DPP - Daily Practice Problems

Date :	Start Time :	End Time :	

CHEMISTRY (CC13)

SYLLABUS: Hydrocarbons

Max. Marks: 120 Marking Scheme: + 4 for correct & (-1) for incorrect Time: 60 min.

INSTRUCTIONS: This Daily Practice Problem Sheet contains 30 MCQ's. For each question only one option is correct. Darken the correct circle/ bubble in the Response Grid provided on each page.

1. In the given reaction

 $CH_3CH_2CH = CHCH_3 \xrightarrow{X}$

CH₃CH₂COOH +CH₃COOH

The X is

- (a) C_2H_5ONa
- (b) Conc. HCl +Anhy.ZnCl₂
- (c) Anh. AlCl₃
- (d) $KMnO_4/OH^-$
- **2.** Ethyl hydrogen sulphate is obtained by reaction of H₂SO₄ on
 - (a) Ethylene
- (b) Ethane
- (c) Ethyl chloride
- (d) Ethanol

- 3. One mole of a symmetrical alkene on ozonolysis gives two moles of an aldehyde having a molecular mass of 44 u. The alkene is
 - (a) propene
 - (b) 1-butene
 - (c) 2-butene
 - (d) ethene
- **4.** Benzene on reaction with ozone forms ______.
 - (a) 2 molecules of aldehyde and 1 molecule of ketone
 - (b) 2 molecules of ketone and 1 molecule of aldehyde
 - (c) triozonide
 - (d) hexaozonide

Response Grid 1. (a) (b) (c) d 2. (a) (b) (c) d 3. (a) (b) (c) d 4. (a) (b) (c) d

- **5.** When neo-pentyl bromide is subjected to Wurtz reaction, the product formed is
 - (a) 2,2,4,4-tetramethylhexane
 - (b) 2,2,4,4-tetramethylpentane
 - (c) 2,2,5,5-tetramethylhexane
 - (d) 2,2,3,3-tetramethylhexane
- **6.** Which one of the following reactions is expected to readily give a hydrocarbon product in good yields?
 - (a) $RCOOK \xrightarrow{Electrolytic} oxidation$
 - (b) $RCOO^-Ag^+ \xrightarrow{Br_2}$
 - (c) $CH_3CH_3 \xrightarrow{Cl_2} h_0$
 - (d) $(CH_3)_3CCl \xrightarrow{C_2H_5OH}$
- 7. What will be the product in the following reaction?

$$CH_2$$
 NBS

(d)
$$\bigcap_{\operatorname{Br}}^{\operatorname{CH}_3}$$

- **8.** A hydrocarbon contains 10.5 g carbon and 1 g hydrogen. Its 0.36 g has 1 L volume at 1 atm and 127°C, hydrocarbon is:
 - (a) C_6H_7
- (b) C_7H_8
- (c) C_5H_6
- (d) None of these
- **9.** The conversion of 2, 3-dibromobutane to 2-butene with Zn and alcohol is
 - (a) redox reaction
- (b) α-elimination
- (c) **B**-elimination
- (d) Both (a) and (b)

- **10.** 1, 2-Dibromocyclohexane on dehydrobromination gives :
 - (a) (
- (b)
- (c)
- (d) None of these
- 11. $C_6H_5CH_3 \xrightarrow{CrO_2Cl_2} Z$

In the given sequence Z is:

- (a) benzaldehyde
- (b) toluic acid
- (c) phenyl acetic acid
- (d) benzoic acid
- **12.** Acid catalyzed hydration of alkenes except ethene leads to the formation of
 - (a) mixture of secondary and tertiary alcohols
 - (b) mixture of primary and secondary alcohols
 - (c) secondary or tertiary alcohol
 - (d) primary alcohol
- **13.** Which of the following organic compounds has same hybridization as its combustion product (CO₂)?
 - (a) Ethane
 - (b) Ethyne
 - (c) Ethene
 - (d) Ethanol
- 14. In reaction sequence

$$\mathrm{CH_2} = \mathrm{CH_2} \xrightarrow{\text{Hypochlorous}} \mathrm{M} \xrightarrow{R} \begin{array}{c} \mathrm{CH_2OH} \\ \mathrm{CH_2OH} \end{array}$$

molecule 'M' and reagent 'R' respectively are

- (a) CH₃CH₂Cl and NaOH
- (b) CH₃CH₂OH and H₂SO₄
- (c) CH₂Cl . CH₂OH and aqueous NaHCO₃
- (d) $CH_2 CH_2$ and heat

RESPONSE GRID

15. Predict the correct intermediate and product in the following reaction:

$$H_3C - C \equiv CH \xrightarrow{H_2O, H_2SO_2} Intermediate \rightarrow product$$
(A)
(B)

(a)
$$A: H_3C - C = CH B: H_3C - C = CH_2$$

OH SO_4

(b)
$$A: H_3C - C = CH_3B: H_3C - C \equiv CH_3$$

(c)
$$A: H_3C - C = CH_2B: H_3C - C = CH_2$$

OH
O

(d)
$$A: H_3C - C = CH_2B: H_3C - C - CH_3$$

 SO_4

16. The treatment of CH_3MgX with $CH_3C \equiv C - H$ produces

(a)
$$CH_3 - CH = CH_2$$

(b)
$$CH_3C \equiv C - CH_3$$

17. A single compound of the structure:

$$\begin{array}{c|c} CH_3 & CH_3 \\ & | & \\ OHC & C & C \\ CH_2 & H_2 \end{array}$$

is obtainable from ozonolysis of which of the following cyclic compounds?

(d)
$$H_3C$$
 CH_3

- **18.** Which of the following reagents convert propene to 1-propanol?
 - (a) H_2O, H_2SO_4
- (b) Aqueous KOH
- (c) $MgSO_4$, $NaBH_4/H_2O$ (d) B_2H_6 , H_2O_2 , OH^{-1}
- 19. Which of the following chemical system is non aromatic?

- (c)
- d) $\left\langle \right\rangle$
- **20.** A group which deactivates the benzene ring towards electrophilic substitution but which directs the incoming group principally to the o- and p-positions is
 - (a) $-NH_2$
- (b) -Cl
- (c) $-NO_2$
- (d) $-C_2H_5$
- 21. In the reaction

$$H - C = CH \frac{(1)NaNH_2 / liq.NH_3}{(2)CH_3CH_2Br} X \frac{(1)NaNH_2 / liq.NH_3}{(2)CH_3CH_2Br} Y$$

X and Y are

- (a) X = 1-Butyne; Y = 3-Hexyne
- (b) X = 2-Butyne; Y = 3-Hexyne
- (c) X = 2-Butyne; Y = 2-Hexyne
- (d) X = 1-Butyne; Y = 2-Hexyne
- 22. The main product of the reaction is:

$$C \equiv C - R \xrightarrow{\text{Na}, \text{NH}_3(\ell)} \text{Product}$$

23. In the following reaction, the major product is

- 24. Which of these will not react with acetylene?
 - (a) NaOH
- (b) ammonical AgNO₃
- (c) Na
- (d) HCl

RESPONSE GRID

- 15. a b c d 20. a b c d
- 16. a b c d 21. a b c d
- 17. a b c d
- 18. a b c d
 - <u>a</u>
- 22. a b c d
- 23. a b c d
- 19. (a) (b) (c) (d) 24. (a) (b) (c) (d)

(c)
$$CI$$
 $CH - CH_2 - CH_3$
 $CH_2 - CH = CH_2$

$$CH_2 - CH = CH_2$$

26. The major product of the following reaction

$$H_3C - C \equiv CH \xrightarrow{CH_3CH_2MgCl} \xrightarrow{ether} \xrightarrow{H_3O^+}$$

- 27. The gas liberated by the electrolysis of Dipotassium succinate solution is:
 - (a) Ethane
- (b) Ethyne
- (c) Ethene
- (d) Propene
- 28. 1, 3-Butadiene when treated with Br, gives
 - (a) 1, 4-dibromo-2-butene
- (b) 1, 3-dibromo-2-butene
- (c) 3, 4-dibromo-1-butene
- (d) 2, 3-dibromo-2-butene

29. $CH_2 - CH = CH_2$ on mercuration-demercuration produces the major product:

30. For the synthesis of the following compound :

Which method is best?

Method I:
$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

Method II :
$$\xrightarrow{Br_2/FeBr_3}$$
 $\xrightarrow{Mg/ethane}$ (i) $H_2C = O$ (ii) H_3O^+

- (a) Method I
- (b) Method II
- (c) Both (I) and (II) are equally good
- (d) Neither (I) nor (II)

RESPONSE GRID 25. a b c d 30. a b c d

26. a b c d

27. a b c d

28. (a) (b) (c) (d)

26. ⓐ ⓑ ⓒ ⓓ

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 13 - CHEMISTRY					
Total Questions	30	Total Marks	120		
Attempted		Correct			
Incorrect		Net Score			
Cut-off Score	35	Qualifying Score	50		
Success Gap = Net Score - Qualifying Score					
Not Correct 1) (Incorrect 1)					

Net Score = (Correct \times 4) – (Incorrect \times 1)

DAILY PRACTICE PROBLEMS

DPP/CC13

A doubly bonded carbon atom having an alkyl group is oxidised to aldehyde which is further oxidised to carboxylic acid.

$$CH_3CH_2CH = CHCH_3 \xrightarrow{(i) \text{KMnO}_4, OH^-}$$

$$(ii) H^+$$

(a) $CH_2 = CH_2 + H - O - SO_2OH \longrightarrow H_2SO_4$

$$\begin{array}{c} \oplus \\ \mathrm{CH_3CH_2} + \mathrm{OSO_2OH} \longrightarrow & \mathrm{CH_3CH_2OSO_2OH} \\ & \text{Ethyl hydrogen sulphate} \end{array}$$

Addition of sulphuric acid takes place according to Markownikoff's rule. Alkanes do not absorb cold conc. H_2SO_4 .

3. (c) The given molecular formula suggests that the aldehyde formed will be acetaldehyde hence the alkene will be

$$CH_3CH = CHCH_3$$

2-butene

$$\xrightarrow{O_3} \xrightarrow{H} \xrightarrow{O} \xrightarrow{O} \xrightarrow{O} \xrightarrow{H}$$

$$Zn/H_2O \rightarrow 2CH_3CHO$$

4. (c)
$$+ O_3 \longrightarrow O_0$$

Benzene triozonide

5. (c)
$$H_3C - C - CH_2Br + 2Na + Br - CH_2 - C - CH_3 \xrightarrow{\text{ether}} CH_3 \xrightarrow{\text{c}} CH_3$$

neo-pentyl bromide

$$\begin{array}{cccc} \text{CH}_3 & \text{CH}_3 \\ | & | & | \\ \text{H}_3\text{C} - \text{C} - \text{CH}_2 - \text{CH}_2 - \text{C} - \text{CH} \\ | & | \\ \text{CH}_3 & \text{CH}_3 \end{array}$$

2,2,5,5-tetramethylhexane

Electrolysis of a concentrated aqueous solution of either sodium or potassium salts of saturated monocarboxylic acids yields higher alkane at anode.

$$2RCOOK \xrightarrow{Electrolyt \ ic} 2RCOO^{-} + 2K^{+}_{Cathode}$$
Oxidation Anode Cathode

 $2RCOO^- \rightarrow 2RCOO + 2e^- \longrightarrow$ At anode R - R + 2CO₂

At Cathode $2K^+ + 2e^- \rightarrow 2K$ $2K+H_2O\rightarrow 2KOH+H_2\uparrow$

7. (c)
$$CH_2 \xrightarrow{NBS} CH_2Bi$$

(Kolbe's Method)

8. Sum of masses of C and H = 10.5 + 1.0 = 11.5

% of C =
$$\frac{10.5}{11.5} \times 100 = 91.3\%$$

% of
$$H = \frac{1.0}{11.5} \times 100 = 8.7\%$$

Element % Ratio of atoms Simplest ratio C 91.3 91.3/12 = 7.61 $7.61/7.61 = 1 \times 7 = 7$ $8.7/7.61 = 1.14 \times 7 = 8$

8.7 8.7/1 = 8.7

 \therefore Empirical formula = C_7H_8

We know that
$$n = \frac{PV}{RT}$$

$$\frac{\text{mass}}{\text{molar mass}} = \frac{PV}{RT}$$

$$\frac{2.81}{M} = \frac{1 \times 1}{0.082 \times 400}$$
; M = 92.168 \approx 92

$$\therefore n = \frac{84+8}{92} = 1$$

 \therefore Molecular formula = $(C_7H_8) \times 1 = C_7H_8$

(c) $CH_3CHBrCHBrCH_3 \xrightarrow{Zn/alcohol} CH_3CH = CHCH_3$

Since two bromine atoms are lost from different carbon atom, the reaction is known as β -elimination.

1, 2-dibromocyclohexane

$$Br \xrightarrow{-HBr} 1, 3-cyclo-$$

hexadiene

$$\begin{array}{c}
\text{CHO} \\
\text{CrO}_2\text{Cl}_2
\end{array}$$

$$\begin{array}{c}
\text{CHO} \\
\text{benzaldehyde}
\end{array}$$

12. (c)
$$CH_3 - CH = CH_2 + H_2O \xrightarrow{H_2SO_4} CH_3 - CH - CH_3$$

OH

2° alcohol

$$CH_{3}$$

$$CH_{3}-CH_{2}+H_{2}O \xrightarrow{H_{2}SO_{4}} CH_{3}-C-CH_{3}$$

$$OH_{3}$$

$$OH_{3}$$

Addition follows Markownikoff's rule.

13. (b) The combustion reaction of ethylene is

$$C_2H_2 + \frac{5}{2}O_2 \rightarrow 2CO_2 + H_2O_2$$

Both HC = CH and CO₂ have sp hybridization.

14. (c) We know that

$$\begin{array}{cccc} \text{CH}_2\text{=}& \text{CH}_2 + & \text{HOCl} \rightarrow & \text{CH}_2\text{OH} & \text{NaHCO}_3 \\ & & \text{I} & & \text{I} \\ & & \text{CH}_2\text{Cl} & & \text{CH}_2\text{OH} \end{array}$$

 \therefore M = CH₂OH – CH₂Cl and R = NaHCO₃

15. (c) Hydration of alkynes give ketones.

$$H_{3}C - C = CH \xrightarrow{H_{2}O, H_{2}SO_{2}} H_{3}C - C = CH_{2} \xrightarrow{(A)} O$$

$$H_{3}C - C - CH_{3} \xrightarrow{Tautomerism}$$
(B)

16. (d) Writing the reaction we get

$$CH_3MgX + CH_3 - C \equiv C - H \longrightarrow$$

 $CH_3 - C \equiv CMgX + CH_4(g)$

So we find that CH_{Δ} is produced in this reaction.

17. (d)

$$H_3C$$

$$CH_3 \xrightarrow{O_3} O_{O+C} O_{O+C} O_{O+C}$$

$$O+C$$

$$O$$

18. (d)
$$6CH_3 - CH = CH_2 \xrightarrow{B_2H_6}$$
 ether, $0^{\circ}C$

$$2(CH_3CH_2CH_2)_3B \xrightarrow{H_2O_2} OH^-$$

$$\begin{array}{c} \mathsf{6CH_3CH_2CH_2OH} + 2\mathsf{H_3BO_3} \\ \mathsf{Propanol} \end{array}$$

- **19.** (a) Huckel rule is not obeyed. It has only four electrons. Further it does not have continuous conjugation.
- 20. (b) -Cl group is o-, p-directing due to +R effect; however it is deactivating due to strong -I effect of Cl (difference from other o-, p-directing groups which are activating). The net result is that chlorobenzene undergoes o-, p-substitution, but with difficulty

$$HC = CH \xrightarrow{\text{NaNH}_2} HC = \overline{C}^{\bigoplus} \text{Na} \xrightarrow{\text{H}_3C - CH_2 \cdot Br} HC = C - CH_2 - CH_3$$

$$(X)$$

$$1 - \text{Butyne} \qquad \text{NaNH}_2$$

$$H_3C - CH_2 - C = C - CH_2 - CH_3 \xleftarrow{\text{H}_3C - CH_2 - Br} H_3C - CH_2 - C = \overline{C}^{\bigoplus} \text{Na}$$

$$3 - \text{Hexyne (Y)}$$

22. (d) It is a streoselective reaction and in it a trans product is formed.

$$C \equiv C - R \xrightarrow{Na, NH_3(\ell)} R'OH$$

$$H = C = R$$

[It is a reduction. Metal dissolved reduction Na/C₂H₅OH reaction is stereo selective].

23. (d)
$$H_2C$$
 CH_3
 CH_2
 H_3C
 H_3C
 H_3C
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_2
 CH_3
 CH_3

24. (a) Acetylene reacts with the other three as:

$$CH = CNa \xrightarrow{Na} CH = CH \xrightarrow{+HCl} CH_2$$

$$\xrightarrow{HCl} CH_3$$

$$CHCl_2$$

$$CH = CH \xrightarrow{[AgNO_3+NH_4OH]} AgC = CAg + NH_4NO_3$$
white put

(Since tertiary carbocation is more stable)

26. (d)
$$H_3C - C \equiv C - H + CH_3CH_2 MgCl \longrightarrow$$

$$H_3C - C \equiv C - MgCl + CH_3CH_3$$

$$OH$$

$$C \equiv C - CH$$

27. (c) Ethene is obtained by electrolysis of dipotassium succinate as follows

$$\begin{array}{c|c} \text{CH}_2\text{COOK} & \text{CH}_2\text{COO} \\ & & & \\ & & & \\ \text{CH}_2\text{COOK} & \text{CH}_2\text{COO} \end{array} + 2K^{\dagger}$$

Pot. Succinate

$$2H_2O \xrightarrow{ionization} 2OH^- + 2H^+$$

At anode:

$$\begin{bmatrix}
CH_2COO^{-} \\
-2e^{-}
\end{bmatrix}
-2e^{-}$$

$$\begin{bmatrix}
CH_2COO \\
-CH_2COO
\end{bmatrix}$$

$$CH_2 + 2CO_2$$

At cathode:

$$2H^+ + 2e^- \longrightarrow [2H] \longrightarrow H_2$$

28. (a) The intermediate 2° carbocation shows resonance

$$CH_{2} = CH - CH = CH_{2} \xrightarrow{Br^{+}} \left[CH_{2}Br - \overset{+}{CH} - CH = CH_{2} \right]$$

$$\Leftrightarrow CH_{2}Br - CH = CH - \overset{+}{CH}_{2}$$

$$\xrightarrow{\text{Br}^{-}} \text{CH}_{2}\text{Br} - \text{CH} = \text{CH} - \text{CH}_{2}\text{Br}$$
1,4-Dibromo -2-butene

29. (a)
$$CH_2$$
- $CH=CH_2$
 $(i) Hg(OAC)_2$
 $(ii) NaBH_4$
 CH_2 - CH - CH_3

ÓН

30. (b)
$$\xrightarrow{\text{CH}_3}$$
 $\xrightarrow{\text{Br}_2/\text{FeBr}_3}$ $\xrightarrow{\text{CH}_3}$ $\xrightarrow{\text{Br}}$ $\xrightarrow{\text{Mg/ether}}$

$$\begin{array}{c} \text{CH}_3 \\ \\ \text{CH}_3 \\ \\ \text{CH}_3 \end{array} \xrightarrow{\text{H}_2\text{C} = \text{O}} \begin{array}{c} \text{CH}_3 \\ \\ \text{H}_3\text{O}^+ \end{array} \xrightarrow{\text{CH}_2\text{OH}} \\ \text{CH}_3 \end{array}$$

$$\begin{tabular}{ll} CH_2Br \\ \hline \\ Method (1) will give \\ \hline \\ CH_2Br \\ \hline \\ CH_2Br \\ \hline \end{tabular}$$

which is allylic bromination.