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CHAPTER HIGHLIGHTS

Introduction to Stability
Stability: A linear time-invariant system is stable if the out-
put of the system is bounded for a bounded input and the 
output of the system tends towards zero in the absence of 
the input

Stability is classified as follows: 

 1. Absolute stability 
 2. Conditional stability 
 3. Marginal stability 
 4. Unstable 

Absolute stability: A system is absolutely stable with 
respect to a parameter, if the system is stable for all values 
of that parameter. 

Conditional stability: A system in conditionally stable 

with respect to a parameter, if the system is stable for only 
certain bounded ranges of values of this parameter.

Marginal stability: A system is marginally stable if the 

natural response of the system neither decays nor grows but 
remains constant or oscillates as time approaches infinity.

Unstable: A system is unstable if its response is unbounded 

with a bounded input applied.

Stability and poles
The system poles that are in the left half plane yield either 
pure exponential decay or damped sinusoidal natural 
response, which is the necessary condition for a system to 
be stable.

1.  Stable systems have closed–loop transfer function 
with poles only in the left half plane.

NOTES

2.  Unstable systems have loop transfer function with at 
least one pole in the right half plane or poles of multi-
plicity greater than one on the imaginary axis. 

3.  Marginally stable systems have closed–loop transfer 
function with only imaginary poles of multiplicity one 
and poles in the left half plane.

Necessary Conditions for Stability
 1. Positiveness of the coefficients of characteristic 

equation is a necessary and a sufficient condition for 
stability of first- and second-order system. 

 2. Positiveness and existence of the all coefficients of 
the characteristic equation is a necessary condition 
for stability of the system. 

Roots with negative real part indicate all positive coef-
ficients in characteristic equation but all positive coeffi-
cients do not indicate proofs with negative real part in the 
characteristic equation.

NOTE

Routh–Hurwitz Criterion
Routh–Hurwitz criterion gives the necessary and sufficient 
condition for all roots of polynomial to lie in the left half 
of the s-plane, without actually solving for the roots of the 
equation.

The characteristic equation of the nth-order system is 

D(s) = a0s
 n + a1s

n –1 + a2 s
n – 2 + ….. + an – 1 s + an = 0

Chapter 3
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Routh array

Sn a0 a2 a4 a6 • • • •

• • • •Sn–1 a1 a3 a5 a7

Sn–2 b1 b2 b3 b4

Sn–3 c1 c2 c3

Sn–4 d1 d2

.

.
S2 e1 an

S1 f1

S0 an

The coefficients b1, b2 …. are evaluated as follows:

b1 = (a1a2 – a0a3)/a1;

b2 = (a1a4 – a0a5)/a1;

b3 = (a1a6 – a0a7)/a1….

This process will continue till we get a zero as the least 
coefficient in the third row. Similarly, the coefficients of the 
other rows are also evaluated.

The roots of the characteristic equation are all in the left 
half of s-plane if all the coefficients of the first column of 
the Routh’s tabulation are of the same sign.

The number of changes of signs in the elements of the 
first column equals the number of roots with positive real 
parts or in the right half of s–plane. 

Special case 1: This happens when the first term in any row 
of the Routh array is zero while rest of the row has at least 
one non–zero term.

In this case, if zero appears as the first element of a row, 
the elements in the next row will all becomes infinite. To 
overcome this problem, we replace the zero element by an 
arbitrary small positive number e  and proceed with Routh’s 
tabulation.

Finally, substitute the value of e  = 0 and find the values 
of the elements of the array which are functions of e . The 
resultant Routh’s array is analysed as usual.

If there is a single element zero in s row, it is considered 
as row of all zeros. 

NOTE

Special case 2:  When all the elements in one row of Routh’s 
tabulation are zeros before the tabulation is properly termi-
nated, it indicates the following: 

 1. There are symmetrically located roots in s–plane 
 2. Pair of real roots with opposite signs and/or pair of 

conjugate roots on the imaginary axis and/or complex 
conjugate roots forming quadrates in the s-plane.

Auxiliary equation

The polynomial formed by the coefficients of the row just 
above the row of zeros in the Routh array is called auxiliary 
equation [A(s) = 0]

1. The order of the auxiliary equation is always even. 
2.  The roots of the auxiliary equation also satisfy the 

original characteristic equation.
3.  Break down in the Routh table due to zero row is over-

come by replacing the row of zeros with first derivative 

of auxiliary equation 
dA s

ds

( )⎛
⎝⎜

⎞
⎠⎟

with respect to s.

NOTES

Solved Examples

Example 1
A system transfer function has some poles lying on the 
imaginary axis and it is 
(A) unconditionally stable  (B) conditionally stable 
(C) unstable   (D) marginally stable 

Solution
When the poles are on imaginary axis, the system is margin-
ally stable.

Example 2
A system has some roots with real parts equal to zero, but 
none with positive real part is 
(A) absolutely unstable   (B) absolutely stable 
(C) relatively stable   (D) marginally stable 

Solution
Marginally stable

Example 3
Closed–loop stability implies that 1 + G(s)H(s) has only 
_________ in the left half of the s-plane.
(A) poles   (B) zeroes 
(C) poles and zeros   (D) poles or zeros 

Solution
Zeroes of characteristic equation are poles of the transfer 
function.

Example 4
None of the poles of a linear control system lie in the right 
half of s-plane. For a bounded input, the output of this 
system
(A) could be bounded   (B) always tends to zero 
(C) is always bounded   (D) None of these 

Solution
Poles are not on the right half and indicate they can be on 
imaginary axis. Therefore, stability cannot be justified.
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Example 5
For the equation s3 − 4s2 + s + 5 = 0, the number of roots in 
the left half of s-plane will be 
(A) zero (B) one (C) two (D) three

Solution
Routh array for s3 − 4s2 + s + 5 = 0

s3 1 1

s2 – 4 5

s1 2.25

s0 5

Sign changes in first column of Routh array are 2(1 → – 4 
→ 1) poles on left half = 3 – 2 = 1

Example 6
The number of roots of the equation 2s4 + s3 + 5s + 6 = 0 
that lie in the right half of s-plane is 
(A) zero (B) one (C) two (D) four 

Solution
Routh array for 2s4 + s3 + 3s2 + 5s + 6 = 0

4s 2 3 6

3s 1 5

2s – 7 6

1s
7
41

s 0 6

Number of sign changes in Routh array are 2 1 7
41

7
→ − →⎛

⎝⎜
⎞
⎠⎟

Number of  poles on the right half = 2

Example 7
For what range of K is the following system is asymptotically 
stable; assume K ≥ 0?

C(S)R(S)

K

5s
4s

+
–

–
+

(A) 0 ≤ K < 
5

4
 (B) 0 ≤ K < 

4

5

(C) K > – 
4

5
 (D) K > –

5

4

Solution
Given system transfer function 

= 
K s

K s K

( )

( ) ( )

−
+ + −

4

1 5 4

Characteristic equation of the system is 

(1 + K)s + (5 – 4K) = 0

For the system to be stable, all the coefficients of ‘s’ in the 
characteristic equation must be positive. 
1 + K > 0 5 – 4K > 0
K > – 1 – 4K > – 5

  K < 
5

4
 

Actual ranges of K is –1 < K < 
5

4

Given K ≥ 0; 0 ≤ K < 
5

4

Example 8
The open-loop transfer function of a unity feedback system 
is given below. 

G(s) = 
K s

s s

( )

( )( )

+
+ +

4

1 2

The range of positive values of K  for which the closed–loop 
system will remain stable is 

(A) 2 < K < 3 (B) 
2

4
 < K < 3

(C) 0 < K < ∞  (D) 
2

4
 < K < ∞

Solution
Closed–loop transfer function = 

G s

G s

( )

( )1+

 = 
K s

s K s K

( )

( ) ( )

+
+ + + +

4

3 2 42

Characteristic equation of the system s2 + (3 + K)s +  
(2 + 4K) = 0

Condition for stability is that all coefficients of s must be 
grater than zero in characteristic equation 
3 + K > 0 2 + 4K > 0
K > –3 4K > –2

  K > –
2

4

Therefore, the system is stable for all values of K > – 
2

4
 

Therefore, range of positive values of k for stability is  
0 < k < ∞ .

Example 9
A certain closed–loop system with unity feedback has the 

following transfer function given by G(s) = 
k

s s s( )( )+ +2 4
 

with the gain set at the ultimate value. The system will 
oscillate at an angular frequency of 
(A) 2 rad/s (B) 4 rad/s 

(C) 8 rad/s (D) 2 2 rad/s
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Solution
Characteristic equation of the system is 

s3 + 6s2 + 8s + K = 0

System will oscillate when it is marginally stable or from 
Routh array. 

s3 1 8

s2 6 K

s1
6
−K48

s0 K

System is marginally stable if 48 – K = 0 ⇒ K = 48
Then, auxiliary equation is 6s2 + 48 = 0

s2 = – 8 ⇒ s = j 2 2  

Oscillation frequency = 2 2  rad/s

Root Locus 
Root locus is basically the technique of finding the locus of 
roots as a single gain is changed, by solving for the roots of 
the characteristic equation, at each gain. 

The gain that is to be varied will be open-loop gain. Note 
this does not mean the gain of the open-loop system that 
is typically fixed; this refers to cascading a controller in 
the forward path. Using the root locus method, the control 
system engineer can predict the effect of varying gain on 
the open-loop poles or what effect will be caused by adding 
open-loop poles or open-loop zeros.

Angle and Magnitude Conditions
Consider the following general system:

C s

R s

G s

G s H s

( )

( )

( )

( ) ( )
=

+1

The characteristic equation of the system is obtained by setting 
the denominator of the closed-loop system to zero as follows:

1 + G(s) H(s) = 0

Therefore, G(s) H(s) = –1
Since complex variable has both an angle and a mag-

nitude, we can split the above equation into two separate 
equations as follows: 

∠G(s) H(s) = ±180° (2K + 1) (K = 0, 1, 2……)

→ Angle condition 

G s H s( ) ( )  = 1 → magnitude condition 

The values of s that satisfy the angle and magnitude condi-
tions are the roots of the characteristic equation (closed–
loop poles). Only these values will be the roots. As we vary 
the gain, these values of s that satisfy both conditions will 
change. The resulting collection of point in s-plane are 
called root locus. 

Open-loop gain K corresponding to any point on root 
locus can be calculated using the equation: 

K = 

Product of lengh of vectors from

open loop poles to the point

product off lenght of vectors form

open loop zeros to the point

NOTE

Rules for construction of root locus 

 1. The root locus is symmetric about origin.
 2. The number of branches in a root locus is equal to 

either the number of poles (n) or the number of zeros 
(m) whichever is greater. Each branch of root locus 
starts from open poles (assuming the number of poles 
is greater than zero) corresponding to K = 0 and 
terminates at either a finite open-loop zero or infinity 
corresponding to K = ∞. ‘n’ number of branches will 
terminate to finite open-loop zeros and the remaining 
branches of root locus (n – m) will terminate to 
infinity. 

  B = P if P > Z ⇒ P – Z branches will terminate at ∞
  B = Z if Z > P ⇒ Z – P branches will terminate at ∞
  P = Number of poles, Z = number of zeros 
  B = Number of branches of root locus 
 3. A section of real axis lies on root locus if the total 

number of open-loops poles plus zeros to the right of 
that section is odd. 

 4. The angle of asymptotes and centroid:
If P > Z, P – Z number of branches will terminate at 
∞ along straight line (asymptotes) making angle with 
real axis given by

fA = 
180 2 1( )q

P Z

+
−

; (q = 0, 1, 2, 3, …(P – Z – 1))

If Z > P ⇒ fA = 
180 2 1( )q

Z P

+
−

; (q = 0, 1, 2, 3,..(Z – P – 1))

 The point of intersection of the asymptotes with the 
real axis is called centroid and is denoted by s.
Centroid (s) = 

Sum of real part of pole Sum of real part of zeros

P Z

−
−

 5. Break away or in point
A point on root locus where multiple poles or zeros 
exist is known as break away or in point. 
The break away or break in point is given by the roots 

of the equation 
dK

ds
 = 0, where K is obtained form  

1 + KG(S) H(S) = 0 
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1.  Break away point exists if there is a root locus on real 
axis between two adjacent poles. 

2.  Break in point exists if there is a root locus on real axis 
between two adjacent zeros 

3.  Break in point exists if there is a zero on real axis and 
left to that there is no root loci or poles or zeros.

NOTES

 6. The angle of departure or arrival
The angle of departure or angle of arrival is given by 
Angle of departure = 180 – f
Angle of arrival = 180 + f
Where f = 

Sum of angles of vectors Sum of angles of vectors

to the complex pole / zeero A from to the complex pole/

zero from

other poles other zeros.

−
⎡

⎣

⎢⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 7. The intersection of root locus with the imaginary 
axis can be determined by the use of Routh criterion 
(finding poles on imaginary axis)

Example 10
Plot the root locus for a transfer function

G(s) = 
K

s s s( ) ( )+ +2 3

Solution
Number of poles = 3

The poles are at s = 0, s = – 2 and s = – 3

Re (s)

Im 

0– 2–3

Break away point

d

ds
s s s( )3 25 6 0+ + =

3s2 + 10s + 6 = 0

s = –0.784 and s = –2.549

s = –2.549 does not lie on the root locus

Asymptotes

q1 = ± = ±
180

3
60°

q3 = ±
×

= ±
3 180

3
180°

Centroid

s =
− − −

−
( ) ( )0 2 3 0

3 0
 = –1.667

Imaginary axis cross-over

G(jw) = 
K

j j jw w w( ) ( )+ +2 3

G(jw) = K j
−
+ −

−
−

+ −
⎡

⎣
⎢

⎤

⎦
⎥

5

25 6

6

25 6

2

4 3 2

3

4 3 2

w
w w w

w w
w w w( )

( )

( )

Equating the imaginary part to zero

w  = ± 2.5 rad/s

The root locus is drawn as shown in the figure:

Re(s)

Im(s)

0

ω

– 2– 3

– 1.667

– 0.784
= 2.5 rad / sec

Example 11

G(s) = 
K s

s s

( )+
+ +

2

2 32
, H(s) = 1

Sketch the root locus.

Solution
Number of branches of root locus = 2

The poles are at s = – 1± j 2
The zero is at s = – 2

– 2 Re(s)

Im(s)

–1
1

2

–1+j 2

– 1 – j 2

θ

θ

The root locus starts from the conjugate poles and break in 
on the real axis between –2 and – ∞. One root locus ends in 
s = –2, the other ends at s = –∞. 

Asymptote

q1 = ±
−

= ±
180

2 1
180

Angle of departure

= 180 – 90
2

1
−

⎛

⎝⎜
⎞

⎠⎟
tan  = 145°

Break away point

d G s

ds

( )
= 0

s = – 3.73



3.288 |  Part III  •  Unit 3  •  Control Systems

The root locus is drawn in the figure:

Im(s)

Re(s)

– 3.73
K=

(–2, –1)
K = 

1450

– j 2

j 2

∞ ∞

 1. N-P = Z
Here, P = 1
If K > 1, N = 1,
Z = 0, then the closed-loop system is stable.

 2. If K < 1, N = 0
Z ≠ 0, then the closed-loop system is unstable.

Example 12

Given G(s) H(s) = 
K

s s s( )( )+ +2 5
, the point of intersection 

of the asymptotes of the root locus with the real axis is 
(A) 0 (B) –2 (C) –2.3 (D) –3.5

Solution
Number of poles (P) = 3 (0, –2, –5)

Number of zeros (Z) = 0
Number of asymptotes = 3
Centroid (Intersection of the asymptotes) 

= 
Σ Σreal part of all poles real part of all zero−

−P Z

= 
0 2 5 0

3

7

3

− − −
=
−

 = –2.33

Example 13
The open-loop transfer function of a unity feedback control 
system is given by 

G s
K s

s s s
( )

( )

( )
=

+
+ +

2

2 12

The centroid and angles of root locus are, respectively. 

(A) −
2

3
 and + 60°, – 60° (B) – 2 and + 90° , – 90°

(C) zero and + 90° , – 90° (D) – 2 and + 60°, – 60°

Solution
Number of poles = 3 (0, – 1, – 1)

Number of zeros = 1 (– 2)
Number of asymptotes = 2
Angle of asymptotes = + 90° and – 90°
Centroid = 

Σ Σreal part of all poles real part of all zero−
2

= 
( ) ( )0 1 1 2

2

2 2

2

− − − −
=
− +

 = 0

Example 14
The figure shown below gives root locus of the open-loop 
transfer function G(s) H(s) of a system. 

Consider the following inference drawn from the figure: 

 1. It has no zero. 
 2. It is a stable system. 
 3. It is a second-order system.

Which of these inferences are correct?

jω

σ
xx

s-plane

(A) 1, 2, and 3 (B) 1 and 2
(C) 2 and 3 (D) 1 and 3

Solution
Two poles terminated to infinity indicate that there are no zeros.

Two poles indicate the order of the system as 2.

Example 15
The characteristic equation of a unity–feedback control 
system is given by S3 + AS2 + S + B = 0

Consider the following statements in this regard: 

 1. For a given value of B, all the root locus branches will 
terminate at infinity for the variable A in the positive 
direction. 

 2. For a given value of B, only one root locus branch will 
terminate at infinity for the variable K, in the positive 
direction. 

 3. For a given value, of A, all the root locus branches 
will terminate at infinity for the variable ‘B’ in the 
positive direction. 
Of these statements, 
(A) 1 and 3 are correct.  (B) 2 and 3 are correct.
(C) Only 2 is correct.  (D) Only 1 is correct. 

Solution: (B)

Example 16
The root locus of a unity feedback system is shown in figure. 
The open-loop transfer function is given by

x0

Imaginary

K = 0

Real
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(A) 
K

s s s( )( )+ +2 4
 (B) 

K s

s s s

( )

( )( )

+
+ +

4

3 5

(C) 
K s

s s

( )

( )

+
+

4

3
 (D) 

Ks

s s( )( )+ +3 5

Solution
The given root locus indicates that the open-loop transfer 
function has two poles and one zero. 

One pole is at the origin and another pole location is on 
the right side to the zero. 

Example 17
The closed-loop transfer function of a feedback system is 
given by

C S

R S

K

s K s

( )

( ) ( )
=

+ − +2 4 3

Which of the following diagrams represent a root locus of 
the system for K > 0?

(A) 

xx

j

K = 0 K = 0

K 

σ

ω

∞→

K ∞→

(B) 

xx
K = 0 K = 0

j

K 

σ

ω

∞→ K ∞→

(C) 

x

K = 0 K = 0

j

K 

σ

ω

∞→ K ∞→

(D) j

xx

K = 0 K = 0

K 
σ

ω

∞→

Solution
When the value of K increases, the location of poles will 
tend to right-hand side of the s-plane when K > 4.

→ When K = 4, characteristic equation s2 + 3 = 0

s = ± j 3  =

(Poles are on imaginary axis)
→ When K = 10, characteristic equation s2 – 6s + 3 = 0

(s – 3)2 = 0 

s = + 3, + 3

(Poles are on right-hand side and equal)
→ When K > 10, poles are on right-hand side but not 

equal 

Example 18
A control system has 

G(s) H(s) = 
K s

s s

( )

( )( )

+
+ +

5

2 3

The break away and break in points are located respectively 
at 
(A) – 2 and – 1 (B) – 1.589 and – 7.5
(C) – 2.55 and – 7.5 (D) – 1.5 and – 6.89

Solution
Characteristic equation 

1 + G(s) H(s) = 0 

⇒ K = 
− + +

+
=

+ +
+

( )( )

( )

s s

s

s s

s

2 3

5

5 6

5

2

Break away or break in points are roots of 
dK

ds
 = 0

dK

ds

s s s s

s
=

+ + − + +
+

( )( ) ( )

( )

2 5 5 5 6

5

2

2
 = 0

2s2 + 15s + 25 – s2 – 5s – 6 = 0

s2 + 10s – 19 = 0 

s = –2.55, –7.449

Break away point is –2.55, and break in point is –7.449.

Example 19
A transfer function G(s) has type pole zero plot as shown in 
the figure. Given that the steady state gain is 3, the transfer 
function G(s) will be

jω

– 2 – 1 σ

x

x

o
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(A) 
2 1

4 52

( )s

s s

+
+ +

 (B) 
5 1

4 52

( )s

s s

+
+ +

(C) 
15 1

4 52

( )s

s s

+
+ +

 (D) 
15 1

2 2

( )

( )

s

s

+
+

Solution
From the given pole zero plot, transfer function has 

 1. zero is at (–1, 0)
 2. complex poles 

Only for option ‘C’ steady-state gain is ‘3’.

Lt G s Lt
s

s s
s s→ →=

+
+ +

=0 0 2

15 1

4 5

15

5
( )

( )
 = 3.

Frequency Response Analysis
The magnitude and phase relationship between the sinusoi-
dal input and the steady state output of a system is termed 
a frequency response. In linear time-invariant systems, the 
frequency response is independent of the amplitude and 
phase of the input signal, when the input of a linear time 
invariant system is sinusoidal with amplitude A and fre-
quency wo.

r(t) = A sin wot.

The steady-state output of a system y(t) will be a sinusoi-
dal with the same frequency wo but possibly with different 
amplitude and phase. 

y(t) = B sin (wot + f)

B

A

G j

G j H j
M jTransfer function

( )

1 ( ) ( )
( )

ω
ω ω

ω= =
+

=

f = ∠Transfer function = ∠G(jw) – ∠[1+ G(jw) H (jw)] = 
∠M(jw)

G(s)

H(s)

Y(s)

Y(s)

R(s)

R(s)

∑

Fig: closed loop control system

M (jω ω) ∠M(j )

–

+

The ease and accuracy of measurements are some of the 
advantages of the frequency response method. Extraction 
of transfer function is easy from frequency response test 
than step response test (time response). The design and 
parameter adjustment of the open-loop transfer function of 
a system for specific. Closed-loop performance is carried 
out more easily in frequency domain than in time domain. 
The effect of noise disturbance and parameter variation are 
relatively easy to visualize and access through frequency 
response. Nyquist criterion is a powerful frequency domain 

method of extracting. The information regarding stability 
as well as relative stability of a system without the need to 
evaluate roots of the characteristic equation.

Frequency–domine Specifications
Resonant Peak (Mr)

The resonant peak Mr is the maximum value of M j( )w . 
The magnitude Mr gives indication on the relative stability 
of a stable closed-loop system.

For second-order system, 

Mr = 
1

2 1
For

1

22ξ ξ
ξ

−
≤

Mr = 1 For x >
1

2

A large Mr corresponds to a large maximum over short of 
the step response.

NOTE

Resonant frequency (vr)
The resonant frequency wr is the frequency at which the 
peak resonance Mr occurs.

For second-order system, wr = wn 1 2 for
1

2
2ξ ξ− ≤

wr = 0 for 
1

2
ξ >

Band width (BW)
The band width Bw is the frequency at which M j( )w  drops 
to 70.7% of or 3 dB down from its zero frequency value.

For second-order system, 

BW = wn ( )
/

1 2 4 4 22 4 2
1 2

− + − +⎡
⎣

⎤
⎦x x x

Bandwidth gives an indication of the transient response of 
a control system, noise filtering characteristics, and robust-
ness of the system.

Gain Margin (GM)
Gain margin is the amount of gain in decibel (dB) that can 
be added to the open-loop before the closed-loop system 
becomes unstable.

Gain margin = GM = 20 log10 
1

[ ( )]M j pcw

= –20 log M j pc( )w dB

The phase cross over frequency (wpc) is the frequency at 
which phase angle becomes – 180°

Phase Margin
Phase margin (PM) is defined as the angle m degrees through 
which the M(jw) plot must be rotated about the origin so that 
the gain cross over passes through the (–1. j0) point.

Phase margin = PM = ∠M(jwgc) – 180°
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Gain cross over frequency (wgc) is the frequency at which 
M(jw) becomes 1 or decibel magnitude of M(jw ) becomes 
zero.

Relation Between Time Domain and  
Frequency Domain Characteristics
 1. The resonant peak Mr of the closed-loop frequency 

response depends on x only. when x = 0, Mr = ∞. when 
x is negative, the system is unstable, and the value of 
Mr ceases to have any meaning. As x increases, Mr 
decreases.
In comparison to time–response, maximum peak over 
shoot also depends only on ‘x’. The peak overshoots 
in zero if x ≥ 1.

 2. Bandwidth is directly proportional to wn. 
→ Bw increases linearly with wn.
→Bw decreases with increase in x for a fixed wn.
For time response, rise time increases as wn decreases. 

Therefore, Bandwidth a
1

Rise time
.

 3. Bandwidth (BW) and Mr are proportional to each 

other for 0 ≤ x ≤ 
1

2
.

Example 20
For the system shown in figure, the input x(t) = sin t.

In the steady state, the response y(t) will be

1s
2
+

y (t)x (t)

(A) 
1

2
sin (t – 45°) (B) 2 sin (t – 45°)

(C) 
1

2
sin (t – 45°) (D) 2 sin (t – 45°)

Solution
Transfer function (T) = 

2

1

2

1s j+
=

+w
Input = sint [\ w = 1]

T ∠ =
+

∠ − ( )−q
2

1 1
1
1

1tan

= 2  ∠–45°

y(t) = 1 × 2  sin (t – 45°)

y(t) = 2  sin (t – 45°)

Example 21
A system with zero initial condition has the closed-loop 
transfer function.

T(s) = 
s

s s

2 16

2 3

+
+ +( )( )

The system output is zero at the frequency.
(A) 1 rad/s (B) 2 rad/s
(C) 3 rad/s (D) 4 rad/s

Solution

Magnitude of transfer function = 
− +

+ +

w

w w

2 16

2 3( )( )j j

The magnitude of transfer function will affect the mag-
nitude of the system output. The output becomes zero when 
transfer function magnitude is zero.

− +

+ +
=

w

w w

2 16

2 3
0

( )( )j j

–w2 + 16 = 0

w = 4 rad/s

Example 22
The gain margin of a unity feedback control system with the 

open–loop transfer function G(s) = 
s

s

+ 4
2

 is

(A) 0 (B) 
1

4
 (C) 4  (D) ∞

Solution
Phase crossover frequency ∠G(s) = –180°

tan–1 
w pc

4

⎛
⎝⎜

⎞
⎠⎟

 – 180° = –180°

tan–1
w pc

4

⎛
⎝⎜

⎞
⎠⎟

 = 0

wpc = 0

Magnitude of transfer function at phase crossover frequency

j

j
pc

pc
pc

w
w

w
+⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= ∞=
4
2 0

( )

Gain margin = 
1 1

0
G j pc( )w

=
∞

=

Example 23
The open-loop transfer function of a unit feedback control 

system B is given as G(s) = 
sx

s

+1
2

. The value of x to give a 

phase margin of 
p
4

is equal to 

(A) 0.441 (B) 0.141
(C) 1.141 (D) 0.841

Solution
Phase margin = 180° ∠G(jw) = 45°

180° + tan–1 
x gcw

1

⎛
⎝⎜

⎞
⎠⎟

 – 180° = 45°

xwgc = 1



3.292 |  Part III  •  Unit 3  •  Control Systems

Magnitude phase margin G j pc( )w = 1

j

j
gc

gc

w
w

+
=

1
1

2( )

gc = 121/4.

x wgc = 1

x = 
1

2
0 841

1 4/
.=

Example 24
In the G(s) H(s) plane, the Nyquist plot of the loop transfer 

function G(s) H (s) = 
p .e

s

s−
 passes through the negative 

real axis at the point
(C) (– 3, j0) (D) (– 2, j0)
(A) (–1, j0) (B) (– 0.5, j0)

Solution
At the point of intersection with negative real axis,

∠G(s) H(s) = –p

– 
2

pcω π
+



  = –p

wpc = 
p
2

Magnitude of the G(s)H(s) at w = wpc in the intersection 
point with negative real axis

G s H s
e

s

e

j
pc

s j

pc

pc

( ) ( ) w w
p p

w

w
= = =

− −

= 
p

w
p

ppc

= =
2

2

Therefore, Nyquist plot passes through (–2,0)

Bode Plot
Bode plot is a graph of the transfer function of a linear time-
invariant system frequency plotted with a log-frequency 
axis to show the system’s frequency response. It is usually a 
combination of a Bode magnitude plot, expressing the mag-
nitude of the frequency response gain, and a Bode phase 
plot expressing the frequency response phase shift. 

The standard logarithmic magnitude of open–loop trans-

fer function of G(jw) is 20 log10 G j( )w . The unit used in 

this representation of the magnitude is the decibel, usually 
denoted as dB.

Generally, a transfer function can be expressed in terms 
of factors of its poles and zeros. The advantage of the loga-
rithmic plot is the conversion of these multiplicative factors 
to additive terms. 

Consider the general open–loop transfer function. 

G(s) = 
K sT sT sT

s sT sT sT
z z zm

P
P p

( )( ).....( )

( )( ).....(

1 1 1

1 1 1
1 2

1 2

+ + +
+ + + ppn )

In this example, the transfer function includes m number 
of zeros, p number of poles at origin, and in the mentioned 
part, n number of poles. Let m = 1, n = 2, p = 1.

⇒ G(s) = 
K sT

s sT sT
z

p p

( )

( )( )

1

1 1
1

1 2

+
+ +

G(jw) = 
K j T

j j T j T
z

p p

( )

( )( )

1

1 1
1

1 2

+
+ +

w
w w w

Magnitude of G(jw) = 

K T

T T

z

p p

1

1 1

2
1
2

2 2 2 2
1 2

+

+ +

w

w w w

Magnitude of G(jw) is decibels is 

G jw( ) in dB = 20log G j( )w

= 20logK + 20log 1 2
1

2+w Tp  – 20 logw 

– 20log 1 20 12 2 2
2

2+ − +w wT Tpl plog

The phase angle of G(jw) = ∠G(jw) = tan–1wTz1 – 90° – 
tan–1 wTP1 – tan–1 wTP2

From the above analysis, it is clear that when the magni-
tude is expressed in dB, the multiplication is converted to 
addition.

NOTE

Therefore, to sketch the magnitude plot,  knowledge of the 
magnitude variation of individual factors of the open-loop 
transfer function is essential. The various factors of open-
loop transfer function are as follows:

 1. Constant gain, K

 2. Poles (or zeros) at origin, 
1

( )
( )

j
or j

n
m

w
w

 3. First-order factor, 
1

1
1

+
+

j T
or j T

p
zw

w

 4. Quadratic factor, 
1

1 2
2

+ +
⎛
⎝⎜

⎞
⎠⎟

x w w w
w

( )j
j

n
n

/

 or 

1 2
2

+
⎛
⎝⎜

⎞
⎠⎟
+
⎛
⎝⎜

⎞
⎠⎟

x
w

w
w

w
j j

n n

K

Constant gain: K

Let G(s) = K

Therefore, G(jw) = K ∠0°

G j( )w in dB = 20 log K

f = ∠G(jw) = tan–1 0

k

⎛
⎝⎜

⎞
⎠⎟

 = 0°
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K > 1

K = 1

K < 1

0 dB log ω

Bdin)j(G ω

1.  The magnitude plot and phase plot of a constant K is 
independent of frequency and straight line. 

2.  A constant (K) greater than unity has a positive value 
in decibels, while a number smaller than unity has a 
negative value in decibels. 

3.  The change in the value of gain (K) of transfer func-
tion is increase or decrease in the magnitude plot.

NOTES

Poles (zeros) at origin (jw) ± n 

Pole: Open–loop transfer function [G(s)] = 
1

sn

Phase angle f = − ⎛
⎝⎜

⎞
⎠⎟

−n tan. 1

0

w
 = – n × 90°

s–1 = (j )–1

s–2 = (j )–2

s2 = ( j ω

ω

ω

ω
ω

)2

s = j 

40

20

0
0.1

– 20

– 40

101

Mag in dB 20log G(jω)

f(jw) in degrees

s = (j )

0

– 90°
s
1

= (j )–1

90°
ω

ω

ω

Zeros: open-loop transfer function [G(S)] = sn

Log magnitude = 20 log|(jw)n) = 20n log w

Phase angle (f) = n ntan
0

901 ω
× 



 = × °−

1.  Magnitude plot of S±n is a straight line with slop of  
±20 × n dB / decade that passes through the point 
[0 dB, 1 rad/s]

2.  Phase angle plot of S±n is independent of frequency 
and it is constant angle of value ± 90n degrees.

NOTES

First-order factor (1+ jwT)±1:

Pole: open-loop transfer function G(s) = 
1

1+ sTp

Log magnitude = 

20
1

1
20 1 2 2log log

+
= − +

j T
T

p
pw

w

For w <<
1

Tp

; the asymptote is 20 log1 = 0 dB

For w >> 
1

Tp

; The asymptote is –20 log wTp : It is a 

straight line with slope of – 20dB/decade. This asymptote 
intersect 0 dB at the break frequency wc = 1/Tp which is 
known as corner frequency. 

Phase angle f = 
T

Ttan
1

tan ( )
p

p
1 1

ω
ω− 





= −− −

At corner frequency f = – tan–1(wTp)

= – tan–11 = 45°
The phase angle of the factor (1 + sTp)

–1 varies form 0 to 
–90° as ‘w’ is varied form 0 to infinity. The phase angle plot 

crosses –45° at w = wc = 
1

Tp

Zero: open-loop transfer function

G(s) = (1 + sTz)

Log magnitude = 20 1 2 2log +w Tz

For w < < 
1

Tz

; the asymptote is 20 log 1 = 0 dB

For w > > 
1

Tz

; the asymptote is 20 logwTz : it is a straight 

line with slop of + 20 dB/decade. This asymptote intersects 

0 dB at the break frequency wc  = 
1

Tz

. This is known as 

corner frequency.

Phase angle f = tan–1wTz

The phase angle of the factor (1 + sTz) varies from 0 to 90° 
as ‘w’ is varied from zero to infinity. The phase angle plot 

crosses 45° at w = wc = 
1

Tz
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Slope
– 20 dB / dec

Approximate plot
Exact Plot

= 
PT
1

log ω

ω

dBin)j(G ω

   (a)

Slop
+ 20 dB / dec

Approximate plot
Exact Plot

ω = 
Tz

1

log 

dBin)j(G

ω

ω

Figure 1 Magnitude plot for first-order pole (a) and first-order zero (b).

Quadratic factor 1 2
2 1

+
⎛
⎝⎜

⎞
⎠⎟
+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

±

x
w

w
w

w
j j

n n

 = 

Open-loop transfer function = 

1 2
2 1

+
⎛
⎝⎜

⎞
⎠⎟
+
⎛
⎝⎜

⎞
⎠⎟

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

±

x
w

w
w

w
j j

n n

The magnitude in decibels is = 

± −
⎛
⎝⎜

⎞
⎠⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

+
⎛
⎝⎜

⎞
⎠⎟

20 1 4
2 2

2

2

log
w
w

x
w

wn n

For w <<wn, the log magnitude is asymptotic to a straight 
line of constant gain 0 dB and phase angle approaches 0 
degree.

For w >> wn, the log magnitude approaches 

±
⎛
⎝⎜

⎞
⎠⎟

40 log
w
wn

; a straight line with slop of ± 40 dB/dec

Asymptote intersect 0 dB at corner frequency w = wn

The resonant frequency is given by

wr = w xn 1 2 2−  for x < 
1

2
The maximum magnitude is 

Mp = G j r( )w
x x

=
−

1

2 1 2
 for x <

1

2

NOTE

log 

Bdin)j(G ω ξ = 0.1

ξ = 0.3

ξ = 0.5

ω = ω ω
r

ξ = 1

Figure Bode plot for quadratic factor in denominator 

Example 25
Draw the Bode plot for a system having

G(s)H(s) = 
100

1 2s s s( ) ( )+ +
Find
(A) Gain margin 
(B) Phase margin
(C) Gain cross-over frequency
(D) Phase cross-over frequency

Solution

G(jw)H(jw) = 
50

1 1 0 5j j jw w w( ) ( . )+ +
The corner frequencies are 

w = 1 rad/s and  w = 2 rad/s
For w ≤ 1 rad/s

G(jw)H(jw) = 
50

jw
slope = – 20 dB/decade

|G(jw)H(jw)|dB = 20 log 50 – 20 log w
 at w = 0.1

|G(jw)H(jw)|dB = 20 log 50 – 20 log(0.1)

   = 53.98dB

At w = 1

|G(jw)H(jw)| = 20 log 50 = 33.98 dB

For 1 < w ≤ 2

G(jw)H(jw) = 
50

1j jw w( )+
slope = –20 – 20

 = – 40 dB / decade

As w increases from 1 to 2, the reduction in gain 

 = 40 log 
2

1
⎛
⎝⎜

⎞
⎠⎟

 = 12.04 dB

At w = 2

|G(jw)H(jw)|dB = 21.94 dB
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For w > 2

G(jw)H(jw) = 
50

1 1 0 5j j jw w w( ) ( . )+ +

slope = –40 – 20 = –60 dB/decade

As w increases from 2 to 10, the reduction in gain = 60 log 
10

2
⎛
⎝⎜

⎞
⎠⎟

 = 41.94 dB

At w = 10,

|G(jw)H(jw)|dB = – 19.99 dB

∠G(jw)H(jw) = –90 – tan–1 w – tan–1(0.5w)

 w ∠G(jw)H(jw)

0 –90

0.1 –98.6

0.2 –107

0.5 –130.6

1 –161.6

1.3 –175.5

1.4 –179.5

1.5 –183.2

2 –198.4

–100°

–180°

–200°

0.1
1 2

–60 dB/decade

Phase plot

20

40

54

–40 dB/decade

–20 dB/decade

Magnitude 
Bode plot

ω

Gain cross over frequency = 4.45 rad/s
Phase cross over frequency = 1.40 rad/s
Gain margin = 27 dB
Phase margin = 53°

Example 26
Find the transfer function of the system whose asymptotic 
Bode plot is shown in figure.

dB

–9

log 
10 20 40

–20 dB/decade

+20 dB/decade

ω

Solution
The line with a slope of –20 dB/decade does not pass 

through w = 1 rad/s. There is a term 
K

s
20 log K = –9

K = 0.35

At w = 1 rad/s, slope changes to 0 dB/dec indicating a zero 
at w = 1 rad/s. The term is (1 + s)

At w = 20 rad/s, the slope changes to +20 dB/decade, 

indicating a term 1
20

+⎛
⎝⎜

⎞
⎠⎟

s
 or (1 + 0.05s)

At w = 40 rad/s, the slope changes to 0dB/dec indicating a 

term 1 40+( )s  in the denominator.

Therefore, G(s) = 
0 35 1 1 0 05

1 0 025

. ( ) ( . )

( . )

+ +
+

s s

s s

Example 27
The Bode magnitude plot of H(s) = 

10 1

10 100

4

2

( )

( )( )

+
+ +

s

s s

(A) 

1 2 3

40

– 20

– 40

log 

20

– 1

dBin)(H jω

ω

(B) 

1 2 3

40

– 20

– 40

log 

20

– 1

dBin)(H jω

ω

(C) 

1 2 3

40

– 20

– 40

log 

20

– 1

dBin)(H jω

ω
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(D) 

1 2 3

40

– 20

– 40

log 

20

– 1

dBin)j(H ω

ω

Solution

Given function H(s) = 
10 1

10 10

4

2

( )

( )( )

+
+ +

s

s s

H(s) = 
10 1

1 0 1 1 0 01 10 100

4

2 2

( )

( . )( . )

+
+ + × ×

s

s s

H(s) = 
0 1 1

1 0 1 1 0 01 2

. ( )

( . )( . )

+
+ +

s

s s

Corner frequencies are 1, 10, and 100
Initial magnitude = 20 log 0.1 = – 20 dB
Magnitude starts increasing with slope of +20 dB/dec at 

wc = 1 rad, constant at w = 10 rad, and decays with a slop of 
20 dB/dec at w = 100 rad.

log ( )

20

20

0
=1

log = 0 
= 100

log = 2
= 10

log = 1

Mag in dB

ω ω ω
ω

ω ωω

Example 28
The function corresponding to the Bode plot of figure is 

20 dB per decade

0 dB
f1

f0

dBinMag)(G jω

(A) G = jf / f1  (B) G = 
1

1
1

+
⎛
⎝⎜

⎞
⎠⎟

j
f

f

(C) G = 
1

1
1

−
⎛
⎝⎜

⎞
⎠⎟

j
f

f

 (D) G = 1 +jf / f1 

Solution
Magnitude plot slope change at frequency f1 and is increas-
ing. This indicates there is a zero at f = f1. 

G = (1 + sT1) = (1+ jwT1) = 1
2

2 1

+
⎛
⎝⎜

⎞
⎠⎟

j
f

f

p
p

w p

w p

=

= =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

2

1 1

2
1

1

f

T
fc

 ⇒ G = 1
1

+ j
f

f

Example 29
The asymptotic Bode magnitude plot of a minimum phase 
transfer function is shown in the figure. 

– 20 dB

– 40 dB / dec

20 dB

= 1.5

(rad / sec)

20 dB / dec

0 dB / dec

= 10

dBinMag)(G

0

jω

ω ω

ω

This transfer function has
(A) two poles and one zero.
(B) two poles and two zeros. 
(C) one pole and two zeros. 
(D) three poles and one zero. 

Solution
Initial slope of the magnitude plot is –40 dB/dec and indi-
cates two poles of the system are at origin.

→ Reduction is slope by 20 dB/dec at w = 1.5 indicates 
a zero

→ Reduction in slop by 20 dB/dec at w =10 indicates 
another zero. 

Therefore, Total two poles and two zeros. 

Example 30
The asymptotic approximation of the log– magnitude versus 
frequency plot of a minimum phase system with real poles 
and one zero is shown in the figure. Its transfer function is 

– 40dB / dec

– 20dB / dec

– 40dB / dec

– 20dB / dec

50

0.1
5 7 25

(rad / sec)

Mag in dB

ω
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(A) 
10 5 25

72

( )( )

( )

s s

s s

+ +
+

 (B) 
4 4 7 5

252

. ( )( )

( )

s s

s s

+ +
+

(C) 
10 7

5 252

( )

( )( )

s

s s s

+
+ +

 (D) 
4 4 5 25

72

. ( )( )

( )

s s

s s

+ +
+

Solution
Transfer function has corner frequencies 5, 7, and 25

Zeros are at w = 5 and w = 25
Poles are at w = 7

T. F = 

K
s s

s s

1
5

1
25

1 72

+⎛
⎝⎜

⎞
⎠⎟

+⎛
⎝⎜

⎞
⎠⎟

+( )/
 = 

7 5

25

5 25

72

× + +
+

K s s

s s

( )( )

( )

Initial magnitude = 20log K = 10 ⇒ K = 3.16

Transfer function = 
4 4 5 25

72

. ( )( )

( )

s s

s s

+ +
+

Example 31
The asymptotic Bode magnitude plot of a transfer function 

1

1+ s a/
is shown in the figure. The error in dB gain at a 

frequency of w = 0.5a is 

– 20dB / dec

0 dB a

dBin)(G jω

ω

(A) 3dB   (B) 9dB
(C) 0.97dB   (D) 5.4dB

Solution
Actual magnitude of given transfer function

= − +⎛
⎝⎜

⎞
⎠⎟

20 1log
j

a

w

At w = 0.5a ⇒ G j j
a

a
( ) log

.
w = − +⎛

⎝⎜
⎞
⎠⎟

20 1
0 5

= − +20 1 0 5 2log ( . )

G j( )w  = –0.969 = –0.97 dB

Approximated magnitude in given plot at w = 0.5a is 0 dB
Error = 0 dB – (0.97 dB) = 0.97 dB

Polar Plot
The transfer function G(s) is a complex function and it is 
given by

G(s) = G(jw) = G j( )w  ∠G j( )w  = M∠f

As the input frequency is varied from 0 to ∞, the magnitude 
M and phase angle f change, the locus traced by the tip of 
the phasor G(jw) is known as polar plot.

G(s) ( )ωG j ( )ω∠G j

( ) ( )G j G jω ω∠

value Polar plot

w → 0 w → ∞

1
1 sT+ 2 2

1

1 Tω+
–tan–1 wT 1∠0 0 ∠ –90°

–180°
– 270°

1 0°

increase

ω = ∞ ω

ω

= 0

1
s

1
ω

–90° ∞ ∠–90° 0 ∠– 90°

– 270°
0°– 180°

– 90°

ω = ∞

ω = 0

1 + sT 1+wT 90° (1+ 0) 
∠90°

(1 + ∞) ∠ 
90° –180°

– 270°90°

increase

0°o

ω = ∞

ω

ω

= 0

(Continued)
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G(s) ( )ωG j ( )ω∠G j

( ) ( )G j G jω ω∠

value Polar plot

w → 0 w → ∞

s w 90° 0 ∠ 90° ∞ ∠ 90°

90°

–180° 0°o

ω =

ω =

∞

0

1
(1 )s sT+ 2 2

1

1 Tω ω+
–90° – tan–1 
wT

∞ ∠–90° 0 ∠–180°

ω = ∞

ω = 0

– 270°

0°
– 180° o

–90°

1 2

1
(1 )(1 )sT sT+ + 2 2 2 2

1 2

1

1 1T Tω ω+ +

–tan–1wT1–
tan–1 wT2

1 ∠ 0° 0 ∠–180° –180°
– 270°

1 0°

– 90°

ω = ∞ ω = 0

1 2

1
(1 )(1 )s sT sT+ + 2 2 2 2

1 2

1

1 1T Tω ω ω+ +

–90° - 
tan-1wT1 
– tan–1wT2

∞ ∠ –90° 0∠–270°

– 270

0°– 180°

– 90°

ω = ∞

ω = 0

1 2 3

1
(1 )(1 )(1 )sT sT sT+ + + 2 2 2 2 2 2

1 2 3

1

1 1 1T T Tω ω ω+ + +

–tan–1wT1–
tan–1wT2–tan

–

wT3

1∠ 0°
0∠–270°

– 270

0°
– 180°

– 90°

ω = ∞

ω = 0

2
1 2

1
(1 )(1 )s sT sT+ + 2 2 2 2 2

1 2

1

1 1T Tω ω ω+ +

-180° -tan-1 

wT1 - tan
-1 

wT2

∞∠-180° 0∠-360°

– 270°

– 180°
– 90°

ω = ∞

ω = 0

1
s
sT+ 2 21 T

ω
ω+

90° -tan–1 wT 0∠90° 1∠0° –180°

– 270°

1
– 90°

ω = ∞ω = 0

1 sT
s

+ 2 21 Tω
ω

+
-90° +tan-1 
wT

∞∠-90° 1∠0°

–180°
– 270°

– 90°

0°
ω = ∞

ω = 0

1

2 3

1
(1 )(1 )

sT
s sT sT

+
+ +

2 2
1

2 2 2 2
3

1

1 1

T

T T

ω
ω ω ω

+
+ +

tan-1wT1-90° 
– tan-1wT2 
- tan-1wT3

∞ ∠ -90°
0 ∠ –180°

– 270

Ing

– 180°

–90°

ω = ∞
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1.  Addition of a non-zero pole to a transfer function 
results in further rotation of the polar plot through an 
angle of –90° as w →∞ (head of the polar plot shifts)

2.  Addition of a pole at origin to a transfer function 
results in rotation of the polar plot at zero and infinite 
frequency (head and tail of polar plot) by further angle 
of – 90°.

3.  The effect of addition of a zero to a transfer function is 
to rotate the high frequency portion of the polar plot by 
90° in counter-clockwise direction.

NOTES

↓Start of 
type-3 
system

Start of ↑
type-1 
system

Start of→ →
type-2 
system

Start of     
type ’0’ 
system

End of 
fourth order 
system

End of 
Second order 

system

End of 
First order 
system

End of 
third order 

system

Figure 2 Start point and end point of polar plot for different 
system types and orders.

Nyquist Criterion
The Nyquist criterion relates the stability of a closed–loop-
system to the open-loop frequency response and open-loop 
pole location. This criterion tells us how many closed-loop 
poles are in the right half of the s-plane.

The Nyquist criterion used the following concepts for 
the establishment of criterion.

 1. The poles of 1 + G(s)H(s) and the poles of G(s)H(s) 
are same.

 2. The zero of the 1 + G(s)H(s) is the poles of the closed-
loop transfer function T(s) of the system.

 3. Mapping: Consider a complex number on the s-plane 
and substitute it into a function F(s), and the result 
is another complex number. This process is called 
mapping.

  For example, substituting s = 4 + j3 into function F(s) 
= s2 + 2s + 1 results in 16 + j30. We say that 4 + j3 
maps into 16 + j30 through the function (s2 + 2s + 1).

 5. Mapping Contours:
  Consider the collection of points, called a contour, 

shown in figure as contour A. Assume that

F s
s s s

s s s
( )

( )( )( )........

( )( )( )........
=

− − −
− − −
Z Z Z

P P P
1 2 3

1 2 3

Contour A can be mapped through F(s) into contour B by 
substituting each point of contour A into the function F(s) 
and plotting the resulting complex numbers. For example, 
point Q in s-plane maps into point Q through the function 
F(s).

Contour A
S - plane

σ

Q

Contour B
F - plane

Real

Q1

jω jω

Let us first assume that F(s) = 1 + G(s)H(s), with the picture 
of the poles and zeros of 1 + G(s)H(s) as shown in the fig-
ure below. As each point Q of contour A is substituted into 
1 + G(s)H(s), a mapped point results on contour B. As we 
move around contour A in a clockwise direction, each vec-
tor of F(s) that lies inside contour A will appear to undergo 
a complete rotation or a change in angle of 360°. On the 
other hand, each vector drawn from the poles and zeros of 
1 + G(s)H(s) that exists outside contour A will appear to 
oscillate and return to its previous position, undergoing a 
net angular change of 0°.

Contour A

S = plane

α

Q

F(S) =1+G(s)H(s)

Real

1+GH = plane

Imaginary

Contour B

Number of counter clockwise rotations of contour B about 
origin (N) = P – Z

Where P = Number of poles of 1 + G(s)H(s) insider con-
tour A.

Z = Number of zeros of 1 + G(s)H(s) inside contour A.

Since the poles of 1 + G(s)H(s) are the poles of G(s)H(s) 
and zeros of 1 + G(s)H(s) are poles of closed–loop system,

P = Number of open poles enclosed
Z = Number of closed–loop poles enclosed
N = Z – P = Number of closed–loop poles inside the 

contour.

NOTE
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If we extend the contour to include the entire right half 
of s-plane, we can count the number of right-half-plane 
closed-loop poles inside contour A and determine a system’s 
stability.

When we map the entire right half of s-plane through G(s)
H(s) instead of 1 + G(s)H(s), the resulting contour is same 
as mapping through 1 + G(s)H(s), except that it is trans-
lated one unit to the left. So we count rotations about −1 + 
j.0 instead of rotations about the origin.

NOTE

Statement of the Nyquist Stability 
Criterion
If a contour A that encircles the entire right half-plane is 
mapped through G(s)H(s), then the number of the closed-
loop poles (Z) in the right half-plane equals the number of 
open-loop poles(P) that are in the right half-plane minus 
the number of contour clockwise revolutions (N) around −1 
of the mapping (i.e., Z = P – N). The mapping is called the 
Nyquist diagram/Nyquist plot of G(s) H(s).

A

S - plane

σ

jω

Figure 3 Contour enclosing right half of S-plane of  
determine stability.

1.  If contour A of the open–loop transfer function G(s)
H(s) corresponding to the Nyquist contour in the 
s-plane encircles the point (–1 + j0) in the counter-
clockwise direction as many times as the number of 
right half s-plane poles G(s)H(s), the closed-loop sys-
tem is stable.

2.  No encirclement of –1 + j0 implies that the system is 
stable if there are no poles of G(s)H(s) in the right half 
of s-plane; otherwise the system is unstable.

3.  Clockwise encirclements in the Nyquist plane indicate 
that the system is unstable.

NOTES

If G(s)H(s) has any poles on jw axis, the Nyquist contour 
defined earlier cannot be used as such. The s-plane contour 
should not pass through a singularity of 1 + G(s)H(s). The 
stability in such cases is studied with modified Nyquist 
contour which bypasses any jw - axis poles. This is accom-
plished by indenting the Nyquist contour around the jw 
poles along a semicircle of radius ε, where ε → 0.

jω

jω1+εejθ

σ

j∞

jω1

jo +

jo –

–j∞

jω1

0

Figure 4 Indented Nyquist Contour for jw-axis open-loop poles.

Example 32
Consider a system with an open-loop transfer function 

G s H s
s

s s s
( ) ( )

( )

( )( )
=

+
+ +
4 1

1 2 12

Find the stability of the system using Nyquist plot.

Solution
The given open-loop transfer function has a double pole at 
origin. The Nyquist contour is intended to bypass the origin. 
The mapping of Nyquist contour is obtained as follows.

jω

j∞

j0+

j0–

εejθ

Rejφ

R→∞

R→∞

ε→0

-j∞

σ

Imaginary 

−1+j0

ω = + ∞
Real axis

ω = − ∞−10.6

at ω =
22

1ω=0+

ω=0–

Figure 5 Nyquist contour and corresponding Nyquist plot.

 1. Semicircular indent represented by s = lim
e→0

 e ejq 

(where ‘q’ varied from – 90° through 0° to 90°) is 
mapped into

lim
( )(

lim
e

q

q q e q
e

e e e e→ →

+
+ +

⎡

⎣
⎢

⎤

⎦
⎥ =

⎛
⎝⎜0 2 20 0 2 2

4 1

1 2 1

1e

e e e e

j

j j j j

⎞⎞
⎠⎟
= ∞ −e j2q

= ∞ (∠180° → 0°→ ∠–180°).
This part of the map is an infinite circle.
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 2. Mapping of positive imaginary axis

G j H j
j

j j j
( ) ( )

( )

( ) ( )( )
w w

w
w w w

=
+
+ +
1 4

1 1 22

For various values of w, G(jw)H(jw) is calculated and 
plotted using polar plots.

The G(jw)H(jw) – locus intersects the real axis at 
a point where 

∠G(jw) H(jw) = –180°

–180° – tan-1w – tan-1 2w + tan-1 4w = -180°

Therefore,w = =
1

2 2
0 354. rad / sec  

∴ ==G j H j( ) ( ) .w w w 1

2 2

10 6

Further as w →+j∞ 

⇒ G j H j G j H j( ) ( ) ( ) ( )w w w w∠ ⇒ ∠− °0 270

as w → 0+ ⇒ |G(jw) H(jw)| ⇒ ∞∠–180°
 3. The infinite semicircle of the Nyquist contour 

represented by s = lim Re
R

j

→∞
f (f varies from + 90° 

through 0° to + 90°) is mapped to

Lim
R e

e
R

j

j j j
j

→
−+

+ +
=

∞

( Re )

( Re )( Re )

1 4

1 1 2
0

2 2
3

f

f f f
f

= 0(∠– 270° → ∠0° → ∠+270°)

Number of counter clockwise encirclements to origin 
is –2.
Number of right half poles of open–loop is zero.

Z = P – N = 0 – (–2) = +2

Therefore, number of poles on right half plane for 
closed-loop transfer function is 2.
Therefore, the system is unstable.

Example 33
Nyquist plot for the transfer function G(s) = (4 + s) for 
positive frequencies has the form

(A) jω

4 σ

 (B) jω

σ

j4

(C) jω

σ
1/4

 (D) jω

σ
1/4

Solution
Given transfer function G(s) = 4 + s = 4 + jw
At w = 0 ⇒ 4 + j.0

w = 10 ⇒ 4 + j10

w = 100 ⇒ 4 + j100

w = ∞ ⇒ 4 + j∞

Therefore, Nyquist plot is parallel to imaginary axis.

jω

4 Real

Example 34
Which one of the following polar diagrams correspond to 
a lag network?

(A) Img

Real
ω=0 ω=∞

 (B) Img

Realω=0 ω=∞

(C) Img

Realω=0ω=∞

 (D) Img

Real
ω =0ω=∞

Solution
Lag network offers only negative phase angles and. Let us 
consider a lag network example.

G(jw) =
+
+

s

s

1

10 2

|G(jw)|
w

w
w

w
w

2

2
1 11

100 1 1
10

+
+

∠ = −− −; ( ) tan tanG j .

At w = 0 ⇒ 1∠0

At w = 5 ⇒ 0.103∠–10.16

At w = ∞ ⇒ 0.1 ∠0°

jω

σ
0.1 ω→∞

ω=0
1∠0

Example 35
The polar plot of a conditionally stable system for open-
loop gain K = 1 is shown in the figure. The open-loop 
transfer function of the system is known to be stable. The 
closed loop system is stable for

Imaginary

Real
–5 –2.

0.1

GH-plane

–Ve
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(A) 0.5 < K < 10 (B) K <
1

5

(C) Both (A) and (B) (D) 0.5 > K > 10

Solution
System gain K should be adjusted such that the point 
(–1 + j0) lies in the 0.1 to 02 region, because the number 
of encirclements in this case is zero which results in stable 
operation of the system.

Therefore,

0.1k < 1 ⇒ K<10

2K > 1 ⇒ K > 0.5

Range of K is 0.5 < K < 10
System is also stable if 5K < 1 [no of encirclements will 

be zero in this case].

K <
1

5

Real

jω

02k

0.1k
5k

jω

Example 36
The polar plot of an open-loop stable system as shown 
below the closed-loop system is 

Real

imaginary

ω=∞

ω =0

–1.5

(A) marginally stable
(B) always stable
(C) unstable with one pole on the RH s-plane
(D) unstable with two poles on the RH s-plane

Solution
Complete the polar plot of the given system is given in the 
figure. Number of encirclements of (–1 +j.0) are –2.

Therefore, number of open-loop poles the right-hand 
side = 0

N = P – Z ⇒ Z = P – N

Z = 0 – (–2) = 2

Therefore, RH s-plane poles of closed-loop system are 2 ⇒ 
Unstable

Real

jω

–1
–1.5

Example 37
Consider the following Nyquist plots of loop transfer 
function over positive frequencies. Which of the plots 
represents an unstable system?

1. 

Real

img

ω=∞

ω
−1

 2. 

Real

img

ω=∞
ω

–1

3. 

Real

img

ω=∞

ω
–1

 4.   

Real

img

–1

(A) (1), (2), and (3) (B) (2), (3), and (4)
(C) (1), (2), and (4) (D) (3) and (4) only

Solution
Plot (1) Nyquist plot is

Img

Real–1

Number of encirclements (N) = 0
If the open–loop poles on RHS = 0, the system is stable
Plot (2) complete Nyquist plot is

Imaginary

Real

ω=0+

ω=0−–1

ω=0+

ω =0−

Number of counter clockwise encirclements (N) = 2.
Number of counter-clockwise encirclements (N) = P – Z = 2
Number of open–loop poles on RHS side (p) = 0
Number of poles of closed–loop system = 2



Chapter 3  •  Stability Analysis  | 3.303

Therefore, the system is unstable
Plot (3) complete Nyquist plot is

Imaginary

Real p

ω=0+

ω=0−–1

Number of counter clockwise encirclements (N) = –2
Number of poles of closed–loop system on RHS = 2 
Therefore, it is an unstable system.
Option (4) complete Nyquist plot is

Imaginary

Real

ω = ∞–

ω = ∞–1

ω=0−

ω =0+

Number of counter clockwise encirclements (N) = – 2
Number of RHS poles of closed–loop control system (Z) = 
P – N = 2
Therefore, the system is unstable.

Example 38
A unity feedback system has the open–loop transfer function 

G s
s s s

( )
( )( )( )

=
− + +

1

1 2 3

The Nyquist plot of G encircles the origin
(A) Once  (B) Twice (C) Thrice (D) Never

Solution
Number of encirclements equals the difference between no. 
of right-hand side poles of G(s) and zeros.

N = P Z P Z1& 0OLTF OLTF OLTF OLTF− = =   N = 1

Example 39
Which of the following is the transfer function of a system 
having the Nyquist plot shown in the figure?

Real

Imaginary

ω = – ∞
ω = +∞

(A) 
K

s s s2 4 8( )( )+ +
 (B) 

K

s s s( ) ( )+ +4 52

(C) 
K s

s s s

( )

( )( )

+
+ +

2

4 82
 (D) 

K s s

s s s

( )( )

( )( )

+ +
+ +

2 3

4 52

Solution
Nyquist plot started at –180° angle. It indicates that the 
open-loop system has two poles at origin.

Magnitude and phase angle at w →0 

⇒ ∞∠– 180°

Magnitude and phase angle at w → ∞ 

⇒ 0∠– 360°

Angle at the termination of NP is – 360°
Angle of termination −360° indicated system order is 4.
Therefore, the system is type 2 and order 4 system with 

no zeros.

Example 40
In the GH-plane, the Nyquist plot of the loop transfer 

function G(s)H(s) =
−2 5pe

s

s

 pass through the negative real 
axis at the, point
(A) (–5, j0) (B) (–2, j0)
(C) (–10, j0) (D) (–20, j0

Solution
At the point of intersection of Nyquist plot with real axis 
phase angle ∠G(s) H(s) = –180° = – p

∠ = −

− − = −

− − = −

= ⇒ =

−

−

=

2

5
0

5
2

5
2 10

5

1

p
w

p

w
w

p

w
p

p

w
p

w
p

w

w p

e

j

G s H s

j

tan

( ) ( )
110

2 2

10

20= = =
p

w
p

p

Therefore, Nyquist plot passes through (-20, j0)
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Exercises

Practice Problems 1
Direction for questions 1 to 22: Select the correct alterna-
tive from the given choices.

 1. The characteristic equation of a system is given by s6 + 
3s5 + 8s4+18s3+37s2 + 75s +50=0. The system is 

 (A) stable. (B) unstable.
 (C) marginally stable. (D) conditionally stable.

 2. How many roots of the characteristic equation 
  s6 + s5 – 2s4 – 3s3 – 7s2 – 4s – 4 = 0 lie in the left half of 

s-plane?
 (A) 4 (B) 5 (C) 1 (D) 6

 3. A system described by the transfer function 

  H(s) = 
1

23 2s s k s+ + +a
 is stable. The constraints on 

a and k are
 (A) a > 0, ak > 2 (B) a > 0, ak < 2
 (C) a > 0, ak > 0 (D) a < 0, ak < 0

 4. The characteristic equation of a system is given by s (s2 
+ 2s + 2) + K(s + 3 ) = 0. The range of k for which the 
system is stable is 

 (A) 0 < k < 30. (B) K > 3.
 (C) 0 < k < 4. (D) 3 < K < 30.

 5. The feedback control system in the figure is stable 
C(s)

K ≥ o 2)2s(
)2s(

+
−

S – 2

R(s) +

–

 (A) for all K ≥ 0 (B) only if K ≥ 1
 (C) only if 0 ≤ k < 1 (D) only if 0 ≤ k ≤ 1

 6. Consider the points S1 = –3 + j4 and S2 = –3–j2 in the 
s–plane. For a system with the open-loop transfer func-

tion, G(s)H(s) = 
k

s( )+1 4
is 

 (A) S1 is on the root locus, but not S2.
 (B) Both S1 and S2 are on the root locus.
 (C) S2 is on the root locus, but not S1.
 (D) Neither S1 nor S2 on the root locus.

 7. The gain margin (in dB) of a system having the open–
loop transfer function.

  G(s) H(s) = 
2

1s s( )+
 is

 (A) 0 (B) 3.01 (C) –3.01 (D) ∞

 8. The characteristic equation of a feedback control sys-
tem is given by s3 + 5s2 + (K + 6)s + K = 0 In the root 
loci diagram, the asymptotes of the root loci for large 
‘K’ meet at a point in the s–plane whose coordinates  
are

 (A) (2, 0) (B) (–1, 0) 
 (C) (–2, 0) (D) (–3, 0) 

 9. The open-loop transfer function of a system is given by 

G(s) = 
k

s s s( )( )+ +1 2
 the value of k which will cause 

sustained oscillations in the closed–loop unity feed 
book system is

 (A) 4 (B) 6 (C) 5 (D) 3

 10. A unity feedback system is given as 

  G(s) = 
k s

s s

( )

( )

1

3

−
+

. Indicate the correct root locus diagram.

 (A) 
jω

O
σ

 (B) jω

σ

 (C) jω

σ

 (D) jω

σ

 11. Which one of the following polar diagrams corre-
sponds to a lag network?
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 (A) 

ω = 0
ω = ∞

Re

Im

 (B) 

ω = 0
ω = ∞

Re

Im

 (C) 

ω = 0ω = ∞

Re

Im

 (D) 

ω = 0 ω = ∞

Re

Im

 Direction for questions 12 and 13:

The open-loop transfer function of a unity feedback system 

is given by G(S) = 
3

2

2e

s s

s−

+( )
 12. The gain and phase cross–over frequencies in rad/s, 

respectively, are
 (A) 0.485 and 0.632. (B) 1.26 and 0.632.
 (C) 0.632 and 1.26. (D) 0.632 and 0.485.

 13. Based on the above results, the gain and phase margins 
of the system will be

 (A) –7.09 dB and 87.5°. (B) 7.09 dB and 87.5°.
 (C) 7.09 dB and –87.5°. (D) –7.09 dB and –87.5°.

 14. The loop transfer function of a closed-loop control sys-
tem is given as

  G(s)H(s) = 
k s

s s s

( )

( )( )

+
+ +

1

2 3
. The centroid of the asymp-

totes is 
  (A) (–4, 0) B) (–1, 0) (C) (–2, 0) (D) (–3, 0)

 15. A system has 10 poles and 2 zeroes. The slope of its 
highest frequency asymptote in its magnitude plot is

 (A) –100 dB/dec. (B) –120 dB/dec.
 (C) –160 dB/dec (D) –240 dB/dec.

 16. The polar diagram of a conditionally stable system for 
open-loop gain K =1 is shown in figure. The open-loop 
transfer function of the system is known to be stable. 
The closed-loop system is stable for 

–8
–0.2

– 2

 (A) K < 5 and 
1

2

1

8
< <K

 (B) K < K
1

8
and

1

2
5< <

 (C) K < 
1

8
 and 5 < K

 (D) K > 
1

8
 and K < 5

 17. Pole zero plot of a loop transfer function is shown in the 
figure below. The breakaway/break in points in the root 
locus diagram is

Imaginary
axis

Real axis

 (A) 1 (B)  2 (C)  0 (D) 3

 18. Loop transfer function G(s)H(s) of the magnitude plot 
shown in the figure is

–20dB/dec

–40dB/dec

−1 0 1 2 3 Log ω

Mag in
dB

60 dB

40 dB

20 dB

−20 dB

−40 dB

 (A) 
100 2

1

2( )

( )

s

s s

+
+

 (B) 
10 01 1

1 1

(. )

(. )

s

s s

+
+

 (C) 
100 01 1

1 1

2(. )

(. )

S

S S

+
+

 (D) 
(. )

(. )

01 1

1 1

2S

S S

+
+

 19.  Loop transfer function G(s)H(s) of the magnitude plot 
shown in the figure is
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–20dB/dec

–40dB/dec

0 1 2 3 Log ω

Mag in
dB

60 dB

40 dB

20 dB

−20 dB

−40 dB

 (A) 
100 0 1 1

0 01 1

2

2

( . )

( . )

s

s s

+
+

 (B) 
100 10

100 1

2

2

( )

( )( )

s

s s

+
+ +

 (C) Both (A) and (B) (D) None of these

 20. Closed-loop control system with transfer function 
G s

G s H s

( )

( ) ( )1+
 is stable when

 (A)  poles of the transfer function are on the left hand 
side of the s-plane.

 (B)  zeros of the characteristic equation are on the left 
half of the s-plane.

 (C)  poles of the characteristic equation are on the left 
half of the s-plane.

 (D) Both A and B

 21. Polar plot of an open-loop stable system is shown in the 
figure. The system is

−1 Real axis

Imaginary
 axis

 (A) stable.
 (B)  unstable with one pole on the right-hand side of 

s-plane.
 (C)  unstable with two poles on the right-hand side of 

s-plane.
 (D) marginally stable.

 22. Which of the flowing are the effects of PD controller on 
system?

 1. Reduces peak overshoot.
 2. Reduces raise time.
 3. Improves damping.
 4. Reduces steady state error.
 (A) 1, 2, 3 (B) ,2,3,4 (C) 2,3, 4 (D) 1,3,4

Practice Problems 2
Direction for questions 1 to 15: Select the correct alterna-
tive from the given Solutions.

 1. Which of the following statements are true?
   (i) Root locus is a frequency response plot.
  (ii)  The roots of characteristic equation are not a func-

tion of open-loop gain K.
 (iii)  Root locus technique is a tool for adjusting the lo-

cation of closed-loop poles to achieve the desired 
system performance.

 (iv)  The exact root– locus is sketched by trail and error 
procedure.

    (A) i and ii (B) ii and iii
  (C) iii and iv (D) ii, iii, and iv

 2. The following statements refer to the equation P(s) 
+ KQ(s) = 0 where P(s) and Q(s) are polynomials of 
s with constant coefficients. Identify the statements 
which are true?

   (i)  The intersect of the asymptotes must always be on 
the real axis.

  (ii)  The breakaway points of the root loci must always 
be on the real axis.

 (iii)  Given the equation 1 + KG1(s)H1(s) = 0 where 
G1(s)H1(s) is a rational function of s and does 

not contain K, the roots of 
d G s H s

d s
1 1( ) ( )

 are all 

break away points on the root loci ( – ∞ < K < ∞).
 (iv)  At the breakaway points on the root loci, the root 

sensitivity is infinite.
  (A) i and iv (B) i, ii, and iv
  (C) ii and iii (D) ii, iii, and iv

 3. Which of the following statements are true?
   (i)  Adding a zero to the function G(s)H(s) tends to 

push the root loci to the left. 
  (ii)  Adding a zero to the forward path transfer func-

tion will generally improve the system damping, 
and thus always reduce the maximum over shoot 
of the system.

 (iii)  Adding a pole to G(s)H(s) has the effect of push-
ing the root loci to the right.

 (iv)  Complementary root locus (CRL) refers to root 
loci with positive k.

  (A) i, ii, and iii (B) i, ii, and iv

  (C) ii, iii, and iv (D) ii and iv

 4. The Nyquist plot for a control system is shown 
in figure. The Bode plot for the same system  
will be 
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ω = ∞

ω = 0

(–1 + j 0)
ω

 (A) I G I

– 20dB/dec

– 40dB/dec

ω1 ω2
ω

 (B) I G I

– 20dB/dec

– 40dB/dec
ω1

ω

 (C) 

ω1

I G I

– 60dB/dec

– 40dB/dec

ω

 (D) I G I

– 20dB/dec

– 60dB/decω1 ω2

ω

– 40dB/dec

 5. The Nyquist plot for the open–loop transfer function 
G(s) of a unity negative feedback system is shown 
in the figure. If G(s) has no pole in the right half of 
s-plane, the number of roots of the system characteris-
tic equation in the right-half of s-plane is

Re

Im

-1

 (A) 0 (B) 1 (C) 2 (D) 3

 6. Which of the following points is not on the root locus 
of a system with the open-loop transfer function?

  G s H s
K

s s s
( ) ( )

( )( )
=

+ +1 3

 (A) s = − j 3  (B) s = -1.5
 (C) s = -3 (D) s = -∞
 7. The figure shows the Nyquist plot of the open-loop 

transfer function G(s)H(s) of a system; If G(s)H(s) has 
one right-hand pole, the closed-loop system is

Re 

Im 
GH plane

ω positive

ω=0 (−1,0) 

 (A) always stable
 (B)  unstable with one closed-loop right-handpole
 (C) unstable with two closed-loop right-hand poles
 (D) unstable with three closed-loop right-hand poles

 8. Given G(s)H(s) = 
K

s s s( )( )+ +1 3
, the point of inter-

section of the asymptotes of the root loci with the real  
axis is

 (A) -4 (B) 1.33 (C) -1.33 (D) 4

 9. The polar plot shown in the figure represents the trans-
fer function

Re (s)

Im (s)

ω = 0ω= ∞

1

 (A) G(s) = 
1

s

 (B) G(s) = 
1

1s sT( )+

 (C) G(s) = 
1

1+ sT

 (D) G(s) = 
1

1 11 2( )( )+ +sT sT

 10. The open-loop transfer function of a unity gain feed-
back control system is given by

  G s
K

s s
( )

( )( )
=

+ +1 3
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Previous Years’ Questions

 1. Given G s H s
K

s s s
( ) ( )

( )( )
=

+ +1 3
, the point of inter-

section of the asymptotes of the root loci with the real 
axis is [2004]

 (A) –4 (B) 1.33
 (C) –1.33 (D) 4

 2. The gain margin for the system with open-loop trans-

fer function G s H s
s

s
( ) ( )

( )
=

+2 1
2

 , is  [2004]

 (A) ∞ (B) 0
 (C) 1 (D) –∞

  The gain margin of the system is dB is given by
 (A) ∞ (B) 1 (C) 20 (D) 0

 11. If the closed-loop transfer function of a control system 

is given by T(s) = s

s s

−
+ +

5

2 3( )( )
, then it is

 (A) an unstable system
 (B) an uncontrollable system
 (C) a minimum-phase system
 (D) a non-minimum phase system

 12. For the asymptotic Bode magnitude plot shown in fig-
ure, the system transfer function can be

20

0
0.001 0.1 10 1000

ω

Magnitude in dB

 (A) 
10 1

0 1 1

s

s

+
+.

 (B) 
100 1

0 1 1

s

s

+
+.

 (C) 
100

10 1

s

s +
 (D) 

0 1 1

10 1

. s

s

+
+

 13. The root locus of the system G(s)H(s) = 
K

s s s( )( )+ +2 3has the break-away point located at
 (A) (−0.5, 0) (B) (−2.548, 0)
 (C) (−4, 0) (D) (−0.784, 0)

 14. 

140

20

0.1 10 ω

160

dB

100

  The approximate Bode magnitude plot of a minimum-
phase system is shown inn the figure.  The transfer 
function of the system is

 (A) 10
0 1

10 100
8

3

2

( . )

( ) ( )

s

s s

+
+ +

 (B) 10
0 1

10 100
7

3( . )

( )( )

s

s s

+
+ +

 (C) 10
0 1

10 100
8

2

2

( . )

( ) ( )

s

s s

+
+ +

 (D) 10
0 1

10 100
9

3

2

( . )

( )( )

s

s s

+
+ +

 15. Consider the Bode magnitude plot shown in the figure. 
The transfer function H(s) is

0

−20

1 10 100 in rad

20log H(jω

ω

)

20 dB decade

 (A) 
( )

( )( )

s

s s

+
+ +

10

1 100

 (B) 
10 1

10 100

( )

( )( )

s

s s

+
+ +

 (C) 
10 1

10 100

2 ( )

( )( )

s

s s

+
+ +

 (D) 
10 100

1 10

3( )

( )( )

s

s s

+
+ +
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 3. Consider the Bode magnitude plot shown in the 
 figure. The transfer function H(s) is  [2004]

20log H(jω)
0

1 10 100
ω

−20

−20dB/decade

 (A) 
( )

( )( )

s

s s

+
+ +

10

1 100
 (B) 

10 10

1 100

( )

( )( )

s

s s

+
+ +

 (C) 
10 1

10 100

2 ( )

( )( )

s

s s

+
+ +

 (D) 
10 100

1 10

3( )

( )( )

s

s s

+
+ +

 4. For the polynomial P(s) = s5 + s4 + 2s3 + 2s2 + 3s + 15, 
the number of roots which lie in the right half of the 
s-plane is  [2004]

 (A) 4 (B) 2
 (C) 3 (D) 1

 5. The polar diagram of a conditionally stable system for 
open-loop gain K = 1 is shown in figure. The open-
loop transfer function of the system is known to be 
stable. The closed-loop system is stable for  [2005]

Im

GH Plane

Re

−0.2

−2

−8

 (A) K K< < <5
1

2

1

8
and

 (B) K K< < <
1

8

1

2
5and

 (C) K K< <
1

8
5and

 (D) K K> <
1

8
5and

 6. A unity feedback system is given as G s
K s

s s
( )

( )

( )
=

−
+

1

3
.

Indicate the correct root locus diagram [2005]

 (A) 
jω

σ

 (B) jω

σ

 (C) 
jω

σ

 (D) 
jω

σ

 7. The open-loop transfer function of a unity-gain feed-
back control system is given by 

  G s
K

s s
( )

( )( )
=

+ +1 2
.
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  The gain margin of the system in dB is given by 
 [2006]

 (A) 0 (B) 1 (C) 20 (D) ∞

 8. The Nyquist plot of G(jw)H(jw) for a closed-loop 
control system passes through (–1, j0) point in the GH 
plane. The gain margin of the system in dB is equal to
 [2006]

 (A) infinite  (B) greater than zero
 (C) less than zero (D) zero

 9. The transfer function of a phase-lead compensator is 
given by 

  G S
T S

T S
TC ( )

.

.
=

+
+

>
1 3

1
0where

  The maximum phase–shift provided by such a com-
pensator is [2006]

 (A) 
p
2

 (B) 
p
3

 (C) 
p
4

 (D) 
p
6

Direction for questions 10 and 11:
Consider a unity -gain feedback control system whose 
open–loop transfer function is

  G S
as

s
( ) =

+1
2

 10. The value of a so that the system has a phase margin 

equal to 
p
4

 is approximately equal to [2006]

 (A) 2.40 (B) 1.40 (C) 0.84 (D) 0.74

 11. With the value of a set for a phase–margin of 
p
4

, 

the value of unit-impulse response of the open -loop  

system at t =1 s is equal to [2006]
 (A) 3.40 (B) 2.40 (C) 1.84 (D) 1.74

 12. A unity feedback control system has an open-loop 

transfer function G(s) = 
K

s s s( )2 7 12+ +
. The gain K 

for which s = –1 + j1 will be lie on the root locus of 
this system is [2007]

 (A) 4 (B) 5.5 (C) 6.5 (D) 10

 13. The asymptotic Bode plot of a transfer function is as 
shown in the figure. The transfer function G(s) cor-
responding to this Bode plot is [2007]

60

40

20

0

0.1 1 10 100

20

−60 dB/decade

−40 dB/decade

−20 dB/decade

(dB))(G jω

ω

 (A) 
1

1 20( )( )s s+ +
 (B) 

1

1 20s s s( )( )+ +

 (C) 
100

1 20s s s( )( )+ +
 (D) 

100

1 1 0 05s s s( )( . )+ +

 14. The number of open right half plane poles of 

G s
s s s s s

( ) =
+ + + + +

10

2 3 6 5 35 4 3 2
 is [2008]

 (A) 0 (B) 1 (C) 2 (D) 3

 15. The feedback configuration and the pole-zero loca-

tions of G s
s s

s s
( ) =

− +
+ +

2

2

2 2

2 2
 are shown below. The root 

locus for negative values of k, that is for –∞ < k < 0 
has breakaway/break-in points and angle of departure 
at pole P (with respect to the positive real axis) equal 
to [2009]

+
+ k G(s)

Im(s)

Re(s)

−

 (A) ± 2 and 0° (B) + 2 and 45°

 (C) ± 3 and 0° (D) ± 3 and 45°

Direction for questions 16 and 17:

The Nyquist plot of a stable transfer function G(s) is 
shown in the figure. We are interested in the stability of the 
closed-loop system in the feedback configuration shown 
here.

Im

Re
G(s)+

+

−−1−0.5

−j

 16. Which of the following statements is true? [2009]
 (A) G(s) is an all-pass filter
 (B) G(s) has a zero in the right-half plane
 (C) G(s) is the impedance of a passive network 
 (D) G(s) is marginally stable

 17. The gain and phase margins of G(s) for closed-loop 
stability are [2009]

 (A) 6dB and 180° (B) 3dB and 180°
 (C) 6dB and 90° (D) 3dB and 90°

 18. For the asymptotic Bode magnitude plot shown in the 
following figure, the system transfer function can be
 [2010]
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 19. For the transfer function G(jw) = 5 + jw, the corre-
sponding Nyquist plot for positive frequency has the 
form [2011]

 (A) 

5

jω

σ

 (B) 

5

σ

jω

 (C) 

1/5 σ

jω

 (D) 

1/5 σ

jω

 20. The root locus plot for a system is shown as follows. 
The open-loop transfer function corresponding to this 
plot is given by [2011]

–3 –2 –1 0 σ

jω

-

 (A) G(s)H(s) = k 
s s

s s

( )

( )( )

+
+ +

1

2 3

 (B) G(s)H(s) = k 
( )

( )( )

s

s s s

+
+ +

1

2 3 2

 (C) G(s)H(s) = k 
1

1 2 3s s s s( )( )( )− + +

 (D) G(s)H(s) = k 
( )

( )( )

s

s s s

+
+ +

1

2 3

Direction for questions 21 and 22:

The input–output transfer function of a plant H(s) = 

100

10 2s s( )+
. The plant is placed in a unity negative feed-

back configuration as shown in the figure below.

H(s)= 2)10+s(s

100
Σ

plant

yur

+

−

 21. The signal flow graph that does not model the plant 
transfer function H(s) is [2011]

 (A) u
1 1/s 1/s 1/s 100

−10−10

y

 (B) 

u
1/s 1/s 1/s 100

− 20

−100

y

 (C) 

u
1/s 1/s 1/s 100

−20

−100

y

 (D) 

u
1/s 1/s 1/s 100

−100

y
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 22. The gain margin of the system under closed-loop 
unity negative feedback is [2011]

 (A) 0 dB (B) 20 dB
 (C) 26 dB (D) 46 dB

 23. The Bode plot of transfer function G(s) is shown in 
the figure below. [2013]

1
0

−8

20

32

40

10 100

G
ai

n 
(d

B
)

ω (rad/s)

  The gain (20 log|G(s)|) is 32 dB and −8 dB at 1 rad/s 
and 10 rad/s, respectively. The phase is negative for 
all w. Then, G(s) is

 (A) 
39 8.

s
 (B) 

39 8
2

.

s
 (C) 

32

s
 (D) 

32
2s

 24. Consider the feedback system shown in the figure. 
The Nyquist plot of G(s) is also shown. Which one of 
the following conclusions is correct? [2014]

k G(s)
+

−
−1 +1

Im G(jω)

Re G(jω)

 (A) G(s) is an all-pass filter
 (B) G(s) is a strictly proper transfer function
 (C)  G(s) is a stable and minimum-phase transfer 

function
 (D)  The closed-loop system is unstable for sufficient-

ly large and positive k.

 25. The phase margin in degrees of

  G(s) = 
10

0 1 1 10( . )( )( )s s s+ + +
calculated using the 

asymptotic Bode plot is ______ [2014]

 26. In the root locus plot shown in the figure, the pole/
zero marks and the arrows have been removed. Which 
one of the following transfer functions has this root 
locus? [2014]

2

1

jω

σ

 (A) 
s

s s s

+
+ + +

1

2 4 7( )( )( )

 (B) 
s

s s s

+
+ + +

4

1 2 7( )( )( )

 (C) 
s

s s s

+
+ + +

7

1 2 4( )( )( )

 (D) 
( )( )

( )( )

s s

s s

+ +
+ +

1 2

7 4

 27. Consider a transfer function  

Gp(s) = 
ps ps

s p s p

2

2

3 2

3 2

+ −
+ + + −( ) ( )

 with p a positive real 

parameter. The maximum value of p until which Gp 
remains stable is ____. [2014]

 28. The characteristic equation of a unity negative feed-
back system is 1 + KG(s) = 0. The open-loop transfer 
function G(s) has one pole at 0 and two poles at −1. 
The root locus of the system for varying K is shown 
in the figure. [2014]

A

σ
(0, 0)
O−1/3−1

ξ = 0.5

jΩ

  The constant damping ratio line, for x = 0.5, intersects 
the root locus at point A. The distance from the origin 
to point A is given as 0.5. The value of K at point A is 
___________.

 29. A unity negative feedback system has the open-loop 

transfer function G(s) = 
K

s s s( )( )+ +1 3
. The value of 

the gain K(> 0) at which the root locus crosses the 

imaginary axis is _______. [2015]

 30. The polar plot of the transfer function G(s) = 
10 1

10

( )s

s

+
+

 

for 0 ≤ w < ∞ will be in the [2015]
 (A) first quadrant (B) second quadrant
 (C) third quadrant (D) fourth quadrant
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 31. Consider the Bode plot shown in the figure. Assume 
that all the poles and zeros are real-valued. 

40 dB

40 dB/dec

−40 dB/dec

0 dB
300fL fH900 Freq. (Hz)

  The value of fH - fL (in Hz) is ______. [2015]

 32. The phase margin (in degrees) of the system G(s) = 
10

10s s( )+
is ______. [2015]

 33. Match the inferences X, Y and Z about a system, to 
the  corresponding properties of the elements of first 
column in Routh’s table of the system characteristic 
equation. [2016]

X:  The system is stable  P:  When all elements are positive 

Y:  The system is 
unstable 

Q:  When any one element is zero 

Z:  The test breaks down R:  When there is a change in sign 
of coefficients

 (A) x → P, Y → Q, Z → R
 (B) X → Q, Y → P, Z → R
 (C) X → R, Y → Q, Z → P
 (D) X → P, Y → R, Z → Q

 34. A closed loop control system is stable if the Nyquist 
plot of the corresponding open loop transfer function

 [2016]
 (A)  Encircles the s-plane point (–1 + j0) in the coun-

ter clockwise direction as many times as the 
number of right half s-plane poles. 

 (B)  Encircles the s-plane point (0 – j1) in the clock-
wise direction as many times as the number of 
right half s-plane poles. 

 (C)  Encircles the s-plane point (–1 + j0) in the coun-
ter clockwise direction as many times as the 
number of left half s-plane poles. 

 (D)  Encircles the s-plane point (–1 + j0) in the coun-
ter clockwise direction as many times as the 
number of right half s-plane zeros. 

 35. The open loop transfer function of a unity feedback 
control system is 

 G(s) = 
K

s s2 5 5+ +
.

  The value of K at the breakaway point of the feedback 
control system’s root locus plot is _________ .

 36. The transfer function of a linear time invariant system 
is given by 

 H(s) = 2s4 – 5s3 + 5s – 2
  The number of zeros in the right half of the s-plane 

is __________ . [2016]

 37. The number and direction of encirclements around 
the point -1 + j0 in the complex plane by the Nyquist 

plot of G(s) = 
1

4 2

−
+

s

s
is: [2016]

 (A) Zero 
 (B) One, anti clockwise 
 (C) One, clockwise 
 (D) Two, clockwise 

 38. In the feedback system below. 

G(s) = 
1

1 2 3( )( )( )
.

s s s+ + +

+
r k yG(s)

−

  The positive value of k for which the gain margin of 

the loop is exactly 0 dB and the phase margin of the 
loop is exactly zero degree is __________. [2016]

 39. The asymptotic Bode phase plot of  

  G(s) =
+ + +( )

k

s s s p( . )( )0 1 10 1

, with k and p1 both 

positive is shown in the following figure:

00

-450

-1350

-2250

-2700

0.01 0.1 1 10 100
rad/s
ω

  The value of p1 is __________. [2016]

 40. The first two rows in the Routh table for the character-
istic equation of a certain closed loop control system 
are given as

S3

S2

1

2K

(2K + 3)

4
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Answer Keys

Exercises
Practice Problems 1
 1. B 2. B 3. A 4. C 5. C 6. C 7. D 8. C 9. B 10. C
11. D 12. B 13. D 14. C 15. C 16. B 17. B 18. C 19. A 20. C
21. A

Practice Problems 2
 1. C 2. A 3. A 4. D 5. A 6. B 7. A 8. C 9. C 10. A
11. D 12. A 13. D 14. A 15. C

Previous Years’ Questions
 1. C 2. D 3. C 4. B 5. A 6. C 7. D 8. D 9. D 10. C
11. C 12. D 13. D 14. C 15. B 16. C 17. C 18. A 19. A 20. B
21. D 22. C 23. B 24. D 25. 42 to 48  26. B 27. 1.9 to 2.1  
28. 0.375 29. 12 30. A 31. 8,970 32. 84 to 84.5  33. D 34. D 35. 1.25 36. 3
 37. A 38. 60 39. 1 40. D 41. -3.414

 The range of K for which the system is stable is 
 [2016]
 (A) -2.0 < K < 0.5
 (B) 0 < k < 0.5
 (C) 0 < k < ∞
 (D) 0.5 < K < ∞

 41. The forward path transfer function and the feedback 
path transfer function of a single loop negative feed-
back control system are given as

G(s) = 
K s

s s

( )+
+ +

2

2 22
 and H(s) = 1,

  respectively. If the variable parameter K is real posi-
tive, then the location of the breakaway point on the 
root  locus diagram of the system is__________ .
 [2016]
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