Chapter 2 CHEMICAL BONDING AND MOLECULAR STRUCTURE

INTRODUCTION

- 1. In general, the highest/lowest electronegative element occupies the central position.
- 2. Formal charge (F.C.) charge formula is -
- 3. Formal charge indicates real charge separation within the molecule. T/F
- 4. Generally the lowest energy structure is the one with the highest/smallest formal charge.
- 5. Difference bt. Van der wall and covalent radius is -
- 6. Bond angle of water is -
- 7. Isoelectronic molecules have identical bond orders. T/F
- 8. In resonance, the molecule exists for a certain fraction of time in one canonical form and for other fractions of time in other canonical forms. T/F
- 9. Dipole moment = A x B. Tell A and B.
- 10. 1 D = ____ Cm
- II. In chemistry, the dipole moment direction is from +ve to -ve. T/F
- 12. The smaller the size of cation, greater will be the covalent character. T/F
- 13. The larger the size of anion, smaller will be the covalent character. T/F
- 14. The greater charge on cation means greater covalent character. T/F
- 15. Transition metals are more polarising than alkali and alkaline earth metals. T/F
- 16. Greater the polarizability of anion, lesser the covalent character. T/F

VSEPR

- 17. Ip-Ip repulsion is less than Ip-bp repulsion. T/F (NEET)
- 18. Ex. of molecules with T-shape -
- 19. BrF5 shape is -
- 20. Bond angle in NH3 is-
- 21. SF4 most stable shape is -
- 22. Most stable structure of CIF3 is ____ shaped.

HYBRIDISATION

- 23. Extent of p-p overlapping is more than s-s overlapping. T/F
- 24. Angle in sp2 hybridisation (NEET)

- 25. Angle is sp3 hybridisation (NEET)
- 26. The energies of 3p and 4s are comparable. T/F
- 27. Hybridisation in [Ni(CN)4]2- -
- 28. Hybridisation in SF6 -
- 29. Hybridisation in BrF5 -
- 30. Hybridisation in [CrF6]3- -
- 31. Axial bond pairs suffer more repulsive interaction from the equatorial bond pairs. T/F

MOT & HYDROGEN BONDING

- 32. Energy of σ^2 pz molecular orbital is higher than that of π^2 px and π^2 py molecular orbitals in C2. T/F
- 33. C2 exists. T/F
- 34. Bond order of C2 -
- 35. In C2, one bond is sigma, and the other is pie. T/F
- 36. Bond order of Li2 -
- 37. 2s-2p mixing is present in -
- 38. 2s-2p mixing is absent in -
- 39. B2, C2, N2 order of e- filling is (NEET)
- 40. 02, F2, Ne2 order of e- filling is (NEET)
- 41. Hydrogen bonding is seen b.t. H and (3)
- 42. H bonding is maximum in the solid state and minimum in the gaseous state. T/F
- 43. Intramolecular H bonding is seen in -
- 44. B2 is diamagnetic/paramagnetic. T/F

ANSWERS

INTRODUCTION

- 1 Lowest
- 2. total number of valence electrons in the free atom
- total number of non bonding (lone pair) electrons
- (1/2) total number of bonding(shared) electrons
- 3. F
- 4. Smallest
- 5. Covalent radius is the radius of an atom's core which is in contact with the core of an adjacent atom in a bonded situation. van der Waals radius represents the overall size of the atom which includes its valence shell in a nonbonded situation
- 6. 104.5°
- 7. T
- 8. F
- 9. Charge x distance
- 10. 3.33564 × 10-30 Cm
- II. T
- 12. T
- 13. F
- 14. T
- 15. T
- 16. F

VSEPR

- П. F
- 18. CIF3
- 19. Square pyramidal
- 20.107°

- 21. See-saw
- 22. T-shaped

HYBRIDISATION

- 23. T
- 24. 120°
- 25. 109.5°
- 26. F
- 27. dsp2
- 28. sp3d2
- 29. sp3d2
- 30. D2sp3
- 31. T

· MOT

- 32. T
- 33. T
- 34. 2
- 35. F, both the bonds are pie bonds
- 36.1
- 37. B2. C2. N2
- 38. 02, F2, Ne2
- 39. Ols < O'ls < O2s < O'2s < (\pi 2px = \pi 2py)
- < σ2pz < (π°2px = π°2py) < σ°2pz
- 40. $\sigma / s < \sigma / s <$
- π 2py) < (π *2px= π *2py)<σ*2pz
- 41. F.O.N
- 42. T
- 43. ortho-nitrophenol
- 44. paramagnetic