С	30	а
31	b	32	а	33	C	34	а	35	d
36	С	37	d	38	а	39	d	40	b
41	а	42	С	43	d	44	а	45	b
46	е	47	а	48	d	49	С	50	C
51	d	52	а	53	C	54	а	55	а
56	С	57	С						

Hybridisation and Geometry

1	а	2	b	3	а	4	b	5	а
6	b	7	b	8	d	9	C	10	а
11	b	12	C	13	d	14	а	15	b
16	b	17	d	18	d	19	а	20	а
21	b	22	d	23	С	24	C	25	c
26	d	27	d	28	d	29	d	30	а
31	d	32	C	33	a	34	а	35	c
36	а	37	C	38	d	39	d	40	b
41	b	42	а	43	C				

Complexes and complex stability

1	d	2	d	3	d	4	b	5	а
6	а	7	d	8	b	9	c	10	b
11	b	12	b	13	а	14	b	15	b

Application of organometallics

1	d	2	d	3	d	4	c	5	b
	b	7	b	8	а	9	а	10	d
11	C	12	b	13	а	14	С	15	d
16	C	17	C	18	C	19	d	20	a

Critical Thinking Questions

1	b	2	b	3	a	4	b	5	b
6	b	7	C	8	C	9	d	10	а
11	d	12	d	13	d	14	а	15	d
16	d	17	ad	18	а	19	C	20	а
21	b	22	C						

Co-ordination	Chemistry	923
----------------------	-----------	-----

Assertion & Reason									
1	d	2	с	3	d	4	а	5	c
6	е	7	b	8	е	9	а	10	b
11	C								

- (b) (CN) are linked with secondary valency.
- 2. (c) In Cuprammonium sulphate $[Cu(NH_3)_4]SO_4$ co-ordination no. of Cu is 4.
- (b) As it makes use of its two atoms to form two co-ordinate covalent bonds with the central metal ion.
- **4.** (b) $[Co(en)_2Br_2]Cl_2$
 - C.N. of $Co = 2 \times$ number of bidentate ligand

+1×number of monodentate ligand =2× 2 + 1× 2 = 6.

- 7. (b) The charge does not decide the formation of bond but availability of lone pair decide the formation of Co-ordinate bond.
- 8. (c) In $[Co(en)_2 Cl_2]^+$
 - No. of monodentate ligand = 2 No. of bidentate ligand = 2 Co-ordination no. of the metal = 2 + 2(2)= 6.

 $CH_{2}COO^{-}$

10. (c)

11.

12.

(d)

1.

$$-OOH_2C$$
 CH_2COO^-

-*OOH*₂C

(c) According to modern view primary valency of complex compound is its oxidation number while secondary valency is the co-ordination number.

EDTA

- **15.** (b) Co-ordination number is equal to total number of ligands in a complex.
- **16.** (b) Cuprammonium salt- $[Cu(NH_3)_4]SO_4$

 $[Cu(NH_3)_4]SO_4 \rightleftharpoons [Cu(NH_3)_4]^{2+} + SO_4^{2-}$

So, it will give two ions in water.

- (a) The co-ordination no. = no. of ligands attached.
- **18.** (c) Primary valencies are also known as oxidation state.

 $K_2[Ni(CN)_4], 2+x-4=0 \Longrightarrow x=+2$

- **20.** (b) Ag^+ has two coordination number forms complex with excess of $CN^- Ag(CN)_2$.
- **21.** (b) According to Lewis the ligands are basic in nature.
- 22. (c) The number of atoms of the ligand that are directly bounded to the central metal atom or ion by coordinate bond is known as the coordination number of the metal atom or ion coordination number of metal = number of σ bonds formed by metal with ligand.

23. (b) $Ag_2S + 4NaCN = 2Na[Ag(CN)_2] + Na_2S$ Sodium dicyno argentate

> $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag \downarrow$ Sodium tetracyno zincate (ppt)

- **24.** (d) In $K_4 Fe(CN)_6$, the species retains its identity in solid as well as in solution state.
- 26. (d) The number of atom of the ligand that are directly bound to the central metal atom or ion by coordinate bonds is known as the coordinate number of the metal or ion. It is actually the number of chemical bonds which the ligand form with the central metal atom or ion.

- 27. (a) CN⁻ ions acts both as reducing agent as well as good complexing agent.
- **29.** (b) ZnS structure shows the coordination number of Zn is 4.
- **30.** (c) Wilkinson's catalyst is $Rh(P.Ph_3)_3Cl$].
- **31.** (b) The complexes can be written as follows $\begin{bmatrix} Co(NH_3)_6 \end{bmatrix} Cl_3 \begin{bmatrix} Co(NH_3)_5 Cl \end{bmatrix} Cl_2 \begin{bmatrix} Co(NH_3)_4 Cl_4 \end{bmatrix} Cl_4 \\ (B) \\ (C) \\ (C) \\ Hence, number of primary valencies are 3, 2 \\ and 1 respectively.$
- **32.** (c) Ligand must have capacity to donate lone pair of electrons to form co-ordinate bond.
- **33.** (b) $K_3[Fe(CN)_6]$ because in it CN^- donats a lone pair of electron.
- **34.** (b) *Al* has 6 co-ordination number.
- **35.** (d) $K_4[Fe(CN)_6] \rightarrow 4K^+ + [Fe(CN)_6]^{4-1}$

Complex has negative charge so it is anionic complex.

- **36.** (d) Co-ordination number is equal to total number of ligands in a complex.
- **37.** (b) Lithium tetrahydroaluminate is $Li[Al(H)_4]$.
- **40.** (b) Negative ligands end in -O eg. SO_4^{2-} (sulphato).
- **44.** (b) Turnbull's blue is $K{Fe^{II}[Fe^{III}(CN)_6]}$.
- **46.** (a) $Fe + 5CO \xrightarrow{\text{Heat}} [Fe(CO)_5]$ Pressure Iron pentacarbonyl.
- **48.** (c) When a ligand attaches to the central metal atom through two or more atoms to form a ring like structure is known as chelats and the ligand is called chelating ligand.

53. (b) eg.
$$n CH_3 - CH = CH_2 \frac{TiCl_4 +}{(C_2H_5)_3 Al} (-CH_1 - CH_2)_n$$

 CH_3

- **55.** (d) CH_3Li is the organometallic compound in which lithium bonded with carbon and organometallic are those in which metal-carbon bond found.
- **56.** (d) Potash alum is a mixed salt of K_2SO_4 and $Al_2(SO_4)_3$ and on dissolving, it gives all three ion Al^{3+}, K^+ and SO_4^{2-} of which it is made.
- **57.** (a) Carnallite is a double salt with molecular formula $KCl \cdot MgCl_2 \cdot 6H_2O$. It gives K^+, Mg^{2+} and Cl^- ions in solution.
- 59. (a) General formula for alum is
 - $M_2SO_4.R_2(SO_4)_3.24H_2O$

M = mono valent cation (K^+ , Na^+)

 $R = \text{Trivalent cation } (Al^{+3}, Fe^{+3})$

Hence, $K_2SO_4Al_2(SO_4)_2.24H_2O$ represent an alum.

- **60.** (d) $K_4[Fe(CN)_6]$ is a complex salt. On ionisation it will dissociate in $4K^+$ and $[Fe(CN)_6]^{4-}$ ion. Hence, in $K_4[Fe(CN)_6]$ five ions are present.
- **61.** (c) Due to C Mg bond.
- **62.** (d) EAN = (At. number $-0.S + 2 \times C.N.$) Hence, EAN of Ni in $Ni(CO)_4$ is

 $= 28 - 0 + 2 \times 4 = 36$

Nomenclature, Oxidation State & EAN number

- **1.** (b) $[Co(H_2O)_6]Cl_2 = [Co(H_2O)_6]^+ + 2Cl^-$.
- 5. (d) Follow IUPAC rule.
- 7. (b) Follow IUPAC rule.
- 9. (a) Follow IUPAC rule.
- 10. (a) Follow IUPAC rule.
- (c) EAN =Atomic number Oxidation state + 2 × number of Ligands = 26 2 + 2 (6) = 36.
- **12.** (a) EAN of *Pt* in $[PtCl_6]^{2-} = 80$
- **13.** (b) $Na_2[Cr F_4 O]$

x + 4(-1) + (-2) = -2

 $x-6 = -2 \Rightarrow x = +4$.

- 14. (a) Follow IUPAC rule.
- 16. (c) Follow IUPAC rule.
- 17. (d) Follow IUPAC rule.
- **18.** (b) The oxidation state of metal in metal carbonyl is zero.

19. (d) $x + 6 \times (0) + 3 \times (-1) = 0$

x-3=0, x = +3, Oxidation number of *Cr* is = +3.

- **20.** (a) EAN = (atomic no)- (oxidation state) + (2 × number of Ligands) = 28 2 + 2 × 4 = 34
- **21.** (b) Follow IUPAC rule.

22. (b)
$$[Pt(C_2 H_4)Cl_3]^-$$

 $x + 0 + 3x(-1) = -1, x - 3 = -1, x = +2.$

23. (a) $[Co(NH_3)_6]Cl_3 \rightarrow [Co(NH_3)_6]^{3+} + 3Cl^{-1}$

$$x+6(0) = +3 \Longrightarrow x = +3$$
.

- **24.** (b) Follow IUPAC rule.
- **25.** (a) EAN = at. no. of central atom oxidation state $+ 2 \times (\text{no. of ligands}) = 27 3 + 2 \times 6 = 36.$
- 26. (d) Follow IUPAC rules for nomenclature.
- 27. (c) EAN of a central metal ion=(atomic no. of central atom) oxidation state + no. of ligands × 2 = 26 3 + (6 × 2) = 23 + 12 = 35
- **28.** (b) $+1 \times 4 + x 1 \times 4 = 0$
 - $4 + x 4 = 0 \Longrightarrow x = 0$ for *Ni*.
- **29.** (a) Follow IUPAC rule.
- **30.** (a) In complex $K_4[Fe(CN)_6]$ the Fe obey EAN rule strictly.
- **31.** (a) $Ni(CO)_4$ has O.N. zero for Ni.
- **32.** (b) $3 \times (+1) + x + 6 \times (-1) = 0$ or x = 6 3 = +3 Oxidation state of *Fe* = +3.
- **33.** (a) Complexes containing carbonyl ligand (*CO*) have zero oxidation state.
- 34. (b) Follow IUPAC rule.
- 35. (c) Follow IUPAC rule.
- 36. (b) Follow IUPAC rule.
- **38.** (a) Follow IUPAC rule.
- **39.** (b) Follow IUPAC rule.
- 41. (a) Follow IUPAC rule.
- **42.** (b) $[Ni(CN)_4]^x$, (Ni = +2) (CN = -1)

 $x=2+4(-1) \Longrightarrow x=-2$.

- **44.** (b) $[Cu(NH_3)_4]^{2+}$ so, copper has + 2 valency.
- 47. (a) Follow IUPAC rule.
- 50. (c) Follow IUPAC rule.
- 51. (b) $\begin{bmatrix} Co (H_2O)_5 CI \end{bmatrix}^{+2}$ $x - 1 = 2 \Longrightarrow x = +3$.
- 52. (b) It is clear from the chemical formulae that Ag is central metal atom and ligands are 2 ammonia molecule.
 Hence, compound is [Ag(NH₃)₂]Cl.

- **53.** (a) In the compounds $[Co(NH_3)_5 NO_2]Cl_2$, the oxidation state of cobalt is +3 and here 5 NH_3 ligand, a NO_2 ligand are attached to the central atom. therefore its name is pentaamminecobalt (III) chloride.
- **54.** (b) $CrO_2 Cl_2$, MnO_4 .
- **55.** (b) In the given ion $[Cr(NH_3)_6]^{3+}$, the oxidation state of chromium is +3 and here $6NH_3$ ligand are attached to the central metal atom. Therefore its IUPAC name is hexamminechromium (III) ion.
- **56.** (a) It is potassium ammine dicyano dioxo peroxochromate (VI)
- **57.** (b) Potassium hexa cyanoferrate (III).

Isomerism and Magnetic Properties

- 1. (a) Octahedral complexes of the type $[MA_4B_2], [MA_2B_4], [MA_3B_3]$ exhibit geometrical isomerism.
- 2. (d) The number of unpaired electrons in the Complex ion $[CoF_6]^{3-}$ is 4.

4. (c)
$$\begin{bmatrix} NH_3 \\ H_3N \\ H_3N \\ NH_3 \end{bmatrix}^{2+} \begin{bmatrix} NH_3 \\ H_3N \\ H_3N \\ NH_3 \end{bmatrix}^{2+} \begin{bmatrix} NH_3 \\ H_3N \\ H_3N \\ NH_3 \end{bmatrix}^{2+} \begin{bmatrix} NH_3 \\ H_3N \\ H_3N \\ NH_3 \end{bmatrix}$$

Here more than one atom function as donor, as oxygen in first one and nitrogen in second, so they show linkage isomerism

- 5. (c) The two given compounds have same composition but in solution both will give different ions. The isomerism is known as ionisation isomerism.
- 6. (d) Both produce different ions in solution state-

$$[Co(NH_3)_4 Cl_2]NO_2 = [Co(NH_3)_4 Cl_2]^+ NO_2^-$$
$$[Co(NH_3)_4 Cl. NO_2]Cl = [Co(NH_3)_4 Cl. NO_2]^+ + Cl^-$$

7. (b) The compound which has same composition but give different ions in solution, show ionization. So $[Co(NH_3)_5 Br] SO_4$ is ionization isomer.

$$[Co(NH_3)_5Br]SO_4 \Rightarrow [Co(NH_3)_5Br]^{2+} + SO_4^{2-}$$

 $[Co(NH_3)_5 SO_4]Br \rightleftharpoons [Co(NH_3)SO_4]^+ + Br^-.$

- **9.** (a) Co-ordination isomerism is caused by the interchange of ligands between cis and trans structure.
- 10. (c) $[Co(NH_3)_5NO_2]Cl_2$ will not show geometrical isomerism because this complex showed 4 and 6 co-ordination number.

- 13. (b) $[Fe(H_2O)_6]^{2+}$ has four unpaired electrons, $[Cr(H_2O)_6]^{3+}$, $[Cu(H_2O)_6]^{2+}$ and $[Zn(H_2O)_6]^{2+}$ have 3, 1, 0 unpaired electrons respectively.
- 14. (c) The electronic configuration of Ni in $[Ni(CN)_4]^{2-}, [Ni(Cl_4)]^{2-}$ and $Ni(CO)_4$ are as following

$$Ni^{+}$$
 in $[Ni(CN)_{4}]^{2-}$ –

CO and CN^- are strong ligands so they induces pairing of electrons so their complexes are diamagnetic while Cl^- is a weak ligand so it does not induce the pairing of electrons so its complex is paramagnetic.

15. (a) $[Co (NH_3)_4 Cl_2]^+$ is the Ma_4b_2 and Ma_2b_3 type complex.

16. (b) $\ln [Ag(NH_3)_2]Cl, Ag^+$ contains d^{10} configuration. All others contain unpaired electrons.

- **21.** (c) $[Co(en)_2 NO_2 Cl]Br$; $[Co(en)_2 ONOCl]Br$
- **22.** (b) Because it will not give any ions in solution.

- 24. (a) Magnetic moment of $[Cu(NH_3)_4]^{2+}$ ion is 1.414 due to the presence of one unpaired electron.
- **25.** (a) Due to the presence of one unpaired electron, both are slightly paramagnetic.
- **27.** (d) 1. $[Cu(NH_3)_4].[PtCl_4]$
 - **2.** $[Cu(NH_3)_3Cl].[PtCl_3(NH_3)]$
 - 3. $[Cu(NH_3)_2Cl_2].[PtCl_2(NH_3)_2]$ cis
 - 4. $[Cu(NH_3)_2Cl_2].[Pt Cl_2(NH_3)_2]$ Trans
 - 5. $[Cu(NH_3)Cl_3].[Pt(Cl)(NH_3)_3]$
 - 6. $[Pt(NH_3)_4 Cl].[Cu Cl_4]$
- 29. (c) Co-ordination isomerism is possible when both +ve and -ve ions of a salt are complex ions and the two isomers differ in the distribution of ligands in the cation and the anion.
- **30.** (a) On ionisation it gives maximum number of (four) ions.
- **31.** (b) The anhydrous complex of Cu^+ do not involve d-d transition and are thus colourless.

32. (a)
$$Mn^{2+}$$
 11 11 1 1 1 $3d^7$ $4s^0$

37.

In presence of H_2O which is a weak ligand no pairing occurs which results in unpaired electrons left in the compound, due to which it shows paramagnetism.

- **33.** (c) Geometrical isomers (cis and trans) and linkage isomers (-SCN and -NCS).
- **34.** (a) Due to presence of strong ligand all the e^- get paired. So no. of unpaired electrons are 0.
- **36.** (c) Both have same composition but give different ions in the solution.

38. (a) *CO* is a strong ligand so induce pairing of electrons and hence $Ni(CO)_4$ is diamagnetic.

40. (b)
$$[Co(en)_3]^{3+}$$

- **41.** (a) $[Co(NH_3)_3 Cl_3]$ does not have optical isomers because it is of formula MA_3B_3 which does not show optical isomerism.
- 42. (c) Change in composition of co-ordination sphere yield ionization isomers.

 $[Cr(H_2O)_6]Cl_3$ and $[CrCl_3(H_2O)_3].3H_2O$

- **43.** (d) NO_2 is ambident and can be linked either to N -side as $(-NO_2)$ or to O -side as (-ONO).
- **44.** (a) As $[Co(NH_3)_3Cl_3]$ does not losses any Cl^- ions in the solution so it will not give ppt. with $AgNO_3$.
- **45.** (b) $[Co(NH_3)_6]Cl_3 \approx [Co(NH_3)_6]^{3+} + 3Cl^-$.
- **46.** (e) $CoCl_3.5NH_3.H_2O$ is pink in colour.
- **47.** (a) The configuration of Ni^{2+} has two unpaired electron so it is paramagnetic.
- **48.** (d) $[Pt(NH_3)_4]Cl_2 \rightarrow [Pt(NH_3)_4]^{+2} + 2Cl^{-1}$

As it gives Cl^- ions in solution so it will give white ppt. of AgCl with $AgNO_3$.

- **49.** (c) $[Co(NH_3)_5 Cl]Cl_2 \Rightarrow [Co(NH_2)_5 Cl]^{2+} + 2Cl^{-}$
- **50.** (c) $[Cr(NH_3)_5 Cl]SO_4 \rightarrow [Cr(NH_3)_5 Cl]^{2+} + SO_4^{2-}$

57. (c) When coordinate compounds gives different ions in solution then it produces ionic isomerism while this situation is not present in $[Co(en)_2Cl_2]Cl$.

Hybridisation and Geometry

3. (a) $2Cl^{-}$ ions are ionizable $\therefore [Co(NH_3)_5 Cl]Cl_2 \approx [\underbrace{Co(NH_3)_5 Cl}_{3 \text{ ions}}^{2+} + 2Cl^{-}_{3 \text{ ions}}^{-}_{3 \text{ ions}}$ $2Cl^{-} + 2AgNO_3 \rightarrow 2AgCl + 2NO_3^{-}.$

- (b) Copper complexes usually involve with four co-ordination number and have square planar in shape.
- 5. (a) Complex with sp^3d hybridisation show square pyramidal geometry.

- **8.** (d) Metal carbonyls does not show overlapping.
- **9.** (c) sp^3d^2 hybridisation gives octahedral complex.
- (b) Copper complexes usually involve coordination number of four and are thus square planar in shape.

12. (c) $[Fe(CN)_6]^{4-}$

Hence, Octahedral geometry.

- **13.** (d) $Fe(CO)_5$ has dsp^3 -hybridisation so it show trigonal bipyramidal geometry.
- **16.** (b) Due to formation of inner orbital complex.
- **17.** (d) $Ni(CO)_4$ and $Ni(PPh_3)_2Cl_2$ have sp^3 and dsp^2 hybridisation respectively.
- **18.** (d) $[Cu(NH_3)_4]^{2+}$ has square planer structure.
- **19.** (a) Since hybridisation is dsp^2 so it is square

- **23.** (c) d^2sp^3 -hybridisation leads to octahedral geometry
- **25.** (c) $[CoF_6]^{3-}$ is an outer complex having d^2sp^3 hybridisation.

43. (c) Both $Ni(CO)_4$ and $Ni(PPh_3)_2Cl_2$ are tetrahedral.

Complexes and complex stability

- (d) The cyano and ammine complexes are far more stable than those formed by halide ions. This is due to the fact that *NH*₃ and *CN⁻* are strong lewis bases.
- (b) Greater the charge on central metal ion greater is the stability of complex.
- 5. (a) CuSO 4 on reaction with KCN gives $K_3[Cu(CN)_4]$

 $2CuSO_4 + 10KCN \rightarrow 2K_3[Cu(CN)_4] + 2K_2SO_4 + (CN)_2$

6. (a) The most probable complex which gives three moles ions in aqueous solution may be $[Co(NH_3)_5 NO_2]Cl_2$ because it gives two chlorine atoms on ionisation.

 $[Co(NH_3)_5 NO_2]Cl_2 \rightarrow [Co(NH_3)_5 NO_2]^{2+} + 2Cl^{-1}$

7. (d) $3K_4[Fe(CN)_6] + 4FeCl_3 \rightarrow Fe_4[Fe(CN)_6]_3 + 12KCl$ pot. ferrocyani de (Ferri ferrocynide) (Prussion blue)

(b)
$$Fe_2(SO_4)_3 \rightarrow 2Fe^{3+} + 3SO_4^{2-}$$

 $K_4[Fe(CN)_6] + 2Fe^{3+} \rightarrow Fe_4[Fe(CN)_6]_3$.

8.

- **9.** (c) $[Co(NH_3)_5Cl]^x + 2Cl^- \rightarrow [Co(NH_3)_5Cl]Cl_2$.
- **10.** (b) *Ni* reacts with dimethylglyoxime to give red *ppt.* of nickel-dimethyl glyoxime complex.

$$CH_{3} - C = N$$

$$CH_{3} - C = N$$

$$Ni$$

$$Ni$$

$$N = C - CH_{3}$$

$$N = C - CH_{3}$$

$$N = C - CH_{3}$$

$$O$$

$$OH$$

12. (b) $AgCl + 2NH_4OH \rightarrow [Ag(NH_3)_2]Cl + 2H_2O$

$$[Ag(NH_3)_2]+Cl^-$$

13. (a) $Ag_2S + NaCN \rightleftharpoons Na [Ag(CN)_2] + Na_2S$.

- 14. (b) $Fe_2(SO_4)_3 \rightarrow 2Fe^{3+} + 3SO_4^{-2}$.
- **15.** (b) Aluminum is a *p*-block element and does not form complex compounds.

Application of Organometallics

- 1. (d) $(CH_3CH_2)_3Al + TiCl_4$ is the Ziegler-Natta catalyst.
- **2.** (d) Alum acts as coagulating agent.
- 4. (c) $4CH_3CH_2CH_2CH_2 Li + SnCl_2 \rightarrow (C_4H_9)_4Sn$.
- **6.** (b) As there is no direct bonding between the metal atom and the carbon atom.
- 9. (a) $(CH_3)_4 Sn$ is a σ -bonded organometallic compound.
- (d) Wilkinson's catalyst is used as homogeneous catalyst in the hydrogenation of alkenes as -

28. (d)
$$4K^+ \begin{bmatrix} N \equiv C \\ N \equiv C \\ N \equiv C \end{bmatrix}$$
 Free $C \equiv N$
 $C \equiv N$

29. (d) $K_3[Fe(CN)_6]$

Electronic configuration of $Fe = [Ar]4s^2 3d^6$ Electronic configuration of $Fe^{+3} = [Ar]3d^5$ Number of ligand (coordination numbr)=6 Nature of ligand is strong field.

Hybridization of *Fe* is d^2sp^3 .

- **32.** (c) The compounds which show d^6 configuration are octahedral complexes.
- **33.** (a) CN^{-} ligand has strong field ligand because of higher value of Δ .
- **35.** (c) Ammine (NH_2) is neutral ligand.
- **37.** (c) A strong field ligand produces low spin complexes.
- **38.** (d) Cyanide ion is strong field ligand because it is a pseudohalide ion pseudohalide ions are stronger coordinating ligand & they have the ability to form σ bond (from the pseudohalide to the metal) and π bond (from the metal to pseudohalide).

39. (d)
$$Mn^{25} \longrightarrow 3d^5 + 4s^2$$

 $Mn^{2+} \longrightarrow 3d^5 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1$

In presence of weak ligand field, there will be no pairing of electrons. So it will form a high spin complex. i.e. the number of unpaired electrons = 5.

40. (b) The complexes, in which, the metal and ligand form a bond that involves the π -electrons of the ligand are know as π -complexes *e.g.* Ferrocene

Fe
$$(\eta^5 - C_5 H_5)_2$$
, zeise's salt $K[PtCl_3(\eta^2 - C_2 H_4)]$

- **41.** (b) *CO* has strong $M \rightarrow L \pi$ bonding ability so it can accept electron pairs from metal ion so it is a π -acid ligand.
- **42.** (a) d^4 (in strong ligand field).

$$H - H + \sum C = C \swarrow \longrightarrow H - C - C - H.$$

- **12.** (b) C_2H_5 Li is an organo-metallic compound.
- **13.** (a) Because there is direct bonding of metal ion with carbon.
- 14. (c) Organometallic compounds are those compounds in which carbon atom is directly linked to metal. But in sodium ethoxide as oxygen is attached to sodium metal so it is not a organometallic compound.
- **16.** (c) $Al(OC_2H_5)_3$ contains bonding through O and thus it does not have metal-carbon bond.
- **17.** (c) Chlorophyll are green pigment in plant & contain magnesium instead of calcium.
- 19. (d) This reaction carried out in alkaline *pH i.e.*, 9-

11

dibenzene chromium

Critical Thinking Questions

 (b) Its coordination number will be 6 because it is bonded with three bidentale ligands.

> Oxi. No. of Cr in $K_3[Cr(C_2O_4)_3]$ is $x + 3(-2) + 3(+1) = 0 \implies x = +3$

- **2.** (b) e.g. $Fe(CO)_5$, $Ni(CO)_4$ etc.
- 3. (a) $[Co(NH_3)_5SO_4]Br + AgNO_3 \rightarrow 0.02 \text{ mole}$

$$\begin{bmatrix} Co (NH_3)_5 . SO_4 \end{bmatrix} NO_3 + AgBr$$

$$[Co (NH_3)_5 Br_2]SO_4 + BaCl_2 \rightarrow 0.02 \text{ mole}$$

$$\begin{bmatrix} Co (NH_3)_5 Br \end{bmatrix} Cl_2 + BaSO_4 \\ 0.02 \operatorname{mole}(z) \end{bmatrix}$$

On using one *lit*. solution, we will get 0.01 mole y and 0.01 mole z.

4. (b) $[Fe(\eta^5 - C_5H_5)_2]$ is the organometallic compound which has σ and π bonds present.

5. (b)
$$[Ni_{x} (NH_{3})_{4}]SO_{4}$$

 $x + 0 + (-2) = 0 \Rightarrow x = +2$ is valency and 4 is C.N. of Ni.

6. (b) Co-ordination number is equal to total number of ligands in a complex.

7. (c)
$$n \begin{bmatrix} Cl & Cl \\ Si & Cl \\ CH_3 & CH_3 \end{bmatrix} + 2nH_2O \rightarrow \begin{bmatrix} CH_3 \\ -O-Si-O- \\ -CH_3 \\ CH_3 \end{bmatrix}_n$$

- **8.** (c) Because it is a polydentate ligand which binds the central atom nickel forming a ring like structure.
- **9.** (d) $4KCN + CuSO_4 \rightarrow K_3[Cu(CN)_4]$ Potassium tetracyno cuprate
- **10.** (a) Roasted $+ CN^- + H_2O \xrightarrow{O_2} [Au(CN)_2]^- + OH^$ gold ore

$$\left[Au\left(CN\right)_{2}\right]^{-}+Zn\rightarrow\left[Zn(CN)_{4}\right]^{2-}.$$

11. (d) Potassium ferrocynide $K_4[Fe(CN)_6]$ will ionize as $K_4[Fe(CN)_6] = 4K^+ + [Fe(CN)_6]^{4^-}$

So, it will give five ions in solution.

(d) Complex ion Hybridization of central atom

$\left[Fe(CN)_6\right]^{4-}$	$d^2 sp^3$ (inner)
$[Mn(CN)_6]^{4-}$	d^2sp^3 (inner)
$[Co(NH_3)_6]^{3+}$	d^2sp^3 (inner)
$[Ni(NH_3)_6]^{2+}$	sp^3d^2 (outer)

- **13.** (d) $[Co(en)_2 Cl_2]^+$ shows geometrical as well as optical isometrism.
- **14.** (a)

Ethylenediamine tetraacetate ion (EDTA)

They have six donor atoms. poly dentate ligands have flexidentate character. It is not necessary that all the donor atoms present in the polydentate ligands should form coordinate bonds with central metal atom or ion.

- 17. (a,d) In $K_3[Fe(CN)_6]$ the ligand are negative which is present in coordination spheres shows a dual behaviour. It may satisfied both primary & secondary valencies while neutral ligand satisfied only secondary valencies.
- **18.** (a) Cis Isomer of $[Pt(NH_3)_2Cl_2]$ is used as an anticancer drugs for treating several type of malignant tumours. When it is injected into the blood stream the more reactive Cl groups are lost so the Pt atom bonds to a N atom in guanosine (a part of DNA) This molecule can bond to two different guanosine units & by bridging between them it upsets the normal reproduction of DNA.
- 19. (c) $CoCl_2$ is a weak Lewis acid, reacting with chloride ion to produce salt containing the tetrahedral $[CoCl_4]^{2-}$ ion. $CoCl_2$ is blue when anhydrous, and a deep magneta colour when hydrated, for this reason it is widely used as an indicator for water.
- 20. (a) The absorption of energy or the observation of colour in a complex transition compound depends on the charge of the metal ion and

Co-ordination Chemistry 929

the nature of the ligands attached. The same metal ion with different ligands shows different absorption depending upon the type of ligand. The presence of weak field ligands make the central metal ion to absorb low energies *i.e.*, of higher wavelength. The field strength of ligands can be obtained from spectrochemical series. *i.e.*

(weak field) $I^- < Br^- < S^{2-} < Cl^- < NO_3^- < F^- < OH^- < H_2O < NH_3 < NO_2^- < CN^- < CO$ (strong field)

21. (b) $[Co(en)_3]Cl_3$

Assertion and Reason

- (d) Potassium ferrocyanide and potassium ferricyanide both are not diamagnetic because both do not have paired electrons. Assertion and reason both are false.
- 2. (c) It is correct statement that NF_3 is a weaker ligand than $N(CH_3)_3$, the reason is that fluorine is highly electronegative therefore, it with draw electrons from nitrogen atom. Hence, the lone pair of nitrogen atom cannot be ligated. While $N(CH_3)_3$ is a strong ligand because CH_3 has electron releasing group.

- 3. (d) Both assertion and reason are false. $[Ni(en)_3]Cl_2$ is a chelating compound and chelated complexes are more stable than similar complexes involves breaking of two bonds rather than one. In $[Ni(en)_3]Cl_2$, Ni with d^8 configuration shows octahedral geometry. Six electrons will occupy the t_{2g} orbitals and two electrons will occupy the e_g orbitals.
- 4. (a) Both assertion and reason are true and reason is the correct explanation of assertion. When a monodentate ligand has two possible donor atoms and attached in two ways to the central metal atom are called ambidentate ligands.
- 5. (c) Assertion is true but reason is false. Tetrahedral complexes do not show geometrical isomerism because the relative position of the atoms with respect to each other will be the same.
- **6.** (e) Assertion is false but reason is frue.

$$\left[(en)_2 Co \left\langle \begin{array}{c} NH \\ OH \end{array} \right\rangle Co(en)_2 \right]^{3+} \quad \text{is named as}$$

tetrakis (ethylene diamine)- μ -hydroxo- μ imido dicobalt (III) ion. For more than one bridging group the word μ is repeated before each bridging group.

7. (b) Both assertion and reason are true but reason is not the correct explanation of assertion. $[Fe(CN)_6]^{3-}$ has EAN equal to 35 and thus possesses unpaired electron to show paramagnetic nature while $[Fe(CN)_6]^{4-}$ possesses no unpaired electron and thus shows diamagnetic nature.

- 8. (e) Assertion is false but reason is true. $H_2N - NH_2$ does not act as chelating ligand. The coordination by hydrazine leads to a three member highly unstable strained ring and thus it does not act as chelating agent.
- 9. (a) Both assertion and reason are true and reason is the correct explanation of assertion. $[Sc(H_2O)_6]^{3+}$ has no unpaired electron in its *d* subshell and thus d-d transition is not possible whereas $[Ti(H_2O)_6]^{3+}$ has one unpaired electron in its *d* subshell which gives rise to d-d transition to impart colour.
- 10. (b) Both assertion and reason are true but reason is not the correct explanation of assertion.
 - Ni²⁺ configuration

During rearrangement only one 3d-orbital may be made available by pairing the electrons. Thus, inner d^2sp^3 hybridization is not possible, so, only sp^3d^2 (outer) hybridization can occur.

11. (c) $K_4[Fe(CN)_6]$ and $K_3[Fe(CN)_6]$ both are low spin complex due to strong ligand field. That is why it is false that crystal field splitting in ferrocyanide ion is greater than ferricyanide ion.