Transition Curve

12.1

1. itmust originate and meet the straights

Need for Transition Curve

e Atransition curve is a horizontal curve of varying radius.

e  Itis provided between a straight path and the circular path so that jerks due to sudden introduction
of centrifugal force at the junction of the straight and the circular paths are minimized while a vehicle
is going from straight to the circular path. :

e Transition curve provides a gradual change in the path from an initially straight one to the circular
one. . . Fnn )

° ltcanalso be provided in between the two reverse curves and the compound curves.

e - These are provided in the highways and railway to reduce the discomfort to passengers at the

junction of straight and the circular path.

Requirements of a Transition
Curve '

‘ _~— Deflection

<— Circular curve

Circular curve without
any transition curve

atzero curvature i.e. at contact points 7,
and T, the radius of curvature must be
infinite.

Transition
curve

2. Itmust meet the circular curve of radius
R tangentially i.e. radius of curvature at T,
contact points C and C' is equal to the
radius of curve i.e. R,

3. Thelength of transition curve must be such
that full super—ele\}ation is achieved at the
contact points Cand C".

T,

4. The rate of increase of curvature along o
the transition curve should be equal to
the rate of increase of super-elevation. Fig. 12.1 A typical transition curve



12.3 Super-elevation

*  Super-elevation also called as cant or banking IS the raising of outer edge of road with respect to
the inner edge so as to avoid skidding off of the vehicle due to centrifugal force while traversing a
circular path.

(a) R L Ab)
: Section X-X
- Fig. 12.2 Super-alevatior - - ’

® Asshownin Fig. 12.2, point Cis on the outer edge while point Dis ontheinner edge. The difference
of elevations of pojnt C'and Dis called as 'super-elevation or cant or banking.
Let a vehicle is traversing a curved path of rad'iqsﬁ The forces acting-on this vehicle are:
1. The weight WQf'thé vehicle acting in the’dirécﬁo’h of'gravity i.e. downwards.
2. The centrifugalforee Pacting outwards: S
The above two forces Wand P will meet at the center of gravity of the vehicle. In order to have

a perfect equilibriurn of the vehicle on the curved path; the resultant force R should be normal
to the road (or rail) surface. : :

2 2
mve Wy
Now, . P W=
R~ oR (- W=mg)
- P_v
WS oR _(12.1)
FromFig. 12.2, \
,D
tan 6= W=g s
P e v
Thus, W -B—-g—Fr'
- ., 2
B~ gR
Bv? .
= e = Q‘R ..(12.2)

- P
Here the tetm (W) is called as centrifugal ratio.

‘ . ) P v
Thus Centrifugal ratio = W gR
NOTE: For roads, the maximum b;;missiblegémrifugal réfio.-is 1/4 aHd that for railways is 18 -
) 2 )
Thus for roads, == l:-‘/—‘
! e W 4
where v, = Design speed for maximum centrifugal ratio for roads j.e. —
P 1 %4
For railways, — =22
y w3 gR
where v, = Design speed for maximum centrifugai ratio for railways i.e. 3
Thus,
Rid
v I _ 5
v, ~9RI8
= vy = V2v, (123

Thus, for roads, maximum design speed can be V2 times (or 41.4%) higher than maximum
design speed for railways.
12.3.1 Equilibrium Cant
When resultant R is normal to the road (orrail) surface, in that case, equal pressures act on the wheels on
either side’. This is achieved when super-elevation (e) is provided as per Eq. (12.2). When actual cant
provided is same as that required as per Eq. (12.2), then this is called as equilibrium cant.
1232  Cant Deficiency
When the actual cant provided is less than that given by Eq. (12.2) then this is called as can deficiency.

12.4 Length of Transition Curve
(a) Method of Arbitrary Gradient
Here the length of the transition curve is determined by the arbitrary rate at which super-elevation is

provided.
Let e = Total super-elevation provided at the junction of transition curve with
the circular curve
Thus L=ne
where rate of super-elevation is # in 71.
Bv?
Also e= _c,l?—
nBy
Thus L=ne= = ..(12.4)



(b) Method of Time Rate
In this method, the super-elevation is provided at an arbitrary rate as fixed usually by experience.

Let r, = Time rate of super-elevation i.e. a super-elevation of r," meters is
provided in a distance travelled by a vehicle in one second.
Thus t= L
v
L
Now e= f1f = ﬁ—
v ;
i [ .e.z— E_V_i_\_/‘__BVQ (125
e L= N oR |n " gRn ..(12.5)
(c) Method of Rate of Change of Radial Acceleration

This is the most commonly adopted method. In this method, the length of the transition curve is
fixed based on the rate of change of radial acceleration. :

Let -0 =-Rate of change of radtal acceleratlon
Thus, radklacce!eratnon {a)attained after time * ‘tlis glven by,
: a= at—gL— :
Vo
Sy
g %
But St as =
; R
2
R L.
Thus RS
V3
or L= — (126
oF (12.6)

12.5 Ideal Transition Curve

*  Atransition curveis a curve of vanable radius lnserted between the straight and the circular path so
that centrifugal force comes into play gradually which reduces the discomfort to the passengers.

¢ This centrifugal force is required-to vary with time at a constant rate.
Let L = Length of transition curve traversed by avehicle in time 't as measured

from the point of commencement of transition curve i.e. junction of -

straight and transition curve.

Thus L=vt
L
or t=—
V .
Let ‘ r= Radius of transition curve at any point
Now centrifugal force is given by,
wv?
= o
In order to vary the centrifugal force (P) with time, P should vary with ti.e. L/v
L
Thus Poc —
v

w2 L
or —_— e —

gr v
Now since, W, g and v are constant,

1
L o< 7 i.e. Lr=constant .(12.7)

e Eq.(12.7) represents the equation of an ideal iransition curve usually called as clothoid, the Glover
spiral or the Euler spiral.
e Atthe end of the transition curve i.e., when the transition curve meets the circular curve, r= R
And thus,
LR = constant
Ir = LR = Constant ..(12.8)
where I =length of transition curve at radius of curvature ‘7

12.5.1 Intrinsic Equation of an Ideal Transition Curve : o

Fig. 12.3 shows fhe' transition curve AC S : .
between the straignt line AD.and the curve of radius R. S ) : R

Thus line ADiis tangent to the transition curve
at A. Let point Bis on the transmon curve atacurved
distance ‘/’ from A. .

Thus Ir= LR Constant

Circular
curve

where r = Radius of the transition
curve'at any point D
Now, since  Ir = LR = Constant A : & & G G
, RL Fig. 12.3 Intrinsic equation of an ideal transition curve
= = —
I
Let o= lnclmatlon of the tangent at B'o the initial tangent AD
Thus curvature is,
' 1_9
r = odl
‘ al
= . do = -
!
But ; = H
1di
= — ..(12.9
Thus, do AL ( )
Integrating Eq. (12.9) we get,
12
G= + C
Now at pomtA /=0, ¢l 0 and thus C 0
’ 7z ‘
Therefore 9= AL .(12.10)

The Eq. (12.10) represents the equation of CLOTHOID which is an ideal transition curve.
Eq. (12.10) can also be written as



= 2Rl = KJp

where K= J2RL
At point ‘C", =Land$= b
: 2L
Thus, . = ==
%= 5h = o7

Here ¢, is the spiral angle i.e. the angle between tt

curve.

12.5.2 Equation of an ideal Transition Curve in Cartesian Co-ordinates

!
|

Sx —*I

Fig. 12.4 Ideal transition curve in Cartesian co-ordinates

(12.41)

(12.12)

1e initial tangent anc’i the final tangent points on the

The intrinsic equation of an ideal transition curve as arrived in preceding section is not very convenient
to use. Thus the equation for an ideal transition curve in Cartesian co-ordinates is derived below.

Let there is a point B on the transition curve distant! from the starting point T. Assuming point T as
origin, the co-ordinates of point Bis (x, Vi Let BB, is the tangent at Bwhich makes an angle of ¢ with

the initial tangent TD.

Let there is a point P distant 8 from B. Thus the co-ordinates of Pare (x + &) and {y + 8y). The
PN

tangent PP, at Pmakes an angle of (¢ + 5¢) with the initial tangent 7D.
From Fig. 12.4,

Now from Eq. (12.11), 1= Ko

K’ i
Differentiating Eq. (12.11), o = z—ﬁdq)
Substituting this value of of in the expression for dv. in Eq.(12.13)

. ST
< = df.cosé = —~—{ 9,0 - }dq)
\

K
2 oy 24Ty

.(12.13)

= dr = g(qr”? -%J%i —.‘..]dq,

Integrating, x= g[m”? —%q>5’2+q;—:)/85 -J
P : x = K\/&f[1_1_10_¢2+—;—46 —J

= | x= 1(1—-1—16¢2 +2%4§ —]

Now 1= Ko

Substituting this value, " “x = 1[1— l?’+_-—,-

10K* 216K

Also, K= EAL

D T L IER T
B I R e R
% ( 40R7 3456R°L

Similarly the expression for y can bebob't_ained as ‘fo!}Q‘WS;'v % .

S
5, = Sin¢ -
SR 3 s
= dy = dl.sin¢=dl(¢—%!—+%? —] :
K
Now, al = —=d¢
2o
3 45
dy = dl‘sinq;:dl(q)—‘%—ﬁ%!— —]
K( o 52 o002
= dy = '27(¢ BRI do
¢3/2 ¢7/2 ¢11/2
Integrating, y= K(T—KJHBQO —.... |dd
Now, l= K\/q—>
P I ®
= —5| - —gt———... |d
Ths, y= SKZ[ 14K* " 440K® ]¢

A I ® o
= — | —_—
Y="6RL| ~ 56RZZ  7040R°L ¢

(~1=Ks)

..(12.14)

.(12.15)

..(12.16)



¢ The Cubic Spiral
FromEq. (12.16)

13

Neglecting all the terms beyond the first term, we have

Eq. (12.17) represents the equation of a cubic spiral and the same is

shown in Fig. 12.5

Alternatively, the equation of cubic spiral (Eg. 12.17) can also be derived

as per the following procedure.

From Fig. 12.4,
Yoy
For very small angles,
sng~g
2
But, = —
= 2
O A
SO 0= oA
2
- & _
dl — 2RL
2
= dy = —dl
V= o
. 3
Integrating, v=gmt c
Atpoint T, of Fig. 12.4 1=0, y=0and thus C=0
&
Y= R
12.6 The Cubic Parabola
FromEq. (12.14)
[ ®

Y R A
* L 40R?I? " 3456 R4

FromEq. (12.16)

N I IS
y= Tepz e T oo
GHL 56R L° 7040R%L

I I
T Ry by
6RL|  56R%?  7040R*L

{12.17)

Fig. 12.5 Cubic Spiral

fromeq. (12.10)

which is same as Eq. (12.17).

Inthe above two equations, if all the terms after the first term are neglected then,

x=1
_ L
= oRL
N 12.18
= Y= BAL ~(12.18)
Eq. (12.18) is the equation of cubic parabola.
Here it has been assumed that
sing >~ ¢
cos¢ ~ 1
But in case of cubic spiral, the only assumption made was,
sing ~ ¢ o
e Thus cubit spiral is better than cubic parabola and consequently it represents the true transition

curve. )
¢ However, since cubic parabola is expressed entirely in terms of Cartesian coordinates (x, y)and
thus setting out of cubic parabola is much easier than setting out the cubic spiral.

NOTE There is not any significant difference between cubic parabola and cubic spiral for deviation

B

12.6.1 Minimum Radius of Curvature of Cubic Parabola

angles upto 12°. But for deviation angles larger than 12°, cubic parabola does not give accurate
Tesults and thus cubic sp|ral is resorted to.

¢ The cubic parabola has a very peculiar characteristic that its radius of curvature decreases from
infinity at the point of intersection of straight path with circular path (¢ = 0) to a minimum value at
¢ = 24° 05" 41”. After this point, the radius of curvature starts increasing again.

¢ Duetothis characteristic of cubic parabola, it does not serve the purpose of transition curve beyond
0 =24°05" 41",
The expression for minimum radius of curvature (rin) is derived as below:
From Eq. (12.18)

3
X
= = =(Cy°
Yo R
t C= !
where, = AL
. - ay 2
Differentiating, a 3Cx
l dy
But, gy = and
. 302 = tan¢
) [tang
= X=

\"ac



d%y ftanq; . ,}3602tan¢
Al —% = 6Cx= — = [ =T
so, P 6Cx =6C, C T Ji2Ctang
The radius of curvature (r) is given by
3/2
_dl 2
[H(dx) }
&y
dx?

r=

(1+ tan? 4))3/2

= = ————*t

12Ctan¢

sec®o

= e

12Ctan¢
’

J12Csingcos® ¢

= i r= C..(12.19)

For‘r’to be minifnum,
dy =0 ,
From Eq. (12.19), itis evident that ‘r will be minimum when denominator is maximumie., 12 C sing

cos® is maximum i.e.,

%(1263in§cos5 0) = 0

= cosb¢-5cos*¢sin?g =0
= cos*d (cos?p~5sin%y) = 0
Thus either cbs“c}) =0
or (cos?6 - 5sin%p) = 0 .
= 6= 90°
1 L]
or tan% = 3

But ¢ = 90° is not possible.

tan’p = —
1 )
= tang = ﬁ (Neglecting —ve sign)
= ¢ = 24.0948° = 24° 05" 41.4” ..(12.20)

Thus, Iin 18
1 ~ 1
VizCsingcos® ¢ \/1 2C(sin24.0948°)(cos® 24.0948°)

’
T 1.762285/C

1
6RL

1

o = ————=—=
1.762285, | —
6RL

But, C=

= r

min = 1.38995VARL =~ 1.39JVRL

..(12.21)

Therefore for deflection (or deviation) angles greater than 24° 05’ 41”, cubic parabola will not serve

the purpose of transition curve.

12.6.2 Deflection Angle

e AsshowninFig. 12.6, let there be a transition
curve starting from point 7,. Pand Q are two
points on transition curve with Cartesian
coordinates (x, y) and (x + 8x, y +8y)
respectively.

¢ Chord T,P makes an angle of o with initial
tangent at 7. The tangent at P(x, y) makes-an
angle of ¢ with initial tangent at T,.

tana = 4
* s Fig. 12.6 Deflection angle
X
But Y=6AL
2YoRL X 1222
tano = . 6AL ..(12.22)
ay_df x|
tand = < delerRL]™ ..(12.23)
FromEgs. (12.22) and (12.23)
tang = 3 tano ..(12.24)
For small values of ¢ and o,
=30
= o % ..(12.25)
of 12 2 o
= o= 328 = AL (Where ais in radians) ...(12.26)
2 ? 180
= —rad= —x—d
= “= BRL T eAL”
12180 - 2

2 g
= ——X—x60 min. = 572.96| — | min. = 577/ =— | min.
X - X in (RLJ 57 (RL] min



At point D(x, y) where I = L

R L
%= B6RL 6RL 6R
7?22 L
q)s: Eﬁz—ﬁ—@-&'xs rad

12.7 Insertion of the Transition Curve

Fig. 12.8 Shift in transition curve for insertion

12.27)

(12.28)

¢ Thetransition curves are inserted between the straight lines 7Vand T*Vby shifting the circular curve
slightly inwards.
¢ Asshownin Fig.12.6, the original circular curve is from the point of curvature (PC) to the point of
tangency (PT) with its center at O. Now the shifted position of the circular curve is from SCto-CS
with the new center at O”. The transition curves are the two from TSto SCand CSto ST.
From Fig. 12.8 let, TS = Tangent to spiral point (T)
SC = Spiral to circular point (C)
CS = Circular curve to spiral point {C”)
ST = Spiral to tangent point (T7)
Now the distance ABthrough which the main circular curve is shifted inwards in order to accommodate
the transition curve is called as shift (s) and also sometimes called as throw.
The distance'between the original center Oand the new center O’ is usually very small and thus it is
a usual practice to represent both the points by one point as O.

12.8 Characteristics of Transition Curve

¢ The angle between the initial
tangent TV and the tangent CC;
(which is common to both the
fransition curve and the circular
curve at point C) is known as spiral
angle (¢,).
Starting with the initial tangent TV,
draw a line OA perpendicular to

1§ Initial tangent

TV at A Also draw CE A Ci C. v D
perpendicular to OAat E. f X |
INDOAC,C., Fig, 12.9 Qharacterisrics of transition curve
ZLOAC, = LC,CO=90°
ZAOC + LAC,C = 180°
Also, ZAC,C+ £CC,C, = 180°
= ZAC,C = 180°~¢,

ZAOC = 180°-AC,C
= 180°-(180° - ¢) = 0,
Thus angle subtended by half of the transition curve at the center is equal to the spiral angle.
Therefore angle subtended by the shifted circular curve at the center will be (A-2¢,).

From the Fig. 12.9

BC=Rg,

L

But from Eq. (12.12), o= R
L
hu C=—
Thus, , B >

_ o L
Assuming arc CF to be approximately equal to the curve BC, CF = 5 Thus the shift bisects the

transition curve TC.



12.8.1

12.8.2

Shift (s)=AB = EA- EB
=Y~(R-Rcos¢,)

=Y ~2Rsin? (&)
2

_y-A%
veoff)

_Le
" 6AL _6R
Therefore,
(62)_ 2 f¢?
Shift (s) = 95 =5 A=
YR 5 J P
2 (R _ 2
TR 2\ T 24R
Also, y co-ordinate of F= FA
_ (W2 s
BAL 2
Thus the transition curve TC bisects the shift ABat F.
Total Tangent Length
The distance TVis known as the tangent length.
TV=TA+ AV
= (X=Rsingg)+(R+s) tan(%)
where X = x co-ordinate or abscissa of point C
Now, = - =
o op andX=L
. A L
Thus, Tangent length = (H+S)tan(—)+(L —Rx———)
2) \ 2R
= (l?+s)tan(éj+A
2) 2
Total Length of Curve

The total length of the curve is given by,
Total length of curve = T8 + BB’ + B'T

nr
+(ﬁ)(A —20)+L

"

it

2L+(180)(A 20,)

.(12.29)

..(12.30)

..(12.31)

Alternatively, the total length can be found by considering the arc BB'.

Thus, Total length of the curve = TB + BB’ + B'T
' L. mRI L
= —t—t=
2 180 2
nRI
= L+——
. ( + 180 ..{(12.32)

12.8.3 'i.ength of Lbng Chord
In transition curve, long chord is the line joining the points Tand C as shown in Fig. 12.8. lts length is
given by, .
Lengthoflong chord = /(X2 + Y?)
' L2
2.
o (BH)
12.9 Lemniscate as a Transition Curve (at the end of Circular Curve)

For a lemniscate to be transitional throughout, the polar deflection angle (a,) should be ¢/6. However if
< /6 then it becomes essenual to |ntroduce a ctrcular curve between the two lemniscate transition curves.

=J2+as? (12.33)

\
\ Circular
\

\, Curve

\

\
Transition R
Curve —  __pGe------em-- Sl

O -

S

C c, A, v

Fig. 12.10 Lemniscate as a transition curve

Fig.12.10 shows a lemniscate curve TC which is used as a transition curve between the circular curve
CC’ and the tangential point T.
Line OV bisects the ATVT’ at vertex V (due to symmetry) where TV and T’V are the tangents of the
curve.
Draw CA, parallel to tangent T Vintersecting OVat A,. Draw CC, and A,A, normal to tangent TV.
Let a, = Polar deflection angle
¢, = Total deviation (or deflection) angle at junction C

Thus, ZCTV = a,



ZCC‘ V= [N
Tangent length, V=TC,+ CoA, + AV

Letlength of chord TC = B = Length of extreme polar ray at otg = s
3

Thus TG, = B cosa
180° -
ano- (B222) 8
2 2
InAAC, v, ext. LOAC= LAC,V+ £C,VA
{ A
= +)90° - =
‘I’s k 2)
Thus, ZAOC = 90°= ZAOC = 90° - [m +(90° —%]]
ST A ' \
= B=3-0,
R A
. sin 90°——)
From AOCA, : £o = —(‘
. CA; (A
| sin 5—%)
: Rsin(%-(ps)
P CA s ——— <
cos(éJ
2
_ A (A ’ AY
= Hsec(a)[sm(—éjcos% ‘COS(E)S‘”%J
A
CA, = CoA; = R[tan(EJoos‘bs —sin¢5J
Now, AV = AA, cot(90°-§J

"

cc, cot(90° - %)

1]

Bsinag tan(é)
2,

Adding the above equations,
V= TG, + CA, + AV

_ A .
= Bcosay +H[tan(5)cos¢s —sm¢s]+ Bsino tan(g«) ..(12.34)

Thus by measuring back the distance TV i i i i
o be oo e TVirom the point of intersection V, the Iocatngn of tangent point T

12.10 Comparison of Transition Curves

) 2
Clothoid o= TRL
Itis an ideal transition curve but is difficult to set out in field.
Il
. iral _
~ Cubic Spira Y= A

This transition curve is arrived at by neglecting higher order terms of the series and is thus not an ideal
transition curve. But it is relatively easy to set out as compared to clothoid.

XB

Y= BAL
Here more assumbiions are made as compared to cubic spiral and thus it also does not represent an
ideal transition curve. However it is the most easy curve to set out in field.

Cubic Parabola

flustrative Examples

: Two straight alignments intersect at a chainage of 4687.50 m with a deflection
angle of . A circular curve of radius 380 m with transition curves of 50 m each on the two ends.
Compute the data for setting out the curve with page at 20°'m for circular curve and 10 m for transition

curve.
Solution:
L 50

Spiral angle () = ’;}E‘ =53 = 0.0658rad =377°

Thus central angle of circular curve = A -2
.= 43°-2(8.77°) = 35.46°
5 50°

Thus shift of circular curve (s) = ey 0.2741m

Totaltangentlength (7)) = (R+s) tan(%) + 50

4
= (380 +0.2741) tam('—g) + 50 =174.79m
L2 2
R{A -2 380°(43° -2 x3.77°
Length of circular curve = T \?80" 9s) _ mx380% T X ! = 235.18m
1

Computation of chainages
Chainage of start of transition curve (T,)
= 4687.50 - T?ta! tangent length
= 4687.5-17479=4512.71m —
Chainage of junction of transition curve and circular P P,

curve (P,) «
= Chainage of T, + Length of transition curve
=4512.71+50=4562.71m




Chainage of junction of circular curve and transition curve (P,)
= Chainage of T, + Length of transition curve
=4512.714+50= 456271 m
Chainage of junction of circular curve and transition curve (P,)
= Chainage of Py + Length of circular curve
= 4562.76 + 235.18 = 4797.89 m
Chainage of end of transition curve ( T,) = Chainage of P, + Length of transition curve
= 4797.89 + 50 = 4847.89 m !

‘Example12.3 Y straight road alignment takes a bend and gets deflected by 78°. The road is |
to be designed for a design speed of 80 km/hr with a circular curve associated with two cubic spirals
(as transition curves). The maximum rate of change of radial acceleration is 0.3 m/s?/s with a maximum
permissible centrifugal ratio of 1/4.

Determine:
(a) The radius of circular curve
(b) The length of transition curve
(c) The total length of the combined curve
(d) The chainages of prominent points if the chainage of point of intersection is 1245.65 m.
Solution:
80 %1000
Desi i = Tagpn s =22
esign speed in mfs (v) 3600 m/fs = 22.22.m/s
2
o . p_ve
(@) Max: Centrifugal ratio = W oh
1 22.222
= - = e
4 9.81x R
= R =20132m
Ve 2222

(b)  Length of transition curve, L=

oR " 03x20133 "~ 10165m
(c) Total length of combined curve

L, = Length of circular curve + 2 x Length of transition curve
nA(A - 2¢,) Lo

= 1.
150° +2x181.65
1, ~ j
Now. 0, = % = 2>1<i+532 =0.45115rad = 25.85° . !
201.32)(78° - 85° ;
1, - HE0132 188002X25 8 s 2x 18168
=9241+3633=45571m
(d) Total tangent length (T) = (R+9)tan (%) +-§-
2 2
Now, Shift (s) = L___18165 =6.83m

24R ~ 24% 201,30

T,= (201.32+6.83)tan(72—8]+ 181.65/2 = 259.38m

Chainage of start of curve (T,)
= Chainage of point of intersection (v) - Total tangent length ()
= 1245.65-259.38
=986.27m

, - Chainage of junction of circular curve and transition
curve (B,)
= Chainage of point P, +
Length of circular curve
= 1167.92 + 92.41
= 1260.33m

Chainage of end of curve (T,) N
= Chainage of point P, + Length of transition curve

= 1260.33 + 181.65
= 144198 m

ﬁéhblé 1'2;3:"'-" 75m wide road deflects through an angle of. 51°35". The forwz-.zrd chainagi
of interscion is 8778.5 m. A circular curve of 185 m radius is to b.e inserted for a desng'n. speed o
75 km/hr at a rate of change of radial acceleration of 0.47 m/s?/s. Find the length of transition .curve,
the maximum super-elevation of outer curve. If pegs are at 10 m interval then determine the chainages

of points.
Solution:
Design speed (v) = 75 km/hr = 20.833 m/s
’ vZ  20.833?
= —=———=0.23915
But N = R = 5 81x185

= o= tan” (0.23915)= 13.45 /

2

. e Vv
Now, tano = 5" oA
e= Btana=7.5x0.23915
=179m=~18m
Rate of change of radial acceleration,
' 2
v
= IR
20.8333
= 0.47 = 1(185)
= L =103.99m=>~ 104 m
Shift of circular curve due to transition curve
2 2
s= L— = -—1O4 =2.436m
24R  24x185
2 2 <3

Let equation of transition curve is, y = L = 6x185x104 = 115440




A) L . 1 (/R «x
| = (R —[+= - = ==
Total length oftangent (7,) = ( +s)tan(2)+2 = - L AL
51°35") 104 1Py«
1.85 + 2.436) —= , 1_ -
= (1.85+ ) an( 5 ) > o r d«® AL

= 90.58 + 52 = 142,58 m ; dy 22
Chainage of T, = Chainage of V- Total length of tangent (7) Integrating, TR G

dx  2RL
= 8778.5-142.58 = 8635.92 m 2
Chainage of Py = Chainage of T, + Length of and, y= g? +Cx+Co
transition curve -

= 8635.92 + 104 = 8739.92 m @

Atx=0, y=0and =0
Chainage of P, = Chainage of £, + Length of ax 6 -0 -0
transition curve T - .- 1= :3 2
= 8739.92 + 90.58 = 8830.5 m o

Y Y= =5
Chainage of T, Chalnage of P, + Length of transmon curve o ) ) T : 6AL
= 88305+104 8934.5m : : v

= d 2
- P o BT T R Now, rate of change of radual acceleration (o) = —(7]
A transition clirve is reqwred for acircular curve of radlus 210 m and the

gaugeis 1 .4m. The permlssmle super-elevatxon is70mm. The transition curve is to be so designed that : d (“ ‘] V_ _d_ = l’i
RL ot
e

no lateral pressure is imposed on the wheels. The rate of change of radial acceleration is to be kept at
0.25 m/s?%s. Starting from the first principles find the length of transition curve and the design speed.

IS}

. v
Solution: For no lateral pressure, R tano = e ——O Py
Let r=Radius of curvature atany point s(x,y) on the transition curve. 7 70 B "
- vee 19 om0 L 9g1x210
Thus, xo — i 1400 1400
At iel o B ’ : s “ = 103.005m?/s?
=L, r= . o :
The radius of curvature ‘r’ is given by, T‘a'g;‘;:je iy v = /103,005 /s = 10.149 my/s
a VT D — = 36.54 km/hr ~ 36 km/hr
1+(3§) Now, o = 0.25 m/s?/s
r= 3
a?y [ v
= | = = =025
dx? | RL . .
dy (o) ) = L= v (01497 19.91m = Length of transition curve
For small values of el gy | canbeignored. 025R 0.25x210
Thus Cor= 1
o d2y/dx2)
= I fji Q.1 Super-elevation (e) can be expressed as: Q.2 The equation of cubic spiral is given by:
roodx? B2 | B2 S b - _13_
_ _Ac (a) o (b) o @ y= SAL ( 6AL
"~ Radius . IE
1 8 © Bv® () By ‘ © v? =S (d) None of these
= Radius ~ Arc i gR i




Q.3 Spiralangle (9,)is equal to:

Q4

Q.5

Q.6

Q7

Q.8

Q.9

L L
(a) ] (b) o5
L L
© = @ &5

The shift(s) of a circular curve is given by:

2 . 2
@ =5 ®) °=55

L2
(©) S:ﬁ (d) None of these

For an ideal transition curve:

(@) Centrifugal force must be proportional to the
curvature : i

(b) Length of curve must be inversely
proportional to curvature

Y

(c) Intrinsic equation is ¢ =R

(d) All of these

An ideal transition curve is:
(a) aclothoid

(b) acubic parabola

(c) aparabola

(d) Bernoullis lemniscate

Perpendicular offset from the junction of a
transition curve and circular curve to the tangent
is equal to:

(@) 4 times the shift

(b) 2 times the shift

(¢) Half times the shift
(d) Shift

Generally, the transition curve used in highways
is:

(@) Cubic parabola

(b) Cubic spiral

(c) Clothoid

(d) Bernoullis lemniscate

Atransition curve is provided between a straight
and a curve because:
(a) it bisects the shift

(b) agradual change in super elevation can be

) accommodated in an easy way

(c) its radius of curvature increases or decreases
gradually

(d) its eliminates the possibility of derailment

Q.10 The maximum value of centrifugal ratio on roads
is usually taken as:
(@ /8
(c) 1/4

(b) 1/2
(d) 1/16

Q.11 For roads, the maximum design speed is
% than railway.
(a) 41.4,lower (b) 41.4, higher
(c) 30, higher (d) 10, higher

Q.12 Cubic parabola cannot be used beyond deviation
angle of
(@) 26°25"11”
(c) 20°05 16"

(b) 24°05" 41~
(d) 35°43"11”

Q.13 Pick out the correct statement(s)
(i) Cubic parabola is easy to set out in field
than cubic spiral.
(i) Due to less number of assumptions, cubic
spiral is better than cubic parabola.
(@) (i)only (b) (iyand (i)
{c) (i) only (d) Neither (i) nor (ii)

Q.14 The term “SHIFT" is also known as

(a) Displacement (b) Extension
(c) Adijustment (d) Throw

Q.15 The shift _____
(a) Trisects
(c) Pentsects

the transition curve
(b) Quadsects
&,
(d) Bisects

Q.16 For a lemniscate to'Be transitional throughout,
polar deflection angle (c) should be

@ /6 () ¢/3

() ¢/2 (d) ¢
Ll ' AﬁsWé}r’s;ﬁ: wi
1. () 2.() 3.() 4.(a 5 (d
6. (& 7.0 8(d) 9.(b) 10 (0)
1) 12.(b) 13.(b) 14.(d) 15. (q)

16. (a)

Ex.1

Compute the required tangential offsets for
setting out a transition curve of 125 m length
with 20 m peg interval. The radius of circular
curve is 235 m. Assume transition curve to be
(a) cubic spiral and (b) cubic parabola.

Three straights PQ, QRand RShave WCBs of
45°,90° and 30° respectively. The straight PQ
is required to be connected to RSby a reverse
curve made of two circular curves of equal radii.
The straight QRis the common tangent for the
two inner transition curves and is 905 m long.
If maximum speed limit is 100 km/hr then
calculate the radius of circular curve. The rate
of change of radial acceleration is 0.3 m/sec3.



