## **ORGANIC CHEMISTRY**



## DPP No. 6

Total Marks: 35

Max. Time: 37 min.

**Topic: General Organic Chemistry** 

### Type of Questions

Single choice Objective ('-1' negative marking) Q.1 to Q.5 Multiple choice objective ('-1' negative marking) Q.6 to Q.7 Subjective Questions ('-1' negative marking) Q.8

Match the Following (no negative marking) Q.9

M.M., Min. [15, 15]

(3 marks, 3 min.) (4 marks, 4 min.) [8, 8]

(4 marks 5 min.) [4, 5]

(8 marks, 10 min.) [8, 10]

#### 1. Which carbonium ion is highly stable?

#### 2. The correct order of stability of following carbocation is:



(D) (I) 
$$>$$
 (III)  $>$  (IV)

#### 3. Observe each pair of cations. In which case (s) first is more stable than the second:



- (A) Only in W
- (B) Only in X and Y
- ĊD<sub>3</sub> ΙΙ Ι

- (C) Only in Z
- (D) Only in W and Z

#### The most stable carbocation is: 4.



5. In the following carbocation; the most stable rearranged carbocation is formed by migration of group.



- (A) CH<sub>3</sub> (1)
- (B) CH<sub>3</sub> (4)
- (C) C—C bond (5)
- (D) D (3)



\_\_\_\_Ag<sup>⊕</sup> → Rearranged Carbocation + AgBr

Rearranged carbocation can not be:







(D) (O)

7. In which of the following first carbocation is more stable than second one?



(C) 
$$CH_3 - O - \overset{\oplus}{C}H - CH_3$$
,  $CH_3 - \overset{\oplus}{C} - CH_2 - CH_3$  (D)  $CH_3$ 

$$OMe$$
  $OMe$   $OMe$ 

**8.** How many carbocations given below are more stable than sec. butyl carbocation

t-butyl carbocation

Benzyl carbocation

Allyl carbocation

Cyclopropenyl cation Tropylium cation

n- butyl carbocation

cyclopropylmethyl carbocation

**9.** Match the carbocation (I) with the most stable rearranged carbocation (II).

| (I) |                                              | (II)                                                        |
|-----|----------------------------------------------|-------------------------------------------------------------|
| (A) | $CH_3 - C - \overset{\oplus}{C}H - CH_3$ $H$ | (p)                                                         |
| (B) | CH <sub>s</sub> ⊕                            | (q) $\overset{\oplus}{\text{CH}} - \text{CH}_3$             |
| (C) | CH <sub>3</sub>                              | (r)                                                         |
| (D) | $CH_2 - CH_2$                                | (s) CH <sub>3</sub> - C - CH <sub>2</sub> - CH <sub>3</sub> |

## **Answer Key**

### **DPP No. #6**

1. (C)

C)

2. (

(D)

3.

(D)

4.

(D)

5.

(C)

6. (ACD)

7.

(BCD)

8.

6

9.

(A - s); (B - r); (C - q); (D - p)

# **Hints & Solutions**

## **DPP No. #6**

2. (I) > (III) > (IV)

3. In (W) since C–H bond is weaker than C–D bond so hyperconjugation stability is more in I.

In (X) only +I effect is present which is more for  $-C(CD_3)$ .

In (Y) only +I which is more for -CD3

In (Z) –I effect of –CCl<sub>3</sub> group will make II cation highly unstable.

- 4. e-with drawing group decreases stability
- 5. Due to C—C bond (5) migration it would be converted into 6-membered ring.



7.

(B)

has extended conjugation.

(C) CH<sub>3</sub> - O - CH - CH<sub>3</sub>

has +M effect of -OCH3.

(D) OMe

after delocalisation gets +M effect of -OMe.

8.

CH<sub>3</sub> I H<sub>3</sub>C-C-CH<sub>3</sub>

H<sub>2</sub>C—

CH₂=CH–CH₂



 $\overset{\scriptscriptstyle\oplus}{\triangle}$ 

