11th Chemistry Book Back Questions - New Book

1.Basic Concepts of Chemistry and Chemical Calculations

I. Choose the Correct Answer

1. 40 ml of methane is completel	y burnt using 80	ml of oxygen at room temperature. The volume of gas
left after cooling to room tempe	rature is	
(a) 40 ml CO₂ gas		(b) 40 ml CO ₂ gas and 80 ml H ₂ O gas
(c) 60 ml CO_2 gas and 60 ml	H ₂ O gas	(d) 120 ml CO ₂ gas
2. An element X has the following	ig isotopic compo	osition ${}^{200}X = 90 \%$, ${}^{199}X = 8 \%$ and ${}^{202}X = 2 \%$. The
weighted average atomic mass	of the element X	L is closest to
(a) 201 u (b) 202 u	(c) 199 u	(d) 200 u
3. Assertion : Two mole of gluco	ose contains 12.04	44 x 10^{23} molecules of glucose
Reason : Total number of entitient	ies present in one	e mole of any substance is equal to 6.02×10^{22}
(a) both assertion and reason	are true and the	reason is the correct explanation of assertion
(b) both assertion and reason	are true but reas	on is not the correct explanation of assertion
(c) assertion is true but reas	son is false	
(d) both assertion and reason	are false	
4. Carbon forms two oxides, nam	nely carbon mono	oxide and carbon dioxide. The
equivalent mass of which elem	ent remains cons	tant?
(a) Carbon	(b) oxyg	en
(c) both carbon and oxygen	(d) neithe	er carbon nor oxygen
5. The equivalent mass of a trival	lent metal element	nt is 9 g eq ^{-1} the molar mass of its anhydrous oxide is
(a) 102 g (b) 27 g	(c) 270 g	(d) 78 g
6. The number of water molecule	es in a drop of wa	ater weighing 0.018 g is
(a) 6.022×10^{26}	(b) 6.022	$x \ 10^{23}$
(c) 6.022 x 10²⁰	(d) 9.9 x	10 ²²
	-	ate (containing no thermally decomposable impurities) of carbon dioxide gas. The percentage of impurity in the
-	(c) 16 %	(d) 8.4 %
	. /	30 g of acetic acid solution, the residual solution is found
-		lioxide released in the reaction is
(a) 3 (b) 0.75	(c) 0.075	(d) 0.3
		itres of Cl2 (g), each at 273 K at 1 atm the moles of HCl
(g), formed is equal to		
(a) 2 moles of HCl (g)	(b) 0.5 mole	es of HCl (g)
(c) 1.5 moles of HCl (g)	(d) 1 moles	
		ly strong oxidising agent. Which of the following
reactions does not show oxidist		
(a) $Cu+ 2H_2SO_4 \rightarrow CuSO_4 \rightarrow CuSO_4$	-	
(b) C+ 2H ₂ SO ₄ \rightarrow CO2+2SO		
(c) $BaCl_2 + H_2SO_4 \rightarrow BaSO_4$	D ₄ +2HCl	

(d) none of the above

11. Choose the disproportionation reaction among the following redox reactions.

(a) $3Mg(s) + N_2(g) \rightarrow Mg_3N_2(s)$

(b) $P_4(s) + 3NaOH + 3H_2O \rightarrow PH_3(g) + 3NaH_2PO_2(aq)$

(c) $Cl_2(g) + 2KI(aq) \rightarrow 2KCl(aq) + I_2$

(d) $Cr_2O_3(s) + 2Al(s) \rightarrow Al_2O_3(s) + 2Cr(s)$

12. The equivalent mass of potassium permanganate in alkaline medium is

 $MnO4^{-} + 2H_2O + 3e^{-} \rightarrow MnO_2 + 4OH^{-}$

(a) 31.6 (b) **52.7** (c) 79 (d) None of these

13. Which one of the following represents 180g of water?

- (a) 5 Moles of water (b) 90 moles of water
- (c) $6.02 \times 10^{23} / 180$ molecules of water (d) 6.022×10^{24} molecules of water
- 14. 7.5 g of a gas occupies a volume of 5.6 litres at 0^0 C and 1 atm pressure. The gas is (a) **NO** (b) N_2O (c) CO(d) CO_2

15. Total number of electrons present in 1.7 g of ammonia is

(a) 6.022 \times 10²³ (b) $6.022 \times 10^{22} / 1.7$

(d) $6.022 \times 10^{23} / 1.7$ (c) $6.022 \times 10^{24} / 1.7$

16. The correct increasing order of the oxidation state of sulphur in the anions

 SO_4^{2-} , SO_3^{2-} , $S_2O_4^{2-}$, $S_2O_6^{2-}$

(a)
$$SO_3^{2-} < SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$$

(c)
$$S_2O_4^{2-} < SO_3^{2-} < S_2O_6^{2-} < SO_4^{2-}$$

17. The equivalent mass of ferrous oxalate is

(a) molar mass of ferrous oxalate / 1

(c) molar mass of ferrous oxalate / 3

(b) $SO_4^{2-} < S_2O_4^{2-} < S_2O_6^{2-} < SO_3^{2-}$ (d) $S_2O_6^{2-} < S_2O_4^{2-} < SO_4^{2-} < SO_3^{2-}$

(b) molar mass of ferrous oxalate /2

(d) none of these

18. If Avogadro number were changed from 6.02 x 10^{23} to 6.022 x 10^{20} , this would change

(a) the ratio of chemical species to each other in a balanced equation

- (b) the ratio of elements to each other in a compound
- (c) the definition of mass in units of grams

(d) the mass of one mole of carbon

19. Two 22.4 litre containers A and B contains 8 g of O₂ and 8 g of SO₂ respectively at 273 K and 1 atm pressure, then

(a) Number of molecules in A and B are same

(b) Number of molecules in B is more than that in A.

(c) The ratio between the number of molecules in A to number of molecules in B is 2:1

(d) Number of molecules in B is three times greater than the number of molecules in A.

20. What is the mass of precipitate formed when 50 ml of 8.5 % solution of AgNO₃ is

mixed with 100 ml of 1.865 % potassium chloride solution?

(a) **3.59 g** (b) 7 g (c) 14 g (d) 28 g

21. The mass of a gas that occupies a volume of 612.5 ml at room temperature and pressure $(25^{\circ} c \text{ and } 1)$ atm pressure) is 1.1g. The molar mass of the gas is

(a) 66.25 g mol^{-1}	(b) 44 g mol⁻¹
(c) 24.5 g mol ⁻¹	(d) 662.5 g mol^{-1}

- 22. Which of the following contain same number of carbon atoms as in 6 g of carbon-12. (b) 8 g methane (a) 7.5 g ethane (c) both (a) and (b) (d) none of these 23. Which of the following compound(s) has / have percentage of carbon same as that in ethylene (C_2H_4) (b) ethyne (a) **propene** (d) ethane (c) benzene 24. Which of the following is/are true with respect to carbon -12. (a) relative atomic mass is 12 u (b) oxidation number of carbon is +4 in all its compounds. (c) 1 mole of carbon-12 contain 6.022×10^{22} carbon atoms. (d) all of these 25. Which one of the following is used as a standard for atomic mass. (a) ${}_{6}C^{12}$ (b) $_{7}C^{12}$ (c) $_{6}C^{13}$ (d) ${}_{6}C^{14}$ **2.Quantum Mechanical Model of Atom** I. Choose the correct answer 1. Electronic configuration of species M^{2+} is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^6$ and its atomic weight is 56. The number of neutrons in the nucleus of species M is b) 22 c) **30** a) 26 d) 24 2. The energy of light of wavelength 45 nm is a) 6.67×10^{15} J b) 6.67×10^{11} J c) 4.42×10^{-18} J d) 4.42×10^{-15} J 3. The energies E_1 and E_2 of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths ie λ_1 and λ_2 will be a) $\lambda_1 / \lambda_2 = 1$ b) $\lambda_1 = 2 \lambda_2$ c) $\lambda_1 = \sqrt{25} \times \sqrt{50} \lambda_2$ d) 2 $\lambda_1 = \lambda_2$ 4. Splitting of spectral lines in an electric field is called a) Zeeman effect b) Shielding effect d) Stark effect c) Compton effect 5. Based on equation $E = -2.178 \times 10^{-18} \text{ J} (z^2/n^2)$, certain conclusions are written. Which of them is not
 - correct ?a) Equation can be used to calculate the change in energy when the electron changes orbit
 - b) For n = 1, the electron has a more negative energy than it does for n = 6 which means that the electron is more loosely bound in the smallest allowed orbit
 - c) The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.

d) Larger the value of n, the larger is the orbit radius.

6. According to the Bohr Theory, which of the following transitions in the hydrogen atom will give rise to the least energetic photon ?

a) n = 6 to n = 1b) n = 5 to n = 4c) n = 5 to n = 3d) n = 6 to n = 5

7. Assertion : The spectrum of He⁺ is expected to be similar to that of hydrogen Reason : He^+ is also one electron system.

- (a) If both assertion and reason are true and reason is the correct explanation of assertion.
- (b) If both assertion and reason are true but reason is not the correct explanation of assertion.
- (c) If assertion is true but reason is false
- (d) If both assertion and reason are false
- 8. Which of the following pairs of d-orbitals will have electron density along the axes ? ANSWER: C

 d_{z^2}, d_{xz} b) d_{xz}, d_{vz} c) $d_{z^2}, d_{x^2-v^2}$ d) $d_{xv}, d_{x^2-v^2}$ a)

9. Two electrons occupying the same orbital are distinguished by

- a) azimuthal quantum number b) spin quantum number
- d) orbital quantum number c) magnetic quantum number
- 10. The electronic configuration of Eu (Atomic no. 63) Gd (Atomic no. 64) and Tb (Atomic no. 65) are a) [Xe] $4f^6 5d^1 6s^2$, [Xe] $4f^7 5d^1 6s^2$ and [Xe] $4f^8 5d^1 6s^2$
 - b) [Xe] $4f^7$, $6s^2$, [Xe] $4f^7$ $5d^1$ $6s^2$ and [Xe] $4f^9$ $6s^2$
 - c) [Xe] $4f^7$, $6s^2$, [Xe] $4f^8$ $6s^2$ and [Xe] $4f^8$ $5d^1$ $6s^2$
 - d) [Xe] $4f^6 5d^1 6s^2$, [Xe] $4f^7 5d^1 6s^2$ and [Xe] $4f^9 6s^2$
- 11. The maximum number of electrons in a sub shell is given by the expression
 - a) $2n^2$ b) 2l + 1c) **4l** + **2** d) none of these
- 12. For d-electron, the orbital angular momentum is ANSWER: D
 - b) $\frac{\sqrt{2h}}{2\pi}$ c) $\frac{\sqrt{2\times 4} h}{2\pi}$ d) $\frac{\sqrt{6} h}{2\pi}$ a) $\frac{\sqrt{2h}}{2\pi}$
- 13. What is the maximum numbers of electrons that can be associated with the following set of quantum numbers ? n = 3, l = 1 and m = -1

a) 4 b) 6 c) 2 d) = 10

14. Assertion : Number of radial and angular nodes for 3p orbital are 1, 1 respectively.

Reason : Number of radial and angular nodes depends only on principal quantum number.

(a) both assertion and reason are true and reason is the correct explanation of assertion.

(b) both assertion and reason are true but reason is not the correct explanation of assertion.

(c) assertion is true but reason is false

(d) both assertion and reason are false

15. The total number of orbitals associated with the principal quantum number n = 3 is

16. If n = 6, the correct sequence for filling of electrons will be,

a) ns \rightarrow (n - 2) f \rightarrow (n - 1)d \rightarrow np

c) ns \rightarrow (n - 2) f \rightarrow np \rightarrow (n - 1) d

b) ns \rightarrow (n - 1) d \rightarrow (n - 2) f \rightarrow np

d) none of these are correct

17. Consider the following sets of quantum numbers :

	n	1	m	S
i.	3	0	0	+1/2
ii.	2	2	1	-1/2
iii.	4	3	-2	+1/2

iv. 1	0	1 +1/2	2
v. 3	0	-1 +1/2 3 -1/2	
			ntum number is not possible ?
	-	_	b) (ii), (iv) and (v)
			d) (ii), (iii) and (iv)
c) (i) and (ii			
•			with atomic number 105 can have $(n + l) = 8$?
a) 30	b) 17	c) 1	
			of $3d_{x^2-y^2}$ orbital is
a) zero	b) 0.5		
		ition and mo	omentum are equal, then minimum uncertainty in velocity is
ANSWER: C			
a) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$		d) $\sqrt{\frac{h}{\pi}}$	c) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ d) $\frac{h}{4\pi}$
21. A macrosco	pic partio	cle of mass	100 g and moving at a velocity of 100 cm s ⁻¹ will have a de Broglie
wavelength of	f		
a) 6.6×10^{-2}	²⁹ cm	b	$6.6 \times 10^{-30} \text{ cm}$
c) 6.6 × 10 ⁻³	³¹ cm	d) 6.6×10^{-32} cm
22. The ratio of	de Brog	lie waveleng	gths of a deuterium atom to that of an α - particle, when the velocity
of the former	is five ti	nes greater	than that of later, is
a) 4	b) 0.2	c) 2	2.5 d) 0.4
		ctron in the	3rd orbit of hydrogen atom is -E. The energy of an electron in the
first orbit will	be		
a) -3E	b) –E/3	3 c) –	E/9 d) -9E
24. Time indepe	endent So	chnodinger	wave equation is ANSWER: A
a) $\hat{H}\psi = E\psi$			b) $\nabla^2 \psi + \frac{8\pi^2 m}{h^2} (E+V) \psi = 0$
c) $\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2} + \frac{\partial^2 \psi}{\partial y^2}$	$\frac{d^2\psi}{dz^2} + \frac{2m}{h^2}$ (F	$(E-V)\psi = 0$	d) all of these
25. Which of the	e followi	ing does not	t represent the mathematical expression for the Heisenberg uncertainty
principle ?	ANSWE	R: D	
a) $\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$			b) $\Delta x \cdot \Delta v \ge \frac{h}{4\pi m}$
c) $\Delta E.\Delta t \ge \frac{h}{4\pi}$			d) $\Delta E \cdot \Delta x \ge \frac{h}{4\pi}$
3.PERIODIC CLASSIFICATION OF ELEMENTS			

I. Choose the correct answer:

- 1. What would be the IUPAC name for an element with atomic number 222?a) bibibiiumb) bididiumc) didibiumd) bibibium
- 2. The electronic configuration of the elements A and B are $1s^2$, $2s^2$, $2p^6$, $3s^2$ and $1s^2$, $2s^2$, $2p^5$
- respectively. The formula of the ionic compound that can be formed between these elements is
 - a) AB b) AB_2 c) A_2B d) none of the above.
- 3. The group of elements in which the differentiating electron enters the anti penultimate shell of atoms

are called

a) p-block elements b) d-block elements

c) s-block elements d) **f-block elements**

4. In which of the following options the order of arrangement does not agree with the variation of property indicated against it?

a) I < Br < Cl < F (increasing electron gain enthalpy)

- b) Li < Na < K < Rb (increasing metallic radius)
- c) $Al^{3+} < Mg^{2+} < Na^+ < F^-$ (increasing ionic size)
- d) B < C < O < N (increasing first ionisation enthalpy)
- 5. Which of the following elements will have the highest electronegativity?

a) Chlorine b) Nitrogen c) Cesium d) **Fluorine**

6. Various successive ionisation enthalpies (in kJ mol-1) of an element are given below.

IE ₁	IE ₂	IE ₃	IE ₄	IE ₅
577.5	1810	2750	11580	14820

The element is

a) phosphorus b) Sodium c) Aluminium d) Silicon

7. In the third period the first ionization potential is of the order.

a) Na > Al > Mg > Si > P	b) $\mathbf{Na} < \mathbf{Al} < \mathbf{Mg} < \mathbf{Si} < \mathbf{P}$
c) Mg > Na > Si > P > Al	d) Na< Al < Mg < Si < P

8. Identify the wrong statement.

a) Amongst the isoelectronic species, smaller the positive charge on cation, smaller is the ionic radius

- b) Amongst isoelectric species greater the negative charge on the anion, larger is the ionic radius
- c) Atomic radius of the elements increases as one moves down the first group of the periodic table
- d) Atomic radius of the elements decreases as one moves across from left to right in the 2nd period of the periodic table.
- 9. Which one of the following arrangements represent the correct order of least negative to most negative electron gain enthalpy

a) Al < O < C < Ca < F b) Al < Ca < O < C < F

	c) $C < F < O < Al < Ca$	d) $Ca < Al < C < O < F$
--	--------------------------	--------------------------

10. The correct order of electron gain enthalpy with negative sign of F, Cl, Br and I having atomic number

d) Br > I > Cl > F

9, 17, 35 and 53 respectively is

c) Cl > F > Br > I

a) $I > Br > Cl > F$	b) $F > Cl > Br > I$

11. Which one of the following is the least electronegative element?

a) Bromine	b) Chlorine	c) Iodine	d) Hydrogen
------------	-------------	-----------	--------------------

12. The element with positive electron gain enthalpy is

a) Hydrogen b) Sodium c) **Argon** d) Fluorine

13. The correct order of decreasing electronegativity values among the elements X, Y, Z and A with atomic numbers 4, 8, 7 and 12 respectively

a) $\mathbf{Y} > \mathbf{Z} > \mathbf{X} > \mathbf{A}$	b) $Z > A > Y > X$
c) $X > Y > Z > A$	d) $X > Y > A > Z$

14. Assertion: Helium has the highest value of ionisation energy among all the elements known

Reason: Helium has the highest value of electron affinity among all the elements known

a) Both assertion and reason are true and reason is correct explanation for the assertion

b) Both assertion and reason are true but the reason is not the correct explanation for the assertion

c) Assertion is true and the reason is false

d) Both assertion and the reason are false

15. The electronic configuration of the atom having maximum difference in first and second ionisation energies is

a) 1s², 2s², 2p⁶, 3s¹
b) 1s², 2s², 2p⁶, 3s²
c) 1s², 2s², 2p⁶, 3s², 3s², 3p⁶, 4s¹
d) 1s², 2s², 2p⁶, 3s², 3p¹

16. Which of the following is second most electronegative element?

a) **Chlorine** b) Fluorine c) Oxygen d) Sulphur

17. IE₁ and IE₂ of Mg are 179 and 348 kcal mol⁻¹ respectively. The energy required for the reaction

Mg → Mg²⁺ + 2 e- is a) +169 kcal mol⁻¹ b) - 169 kcal mol⁻¹ c) + **527 kcal mol⁻¹** d) - 527 kcal mol⁻¹

18. In a given shell the order of screening effect is

a) $\mathbf{s} > \mathbf{p} > \mathbf{d} > \mathbf{f}$	b) $s > p > f > d$
c) $f > d > p > s$	d) $f > p > s > d$

19. Which of the following orders of ionic radii is correct?

a) $H^- > H^+ > H$	b) $Na^+ > F^- > O^{2^-}$
c) $F > O^{2-} > Na^+$	d) None of these

20. The First ionisation potential of Na, Mg and Si are 496, 737 and 786 kJ mol⁻¹ respectively. The

ionisation potential of Al will be closer to

a) 760 kJ mol ⁻¹	b) 575 kJ mol ⁻¹
c) 801 kJ mol ⁻¹	d) 419 kJ mol ⁻¹

21. Which one of the following is true about metallic character when we move from left

to right in a period and top to bottom in a group?

a) Decreases in a period and increases along the group

- b) Increases in a period and decreases in a group
- c) Increases both in the period and the group
- d) Decreases both in the period and in the group

22. How does electron affinity change when we move from left to right in a period in the periodic table?

a) Generally increases	b) Generally decreases
------------------------	------------------------

c) Remains unchanged d) First increases and then decreases

23. Which of the following pairs of elements exhibit diagonal relationship?

a) Be and Mg b) Li and Mg c) Be and B d) **Be and Al**

4.HYDROGEN

I. Choose the correct answer

- 1. Which of the following statements about hydrogen is incorrect?
 - a) Hydrogen ion, H_3O^+ exists freely in solution.
 - b) Dihydrogen acts as a reducing agent.
 - c) Hydrogen has three isotopes of which tritium is the most common.
 - d) Hydrogen never acts as cation in ionic salts.
- 2. Water gas is

a) $H_2O(g)$ b) $CO + H_2O$ c) $CO + H_2$ d) $CO + N_2$

3. Which one of the following statements is incorrect with regard to ortho and para dihydrogen ?

a) They are nuclear spin isomers

b) Ortho isomer has zero nuclear spin whereas the para isomer has one nuclear spin

- c) The para isomer is favoured at low temperatures
- d) The thermal conductivity of the para isomer is 50% greater than that of the orthoisomer.
- 4. Ionic hydrides are formed by
 - a) halogens b) chalogens c) inert gases d) group one elements
- 5. Tritium nucleus contains
 - a) 1p + 0n b) 2p + 1n c) 1p + 2n d) none of these

6. Non-stoichiometric hydrides are formed by

- a) **palladium, vanadium** b) carbon, nickel
- c) manganese, lithium d) nitrogen, chlorine

7. Assertion : Permanent hardness of water is removed by treatment with washing soda.

Reason : Washing soda reacts with soluble calcium and magnesium chlorides and sulphates in hard water to form insoluble carbonates

a) Both assertion and reason are true and reason is the correct explanation of assertion.

- b) Both assertion and reason are true but reason is not the correct explanation of assertion.
- c) Assertion is true but reason is false
- d) Both assertion and reason are false
- 8. If a body of a fish contains 1.2 g hydrogen in its total body mass, if all the hydrogen is replaced with deuterium then the increase in body weight of the fish will be

a) 1.2 g b) 2.	4 g c) 3.6	g d) $\sqrt{4.8}$ g
-----------------------	------------	---------------------

9. The hardness of water can be determined by volumetrically using the reagent

a) sodium thio sulphate b) potassium permanganate

- c) hydrogen peroxide d) **EDTA**
- 10. The cause of permanent hardness of water is due toa) Ca(HCO₃)₂b) Mg(HCO₃)₂c) CaCl₂d) MgCO₃
- 11. Zeolite used to soften hardness of water is, hydrated

	c) amphoteric oxide	d) none of these kali and Alkaline Earth Metals
	a) basic oxide	b) acidic oxide
21.	Water is a	
	c) both (a) and (b)	d) none of these
	a) modulator in nuclear reactions	b) coolant in nuclear reactions
20.	Heavy water is used as	-
	d) intra molecular H - bonding and	-
	c) intra molecular H - bonding and r	_
	b) intra molecular H-bonding and	0
	a) inter molecular H-bonding and in	
		rtho nitro phenol and p-nitro phenol are respectively
	d) octahedrally by 6 hydrogen atom	
	c) tetrahedrally by 2 hydrogen and 2	
	b) octahedrally by 2 oxygen and 4 h	
	a) tetrahedrally by 4 hydrogen ato	
	In solid ice, oxygen atom is surroun	·
	c) mono basic acid	d) none of these
	a) tribasic acid	b) dibasic acid
		$PO_2 + HDO$ indicates that hypo-phosphorus acid is
	a) sp and sp ³ b) sp and sp	c) sp and sp ² d) sp ³ and sp ³
	The hybridisation of oxygen atom is	, , , , , , , , , , , , , , , , , , ,
	a) 1.5 b) 4.5 c) 16.8	d) 8.4
	Volume strength of $1.5 \text{ N H}_2\text{O}_2$ is	
	a) $\frac{1}{2}$ b) $\frac{3}{2}$ c) $\frac{5}{2}$	d) 7/2
	, - ,	idified KMnO4, the moles of H_2O_2 required is
	her, the ethereal layer turns blue due a) Cr_2O_3 b) CrO_4^{2-}	c) $CrO(O_2)_2$ d) none of these
		with an acidified solution of potassium dichromate in presence of
	d) 1 ml of H_2O_2 will give 1 mole of When hydrogen perovide is sheken	
	c) 1 L of H_2O_2 will give 22.4 L O_2	
	b) 1 L of H_2O_2 will give 100 ml O_2	atSIP
	a) 1 ml of H_2O_2 will give 100 ml O	
		peroxide marked as 100 volume H_2O_2 , it means that
	c) Zinc aluminium borate	d) Lithium aluminium hydride

a) Hydration energy : Li > Na > K > Rb

- b) Ionisation energy : Li > Na > K > Rb
- c) Density : Li < Na < K < Rb

d) Atomic size : Li < Na < K < Rb 2. Which of the following statements is incorrect? a) Li⁺ has minimum degree of hydration among alkali metal cations. b) The oxidation state of K in KO_2 is +1 c) Sodium is used to make Na / Pb alloy d) MgSO₄ is readily soluble in water 3. Which of the following compounds will not evolve H_2 gas on reaction with alkali metals? b) ethanol a) ethanoic acid d) none of these c) phenol 4. Which of the following has the highest tendency to give the reaction $M^+(g) \xrightarrow{Aqueous} M^+(aq)$ a) Na b) Li c) Rb d) K 5. Sodium is stored in d) none of these a) alcohol c) kerosene b) water 6. RbO_2 is a) superoxide and paramagnetic b) peroxide and diamagnetic c) superoxide and diamagnetic d) peroxide and paramagnetic 7. Find the wrong statement a) sodium metal is used in organic qualitative analysis b) sodium carbonate is soluble in water and it is used in inorganic qualitative analysis c) potassium carbonate can be prepared by solvay process d) potassium bicarbonate is acidic salt 8. Lithium shows diagonal relationship with a) sodium b) magnesium c) calcium d) aluminium 9. Incase of alkali metal halides, the ionic character increases in the order a) MF < MCl < MBr < MIb) $\mathbf{MI} < \mathbf{MBr} < \mathbf{MCl} < \mathbf{MF}$ c) MI < MBr < MF < MCld) none of these 10. In which process, fused sodium hydroxide is electrolysed for extraction of sodium ? a) Castner's process b) Cyanide process c) Down process d) All of these 11. The product obtained as a result of a reaction of nitrogen with CaC_2 is b) CaN₂ c) $Ca(CN)_2$ d) Ca_3N_2 a) $Ca(CN)_3$ 12. Which of the following has highest hydration energy a) MgCl₂ b) CaCl₂ c) BaCl₂ d) SrCl₂ 13. Match the flame colours of the alkali and alkaline earth metal salts in the bunsen burner (1) Brick red (p) Sodium (q) Calcium (2) Yellow (3) Violet (r) Barium (s) Strontium (4) Apple green (t) Cesium (5) Crimson red (u) Potassium (6) Blue

a) **p** - 2, **q** - 1, **r** - 4, **s** - 5, **t** - 6, **u** - 3

- b) p 1, q 2, r 4, s 5, t 6, u 3
- c) p 4, q 1, r 2, s 3, t 5, u 6
- d) p 6, q 5, r 4, s 3, t 1, u 2
- 14. Assertion : Generally alkali and alkaline earth metals form superoxides

Reason : There is a single bond between O and O in superoxides.

- a) both assertion and reason are true and reason is the correct explanation of assertion
- b) both assertion and reason are true but reason is not the correct explanation of assertion
- c) assertion is true but reason is false
- d) both assertion and reason are false
- 15. Assertion : BeSO₄ is soluble in water while BaSO₄ is not
 - Reason : Hydration energy decreases down the group from Be to Ba and lattice energy remains almost constant.

a) both assertion and reason are true and reason is the correct explanation of assertion

- b) both assertion and reason are true but reason is not the correct explanation of assertion
- c) assertion is true but reason is false
- d) both assertion and reason are false
- 16. Which is the correct sequence of solubility of carbonates of alkaline earth metals ?
 - a) BaCO₃ > SrCO₃ > CaCO₃ > MgCO₃
 - b) $MgCO_3 > CaCO_3 > SrCO_3 > BaCO_3$
 - c) CaCO₃ > BaCO₃ > SrCO₃ > MgCO₃
 - d) $BaCO_3 > CaCO_3 > SrCO_3 > MgCO_3$

17. In context with beryllium, which one of the following statements is incorrect ?

- a) It is rendered passive by nitric acid
- b) It forms Be₂C

c) Its salts are rarely hydrolysed

- d) Its hydride is electron deficient and polymeric
- 18. The suspension of slaked lime in water is known as

a) lime water b) quick lime

- c) **milk of lime** d) aqueous solution of slaked lime
- 19. A colourless solid substance (A) on heating evolved CO₂ and also gave a white residue, soluble in water. Residue also gave CO₂ when treated with dilute HCl.

a) Na₂CO₂ b) **NaHCO₃** c) CaCO₃ d) Ca(HCO₃)₂

- 20. The compound (X) on heating gives a colourless gas and a residue that is dissolved in water to obtain (B). Excess of CO₂ is bubbled through aqueous solution of B, C is formed. Solid (C) on heating gives back X. (B) is
 - a) CaCO₃ b) Ca(OH)₂ c) Na₂CO₃ d) NaHCO₃
- 21. Which of the following statement is false ?
 - a) Ca^{2+} ions are not important in maintaining the regular beating of the heart
 - b) Mg^{2+} ions are important in the green parts of the plants
 - c) Mg^{2+} ions form a complex with ATP
 - d) Ca^{2+} ions are important in blood clotting

22. The name 'Blue John' is given to which of the following compounds ?

	\mathcal{O}			
a) CaH ₂	b) CaF ₂	c) Ca ₃ (PO ₄) ₂	d) CaO	
23. Formula of	Gypsum is			
a) CaSO₄. 2	H_2O	b) CaSO ₄ . ½ H ₂ O	C	
c) 3 CaSO ₄ .	H_2O	d) 2CaSO ₄ . 2H ₂ C)	
24. When CaCa	2 is heated in atm	ospheric nitrogen in a	n electric furnace the compound formed is	
a) Ca(CN) ₂		b) CaNCN		
c) CaC ₂ N ₂		d) CaNC ₂		
25. Among the following the least thermally stable is				
(a) K ₂ CO ₃		b) Na ₂ CO ₃		
(c) BaCO ₃		d) Li₂CO ₃		
		<u>6.Gase</u>	ous State	

I. Choose the correct answer:

- 1. Gases deviate from ideal behavior at high pressure. Which of the following statement(s) is correct for non-ideality?
 - a) at high pressure the collision between the gas molecule become enormous
 - b) at high pressure the gas molecules move only in one direction
 - c) at high pressure, the volume of gas become insignificant

d) at high pressure the intermolecular interactions become significant

- 2. Rate of diffusion of a gas is
 - a) directly proportional to its density
 - b) directly proportional to its molecular weight
 - c) directly proportional to its square root of its molecular weight

d) inversely proportional to the square root of its molecular weight

3. Which of the following is the correct expression for the equation of state of van der Waals gas?

(a)
$$\left(P + \frac{a}{n^2 V^2}\right)(V - nb) = nRT$$

(b) $\left(P + \frac{na}{n^2 V^2}\right)(V - nb) = nRT$
(c) $\left(P + \frac{an^2}{V^2}\right)(V - nb) = nRT$
(d) $\left(P + \frac{n^2a^2}{V^2}\right)(V - nb) = nRT$

4. When an ideal gas undergoes unrestrained expansion, no cooling occurs because the molecules

ANSWER: C

a) are above inversion temperature

b) exert no attractive forces on each other

- c) do work equal to the loss in kinetic energy
- d) collide without loss of energy
- 5. Equal weights of methane and oxygen are mixed in an empty container at 298 K. The fraction of total pressure exerted by oxygen is
 - (a) 1/3 (b) 1/2 (c) 2/3 (d) $1/3 \times 273 \times 298$

6. The temperatures at which real gases obey the ideal gas laws over a wide range of pressure is called

- a) Critical temperature b) **Boyle temperature**
- c) Inversion temperature d) Reduced temperature
- 7. In a closed room of 1000 m³ a perfume bottle is opened up. The room develops a smell. This is due to

which	property of gases	s?				
a) Vis	scosity	b) Der	nsity			
c) Dif	fusion	d) No	ne			
8. A bot	le of ammonia a	and a bottle of H	Cl connected throu	gh a long tube are	opened	
simult	aneously at both	ends. The white	ammonium chlori	de ring first forme	ed will be	
a) At	the center of the	tube	b) Near the	hydrogen chlori	de bottle	
c) Ne	ar the ammonia	bottle	d) Throughout	out the length of th	ne tube	
9. The v	alue of universal	l gas constant de	pends upon	_		
a) Te	mperature of the	gas	b) Volume	of the gas		
c) Nu	mber of moles o	of the gas	d) units of l	Pressure and volu	ıme.	
10. The	value of the gas	constant R is				
a) 0.0	82 dm ³ atm.		b) 0.987 cal	mol ⁻¹ K ⁻		
c) 8.3	J mol ⁻¹ K ⁻¹		d) 8 erg mol	⁻¹ K ⁻¹		
11. Use	of hot air balloo	n in sports at met	teorological observ	ation is an applica	ation of	
a) Bo	yle's law	b) Newton's la	w c) Kelvi	n's law d)	Brown's law	
12. The	table indicates th	ne value of van d	er Waals constant	'a' in $(dm^3)^2 atm$.	mol ⁻²	
	Gas	O ₂	N ₂	NH ₃	CH ₄	
	a	1.360	1.390	4.170	2.253	
The g	as which can be	e most easily liqu	efied is			
a) O ₂	b) N ₂	c) NH ₃	d) CH ₄			
	sider the following	-				
			p of a mountain th			
		-	than solids or liqui			
· · · · ·	1	1	eases the height of	the mercury colu	mn rises	
	the correct state					
a) I ai	<i>,</i>	II and III	c) I and III	d) I, II and I		
		or for CO_2 at 400) K and 71.0 bar is	0.8697. The mola	r volume of CO_2	under
	onditions is	2				
·	,	2.24 dm^3	c) 0 .41 dm³	d) 19.5 dn		
15. If ter	nperature and vo	olume of an ideal	l gas is increased to	twice its values,	the initial pressu	re P
become	es					
a) 4P	b) 2P	c) P	d) 3P		,	
			, the rate of diffusi		as is $3\sqrt{3}$ times the	hat of a
			C_nH_{2n-2} . What is the	he value of n?		
a) 8	b) 4	,	l) 1			
-	•	• • • •	gases are placed in		-	-
both ca	n escape what fr	action of oxyger	n escapes in the tim	e required for one	e-half of the hydr	ogen to
escape.						
a) 3/8	·	c) 1/8	d) 1/4			
18. The	variation of volu	me V, with temp	perature T, keeping	pressure constant	t is called the coe	efficient of

thermal expansion is $a = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{F}$. For an ideal gas α is equal to
thermal expansion is $V(\partial T)_{\mu}$ For an ideal gas α is equal to
a) I b) I/I c) P d) none of these
19. Four gases P, Q, R and S have almost same values of 'b' but their 'a' values (a, b are Vander Waals
Constants) are in the order $Q < R < S < P$. At a particular temperature, among the four gases the most
easily liquefiable one is
a) P b) Q c) R d) S
20. Maximum deviation from ideal gas is expected from
a) $CH_4(g)$ b) $NH_3(g)$ c) $H_2(g)$ d) $N_2(g)$
21. The units of Vander Waals constants 'b' and 'a' respectively
a) mol L^{-1} and L atm ² mol ⁻¹ b) mol L and L atm mol ²
c) mol ⁻¹ L and L ² atm mol ⁻² d) none of these
22. Assertion : Critical temperature of CO_2 is 304K, it can be liquefied above 304K.
Reason : For a given mass of gas, volume is to directly proportional to pressure at constant temperature
a) both assertion and reason are true and reason is the correct explanation of assertion
b) both assertion and reason are true but reason is not the correct explanation of assertion
c) assertion is true but reason is false
d) both assertion and reason are false
23. What is the density of N ₂ gas at 227 ⁰ C and 5.00 atm pressure? ($R = 0.082 \text{ L}$ atm K ⁻¹ mol ⁻¹)
a) 1.40 g/L b) 2.81 g/L c) 3.41 g/L d) 0.29 g/L
24. Which of the following diagrams correctly describes the behaviour of a fixed mass of an ideal gas ? (T
is measured in K) ANSWER: C
a)
p v
V V T d) All of these
25. 25g of each of the following gases are taken at 27oC and 600 mm Hg pressure. Which of these will
have the least volume ?
a) HBr b) HCl c) HF d) HI
7.THERMODYNAMICS
I. Choose the correct answer
1. The amount of heat exchanged with the surrounding at constant temperature and pressure is given by
the quantity
a) ΔE b) ΔH c) ΔS d) ΔG
2. All the naturally occurring processes proceed spontaneously in a direction which leads to
a) decrease in entropy b) increase in enthalpy
c) increase in free energy d) decrease in free energy
3. In an adiabatic process, which of the following is true ?
a) $q = w$ b) $q = 0$ c) $\Delta E = q$ d) $P \Delta V = 0$
4. In a reversible process, the change in entropy of the universe is

a) > 0b) > 0c) < 0d) = 05. In an adiabatic expansion of an ideal gas a) $\mathbf{w} = -\Delta \mathbf{u}$ b) w = $\Delta u + \Delta H$ c) $\Delta u = 0$ d) w = 06. The intensive property among the quantities below is a) mass b) volume c) enthalpy d) mass/volume 7. An ideal gas expands from the volume of 1×10^{-3} m³ to 1×10^{-2} m³ at 300 K against a constant pressure at 1×10^5 Nm⁻². The work done is a) **- 900 J** b) 900 kJ c) 270 kJ d) - 900 kJ 8. Heat of combustion is always a) positive b) **negative** c) zero d) either positive or negative 9. The heat of formation of CO and CO2 are - 26.4 kCal and - 94 kCal, respectively. Heat of combustion of carbon monoxide will be b) - 67.6 kcal c) – 120.6 kcal d) + 52.8 kcal a) + 26.4 kcal 10. C(diamond) \rightarrow C(graphite), Δ H = -ve, this indicates that a) graphite is more stable than diamond b) graphite has more energy than diamond c) both are equally stable d) stability cannot be predicted 11. The enthalpies of formation of Al₂O₃ and Cr₂O₃ are – 1596 kJ and – 1134 kJ, respectively. Δ H for the reaction 2Al + Cr₂O₃ \rightarrow 2Cr + Al₂O₃ is a) - 1365 kJ b) 2730 kJ c) - 2730 kJd) - 462 kJ 12. Which of the following is not a thermodynamic function ? b) enthalpy d) frictional energy a) internal energy c) entropy 13. If one mole of ammonia and one mole of hydrogen chloride are mixed in a closed container to form ammonium chloride gas, then a) $\Delta H > \Delta U$ b) $\Delta H - \Delta U = 0$ c) $\Delta H + \Delta U = 0$ d) $\Delta \mathbf{H} < \Delta \mathbf{U}$ 14. Change in internal energy, when 4 kJ of work is done on the system and 1 kJ of heat is given out by the system is b) $- 5 \, kJ$ c) +3 kJ d) - 3 kJa) +1 kJ 15. The work done by the liberated gas when 55.85 g of iron (molar mass 55.85 g mol⁻¹) reacts with hydrochloric acid in an open beaker at 25^o C b) - 2.22 kJ c) + 2.22 kJa) - 2.48 kJ d) + 2.48 kJ 16. The value of Δ H for cooling 2 moles of an ideal monatomic gas from 125° C to 25° C at constant pressure will be [given $C_p = 5/2R$] b) **- 500 R** a) - 250 R c) 500 R d) + 250 R 17. Given that $C(g) + O_2(g) \rightarrow CO_2(g) \Delta H^0 = -a kJ$; $2 CO(g) + O_2(g) \rightarrow 2CO_2(g) \Delta H^0 = -b kJ$; Calculate the ΔH^0 for the reaction $C(g) + 1/2 O_2(g) \rightarrow CO(g)$ ANSWER: D c) $\frac{2a-b}{2}$ d) $\frac{b-2a}{2}$ a) $\frac{b+2a}{2}$ b) 2a-b 18. When 15.68 litres of a gas mixture of methane and propane are fully combusted at 0^{0} C and 1

atmosphere, 32 litres of oxygen at the same temperature and pressure are consumed. The amount			
of heat of released from this combustion in kJ is (Δ H _c (CH ₄) = – 890 kJ mol ⁻¹ and Δ H _c (C ₃ H ₈)			
$= -2220 \text{ kJ mol}^{-1}$			
a) $- 889 \text{ kJ}$ b) $- 1390 \text{ kJ}$ c) $- 3180 \text{ kJ}$ d) $- 653.66 \text{ kJ}$			
19. The bond dissociation energy of methane and ethane are 360 kJ mol ⁻¹ and 620 kJ mol ⁻¹ respectively.			
Then, the bond dissociation energy of C-C bond is			
a) 170 kJ mol^{-1} b) 50 kJ mol^{-1} c) 80 kJ mol}^{-1} d) 220 kJ mol^{-1}			
20. The correct thermodynamic conditions for the spontaneous reaction at all temperature is			
a) $\Delta \mathbf{H} < 0$ and $\Delta \mathbf{S} > 0$ b) $\Delta \mathbf{H} < 0$ and $\Delta \mathbf{S} < 0$			
c) $\Delta H > 0$ and $\Delta S = 0$ d) $\Delta H > 0$ and $\Delta S > 0$			
21. The temperature of the system, decreases in an			
a) Isothermal expansion b) Isothermal Compression			
c) adiabatic expansion d) adiabatic compression			
22. In an isothermal reversible compression of an ideal gas the sign of q, ΔS and w are respectively			
a) +, -, - b) -, +, - c) +, -, + d) -, -, +			
23. Molar heat of vapourisation of a liquid is 4.8 kJ mol ⁻¹ . If the entropy change is 16 J mol ⁻¹ K ⁻¹ , the			
boiling point of the liquid is a) 323 K b) 27^{0} C c) 164 K d) 0.3 K			
a) 323 K b) 27° C c) 164 K d) 0.3 K 24. Δ S is expected to be maximum for the reaction			
-			
a) $Ca(S) + 1/2 O_2(g) \rightarrow CaO(S)$ b) $C(S) + O_2(g) \rightarrow CO_2(g)$			
b) $C(S) + O_2(g) \rightarrow CO_2(g)$			
c) $N_2(g) + O_2(g) \rightarrow 2NO(g)$ d) $C_2CO_2(S) \rightarrow C_2O(S) + CO_2(g)$			
d) $CaCO_3(S) \rightarrow CaO(S) + CO_2(g)$ 25. The values of Δ H and Δ S for a reaction are respectively 30 kJ mol ⁻¹ and 100 JK ⁻¹ mol ¹ . Then the			
ΔS for a reaction are respectively so kJ more and roo JK more. Then the temperature above which the reaction will become spontaneous is			
a) 300 K b) 30 K c) 100 K d) 20° C			
8.Physical and Chemical Equilibrium			
I. Choose the correct answer			
1. If K_b and K_f for a reversible reactions are 0.8 ×10 ⁻⁵ and 1.6 × 10 ⁻⁴ respectively, the value of the			
equilibrium constant is,			
a) 20 b) 0.2×10^{-1} c) 0.05 d) none of these			
2. At a given temperature and pressure, the equilibrium constant values for the equilibria			
$3A_2 + B_2 + 2C \xrightarrow{K_1} 2A_3BC$ and			
$A_3BC \xrightarrow{\kappa_2} \frac{3}{2} [A_2] + \frac{1}{2} B_2 + C$			

The relation between K_1 and K_2 is **ANSWER: B**

a)
$$K_1 = \frac{1}{\sqrt{K_2}}$$

b) $K_2 = K_1^{-\frac{1}{2}}$
c) $K_1^2 = 2K_2$
d) $\frac{K_1}{2} = K_2$

3. The equilibrium constant for a reaction at room temperature is K1 and that at 700 K is K2. If K1 > K2, then

a) The forward reaction is exothermic

- b) The forward reaction is endothermic
- c) The reaction does not attain equilibrium
- d) The reverse reaction is exothermic
- 4. The formation of ammonia from $N_2(g)$ and $H_2(g)$ is a reversible reaction

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g) + Heat$$

What is the effect of increase of temperature on this equilibrium reaction

- a) equilibrium is unaltered b) formation of ammonia is favoured
- c) equilibrium is shifted to the left d) reaction rate does not change
- 5. Solubility of carbon dioxide gas in cold water can be increased by
 - a) **increase in pressure** b) decrease in pressure
 - c) increase in volume d) none of these
- 6. Which one of the following is incorrect statement ?

a) for a system at equilibrium, Q is always less than the equilibrium constant

- b) equilibrium can be attained from either side of the reaction
- c) presence of catalyst affects both the forward reaction and reverse reaction to the same extent
- d) Equilibrium constant varied with temperature

7. K1 and K2 are the equilibrium constants for the reactions respectively.

$$N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$$

$$2NO(g) + O_2(g) \rightleftharpoons 2NO_2(g)$$

What is the equilibrium constant for the reaction $NO_2(g) \rightleftharpoons \frac{1}{2}N_2(g) + O_2(g)$

a)
$$\frac{1}{\sqrt{K_1 K_2}}$$
 b) $(K_1 = K_2)^{\frac{1}{2}}$ c) $\frac{1}{2K_1 K_2}$ d) $\left(\frac{1}{K_1 K_2}\right)^{\frac{1}{2}}$ ANSWER: A

8. In the equilibrium, $2A(g) \rightleftharpoons 2B(g) + C_2(g)$ the equilibrium concentrations of A, B and C₂ at 400 K are

 $1\times10^{\text{-4}}$ M, $2.0\times10^{\text{-3}}$ M, $1.5\times10^{\text{-4}}$ M respectively. The value of K_C for the equilibrium at 400 K is

a) **0.06** b) 0.09 c) 0.62 d)
$$3 \times 10$$

- 9. An equilibrium constant of 3.2×10^{-6} for a reaction means, the equilibrium is
 - a) largely towards forward direction b) largely towards reverse direction
 - c) never established d) none of these
- 10. Kc/ Kp for the reaction, $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$ is

a)
$$1/RT$$
 b) \sqrt{RT} c) RT d) $(RT)^2$

11. For the reaction AB (g) \rightleftharpoons A(g) + B(g), at equilibrium, AB is 20% dissociated at a total pressure of P, The equilibrium constant K_p is related to the total pressure by the expression

a) $P = 24 K_p$	b) $P = 8 K_p$
-----------------	----------------

c) $24 P = K_p$ d) none of these

12. In which of the following equilibrium, K_p and K_c are not equal?

a) 2 NO(g) \rightleftharpoons N₂(g) + O₂(g)

b) SO₂ (g) + NO₂ \rightleftharpoons SO₃(g) + NO(g)

c) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$

d) $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

13. If x is the fraction of PCl_5 dissociated at equilibrium in the reaction

$$PCl_5 \rightleftharpoons PCl_3 + Cl_2$$

then starting with 0.5 mole of PCl_5 , the total number of moles of reactants and products at equilibrium is

a) 0.5 - x b) x + 0.5 c) 2x + 0.5 d) x + 1

14. The values of for the reactions K_{p1} and K_{p2} $X \rightleftharpoons Y + Z$

 $A \rightleftharpoons 2B$ are in the ratio 9 : 1 if degree of dissociation and initial concentration of X and A be equal then total pressure at equilibrium P₁, and P₂ are in the ratio

a) **36 : 1** b) 1 : 1 c) 3 : 1 d) 1 : 9

15. In the reaction,

Fe (OH)₃ (s) \rightleftharpoons Fe³⁺(aq) + 3OH⁻(aq),

if the concentration of OH^- ions is decreased by 1/4 times, then the equilibrium concentration of Fe^{3+} will

a) not changed b) also decreased by ¹/₄ times

c) increase by 4 times d) increase by 64 times

16. Consider the reaction where $K_p = 0.5$ at a particular temperature

 $PCl_5(g) \rightleftharpoons PCl_3(g) + Cl_2(g)$

if the three gases are mixed in a container so that the partial pressure of each gas is initially 1 atm, then which one of the following is true

a) more PCl_3 will be produced b) more Cl_2 will be produced

c) more PCl₅ will be produced d) none of these

17. Equimolar concentrations of H₂ and I₂ are heated to equilibrium in a 1 litre flask. What percentage of initial concentration of H₂ has reacted at equilibrium if rate constant for both forward and reverse reactions are equal

a) **33%** b) 66% c) $(33)^2$ % d) 16.5%

18. In a chemical equilibrium, the rate constant for the forward reaction is 2.5×10^2 and the equilibrium constant is 50. The rate constant for the reverse reaction is,

a) 11. b) **5** c) 2×10^2 d) 2×10^{-3}

19. Which of the following is not a general characteristic of equilibrium involving physical process

a) Equilibrium is possible only in a closed system at a given temperature

b) The opposing processes occur at the same rate and there is a dynamic but stable condition

c) All the physical processes stop at equilibrium

d) All measurable properties of the system remains constant

20. For the formation of Two moles of $SO_3(g)$ from SO_2 and O_2 , the equilibrium constant is K_1 . The equilibrium constant for the dissociation of one mole of SO_3 into SO_2 and O_2 is

a) $1/K_1$ b) K_1^2 c) $(1/K_1)^{1/2}$ d) $K_1/2$

21. Match the equilibria with the corresponding conditions,

i) Liquid \rightleftharpoons Vapour

- ii) Solid \rightleftharpoons Liquid
- iii) Solid \rightleftharpoons Vapour
- iv) Solute (s) \rightleftharpoons Solute (Solution)
- 1) melting point
- 2) Saturated solution
- 3) Boiling point
- 4) Sublimation point
- 5) Unsaturated solution

	i.	ii.	iii.	iv.
(a)	1	2	3	4
(b)	3	1	4	2
(c)	2	1	3	4
(d)	3	2	4	5

- 22. Consider the following reversible reaction at equilibrium, $A + B \rightleftharpoons C$, If the concentration of the reactants A and B are doubled, then the equilibrium constant will
 - a) be doubled b) become one fourth
 - c) be halved d) **remain the same**

23. $[Co(H_2O)_6]^{2+}$ (aq) (pink) + 4Cl⁻ (aq) \rightleftharpoons $[CoCl_4]^{2-}$ (aq) (blue)+ 6 H₂O (l)

In the above reaction at equilibrium, the reaction mixture is blue in colour at room temperature. On cooling this mixture, it becomes pink in colour. On the basis of this information, which one of the following is true ?

a) $\Delta H > 0$ for the forward reaction

b) $\Delta H = 0$ for the reverse reaction

c) $\Delta H < 0$ for the forward reaction

d) Sign of the ΔH cannot be predicted based on this information.

24. The equilibrium constants of the following reactions are :

$N_2 + 3H_2 \rightleftharpoons 2NH3$; K_1
$N_2 + O_2 \rightleftharpoons 2NO$; K ₂
$H_2 + \frac{1}{2}O_2 \rightleftharpoons H_2O$; K ₃

The equilibrium constant (K) for the reaction ;

 $2NH_3 + \frac{5}{2}O_2 \xrightarrow{\kappa} 2NO + 3H_2O$, will be

a) $K_2^3 K_3 / K_1$ b) $K_1 K_3^3 / K_2$ c) $K_2 K_3^3 / K_1$ d) $K_2 K_3 / K_1$

25. A 20 litre container at 400 K contains CO2 (g) at pressure 0.4 atm and an excess of SrO (neglect the

volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted

in the container. The maximum volume of the container, when pressure of CO₂ attains its maximum

value will be :

Given that : $SrCO_3(S) \rightleftharpoons SrO(S) + CO_2(g)$ KP = 1.6 atm

a) 2 litre

b) **5 litre**

c) 10 litre

d) 4 litre

9. SOLUTIONS

I. Choose the correct answer

- 1. The molality of a solution containing 1.8g of glucose dissolved in 250g of water is
 - a) 0.2 M b) 0.01 M c) 0.02 M d) **0.04 M**
- 2. Which of the following concentration terms is / are independent of temperature a) molalityb) molarityc) mole fractiond) (a) and (c)
- 3. Stomach acid, a dilute solution of HCl can be neutralised by reaction with Aluminium hydroxide Al (OH)₃ + 3HCl (aq) \rightarrow AlCl₃ + 3 H₂O

How many millilitres of 0.1 M Al(OH)3 solution are needed to neutralise 21 mL of 0.1 M HCl ?

a) 14 mL b) **7 mL** c) 21 mL d) none of these

4. The partial pressure of nitrogen in air is 0.76 atm and its Henry's law constant is 7.6×10^4 atm at 300K. What is the mole fraction of nitrogen gas in the solution obtained when air is bubbled through water at 300K?

a) 1×10^{-4} b) 1×10^{-6} c) 2×10^{-5} d) 1×10^{-5}

5. The Henry's law constant for the solubility of Nitrogen gas in water at 350 K is 8×10^4 atm. The mole fraction of nitrogen in air is 0.5. The number of moles of Nitrogen from air dissolved in 10 moles of water at 350K and 4 atm pressure is

a) 4×10^{-4} b) 4×10^{4} c) 2×10^{-2} d) 2.5×10^{-4}

6. Which one of the following is incorrect for ideal solution ?

- a) $\Delta H_{mix} = 0$ b) $\Delta U_{mix} = 0$
- c) $\Delta P = P_{\text{observed}} P_{\text{calculated by raoults law}} = 0$ d) $\Delta G_{\text{mix}} = 0$
- 7. Which one of the following gases has the lowest value of Henry's law constant ?
 - a) N_2 b) He c) CO_2 d) H_2

8. P1 and P2 are the vapour pressures of pure liquid components, 1 and 2 respectively of an ideal binary

Solution if X_1 represents the mole fraction of component 1, the total pressure of the solution formed by 1 and 2 will be

a) $P_1 + X_1(P_2 - P_1)$	b) $P_2 - X_1 (P_2 + P_1)$
c) $P_1 - X_2 (P_1 - P_2)$	d) $P_1 + X_2 (P_1 - P_2)$

9. Osometic pressure (p) of a solution is given by the relation

- a) $\mathbf{p} = \mathbf{n}\mathbf{R}\mathbf{T}$ b) $\mathbf{p}\mathbf{V} = \mathbf{n}\mathbf{R}\mathbf{T}$
- c) pRT = n d) none of these
- 10. Which one of the following binary liquid mixtures exhibits positive deviation from Raoults law ?
 - a) Acetone + chloroform b) Water + nitric acid
 - c) HCl + water d) **ethanol** + **water**

11. The Henry's law constants for two gases A and B are x and y respectively. The ratio of mole fractions of A to B is 0.2. The ratio of mole fraction of B and A dissolved in water will be

a) 2x / y b) y / 0.2 x c) 0.2x / y d) 5x / y

12. At 100^oC the vapour pressure of a solution containing 6.5g a solute in 100g water is 732mm. If $K_b =$

0.52, the boiling point of this solution will be

a) 102^{0} C b) 100^{0} C c) 101^{0} C d) 100.52° C

13. According to Raoults law, the relative lowering of vapour pressure for a solution is equal to

a) mole fraction of solvent b) **mole fraction of solute**

c) number of moles of solute d) number of moles of solvent

14. At same temperature, which pair of the following solutions are isotonic ?

a) 0.2 M BaCl₂ and 0.2M urea

b) 0.1 M glucose and 0.2 M urea

c) 0.1 M NaCl and 0.1 M K₂SO₄

d) 0.1 M Ba (NO₃)₂ and 0.1 M Na₂ SO₄

15. The empirical formula of a non-electrolyte(X) is CH_2O . A solution containing six gram of X exerts the same osmotic pressure as that of 0.025M glucose solution at the same temperature. The molecular formula of X is

a) $C_2H_4O_2$ b) $C_8H_{16}O_8$ c) $C_4H_8O_4$ d) CH_2O

16. The K_H for the solution of oxygen dissolved in water is 4×10^4 atm at a given temperature. If the partial pressure of oxygen in air is 0.4 atm, the mole fraction of oxygen in solution is

a) 4.6×10^3 b) 1.6×10^4 c) 1×10^{-5} d) 1×10^5

17. Normality of 1.25M sulphuric acid is

a) 1.25 N b) 3.75 N c) **2.5 N** d) 2.25 N

18. Two liquids X and Y on mixing gives a warm solution. The solution is

a) ideal

b) non-ideal and shows positive deviation from Raoults law

c) ideal and shows negative deviation from Raoults Law

d) non-ideal and shows negative deviation from Raoults Law

19. The relative lowering of vapour pressure of a sugar solution in water is 3.5×10^{-3} . The mole fraction of water in that solution is

> 0 00 05	1					
a) 0.0035	b) 0.35	c) 0.0035	5 / 18 d) 0.9965			
20. The mass of	of a non-volta	ile solute (mola	lar mass 80 g mol ⁻¹) which should be dissolved in 92g of			
toluene to rec	luce its vapou	r pressure to 9	00%			
a) 10g	b) 20g	c) 9.2 g	d) 8.89g			
21. For a solut	ion, the plot o	of osmotic press	ssure (p) verses the concentration (c in mol L-1) gives a straight			
line with slope	310R where	'R' is the gas co	constant. The temperature at which osmotic pressure measured is			
a) 310 × 0.0	082 K	b) 310°C	c) 37°C d) 310 / 0.082 K			
22. 200ml of a	n aqueous so	lution of a prote	tein contains 1.26g of protein. At 300K, the osmotic pressure of			
this solution is	s found to be	$2.52 imes 10^{-3}$ bar	r. The molar mass of protein will be (R = 0.083 L bar mol ⁻¹ K ⁻¹)			
a) 62.22 Kg	g mol ⁻¹	b) 12444g mo	ol^{-1} c) 300g mol ⁻¹ d) none of these			
23. The Van't	Hoff factor (i) for a dilute aq	queous solution of the strong elecrolyte barium hydroxide is			
a) 0	b) 1	c) 2	d) 3			
24. What is the	e molality of a	a 10% W/W aq	queous sodium hydroxide solution ?			
a) 2.778	b) 2.5	c) 10	d) 0.4			
25. The correc	t equation for	the degree of a	an associating solute, 'n' molecules of which undergoes			
association in	association in solution, is ANSWER: C					
n(i - 1)		2 n(1 – i)	n(i-1) $n(1-i)$			

a) $\alpha = \frac{n(i-1)}{n-1}$	b) $\alpha^2 = \frac{n(l-1)}{(l-1)}$	c) $\alpha = \frac{n(1-1)}{1-n}$	$d)\alpha = \frac{n(1-i)}{n(1-i)}$
n-1	(n-1)	1-n	$\frac{d}{d} = \frac{1}{n(1-i)}$

26. Which of the following aqueous solutions has the highest boiling point ?

a) 0.1 M KNO₃ b) **0.1 M Na₃PO₄** c) 0.1 M BaCl₂ d) 0.1 M K₂SO₄

27. The freezing point depression constant for water is 1.86 K Kgmol⁻¹. If 5g Na₂SO₄ is dissolved in

45g water, the depression in freezing point is 3.64°C. The Vant Hoff factor for Na_2SO_4 is

a) **2.50** b) 2.63 c) 3.64 d) 5.50

28. Equimolal aqueous solutions of NaCl and KCl are prepared. If the freezing point of NaCl is -2°C, the freezing point of KCl solution is expected to be

a) $-2^{o}C$ b) $-4^{o}C$ c) $-1^{o}C$ d) $0^{o}C$

29. Phenol dimerises in benzene having van't Hoff factor 0.54. What is the degree of association ?

a) 0.46 b) 92 c) 46 d) **0.92**

30. Assertion : An ideal solution obeys Raoults Law

Reason : In an ideal solution, solvent-solvent as well as solute-solute interactions are similar to solutesolvent interactions.

a) both assertion and reason are true and reason is the correct explanation of assertion

b) both assertion and reason are true but reason is not the correct explanation of assertion

c) assertion is true but reason is false

d) both assertion and reason are false

10.Chemical bonding

I. Choose the Correct Answer

- 1. In which of the following Compounds does the central atom obey the octet rule?
 a) XeF₄
 b) AlCl₃
 c) SF₆
 d) SCl₂
- 2. In the molecule $O_A = C = O_B$, the formal charge on OA, C and OB are respectively.
 - a) -1, 0, +1 b) +1, 0, -1 c) -2, 0, +2 d) **0, 0, 0**
- 3. Which of the following is electron deficient?
 - a) PH_3 b) $(CH_3)_2$ c) **BH_3** d) NH_3
- 4. Which of the following molecule contain по л bond?
 a) SO₂
 b) NO₂
 c) CO₂
 d) H₂O
- 5. The ratio of number of sigma (σ) and pi (π) bonds in 2- butynal is

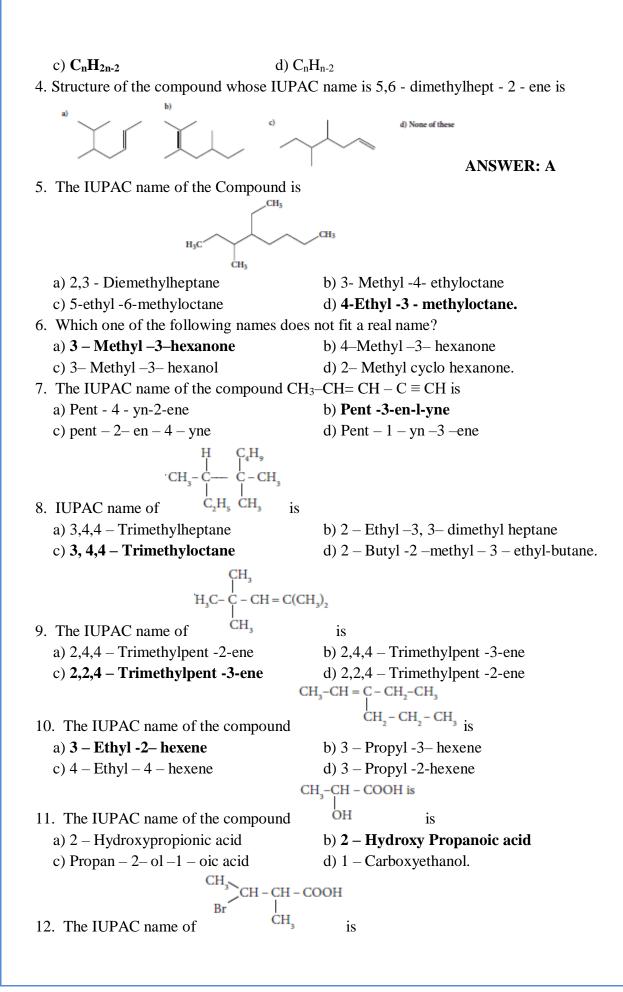
a) **8/3** b) 5/3 c) 8/2 d) 9/2

- 6. Which one of the following is the likely bond angles of sulphur tetrafluoride molecule?
 a) 120°,80°
 b) 109°,28
 c) 90°
 d) 89°,117°
- 7. Assertion: Oxygen molecule is paramagnetic.

Reason : It has two unpaired electron in its bonding molecular orbital

- a) both assertion and reason are true and reason is the correct explanation of assertion
- b) both assertion and reason are true but reason is not the correct explanation of assertion
- c) assertion is true but reason is false
- d) Both assertion and reason are false
- 8. According to Valence bond theory, a bond between two atoms is formed when
 - a) fully filled atomic orbitals overlap

b) half filled atomic orbitals overlap


- c) non- bonding atomic orbitals overlap
- d) empty atomic orbitals overlap
- 9. In ClF_3 , NF_3 and BF_3 molecules the chlorine, nitrogen and boron atoms are
 - a) sp³ hybridised
 - b) sp³, sp³ and sp² respectively
 - c) sp² hybridised
 - d) sp³d, sp³ and sp hybridised respectively

10. When one s and three p orbitals hybridise,

a) four equvivalent orbitals at 900 to each other will be formed

b) four equvivalent orbitals at 109° 28' to each other will be formed. c) four equivalent orbitals, that are lying the same plane will be formed d) none of these 11. Which of these represents the correct order of their increasing bond order. a) $C_2 < C_2^{2^-} < O_2^{2^-} < O_2$ b) $C_2^{2^-} < C_2^+ < O_2 < O_2^{2^-}$ c) $O_2^{2^-} < O_2 < C_2^{2^-} < C_2^+$ d) $O_2^{2^-} < C_2^+ < O_2 < C_2^{2^-}$ 12. Hybridisation of central atom in PCl5 involves the mixing of orbitals. a) s, p_x , p_y , d_x^2 , d_x^2 , d_x^2 b) s, $p_x.p_y$, $p_{xy}.d_x^2 v^2$ d) s, p_x , p_y , d_{xy} , $d_{x^2-y^2}$ c) s, p_x , p_y , p_z , d_{x-y}^{2} 13. The correct order of O-O bond length in hydrogen peroxide, ozone and oxygen is a) $H_2O_2 > O_3 > O_2$ b) $O_2 > O_3 > H_2O_2$ c) $O_2 > H_2O_2 > O_3$ d) $O_3 > O_2 > H_2O_2$ 14. Which one of the following is diamagnetic.? b) O_2^{2-} c) O^{2+} a) O_2 d) None of these 15. Bond order of a species is 2.5 and the number of electons in its bonding molecular orbital is formd to be 8 The no. of electons in its antibonding molecular orbital is a) **three** b) four d) can not be calculated form the given unformation. c) Zero 16. Shape and hybridisation of IF₅ are b) Trigonal bipyramidal, Sp³d a) Trigonal bipyramidal, Sp³d² c) Square pyramidal, Sp³d² d) Octahedral, Sp^3d^2 17. Pick out the incorrect statement from the following a) Sp³ hybrid orbitals are equivalent and are at an angle of 109° 28' with eachother b) dsp^2 hybrid orbitals are equivalent and bond angle between any two of them is 90° c) All five sp³d hybrid orbitals are not equivalent out of these five sp³d hybrid orbitals, three are at an angle of 120°, remainir two are perpendicular to the plane containing the other three d) none of these 18. The molecules having same hybridisation, shape and number of lone pairs of electons are a) SeF₄, XeO₂ F₂ b) SF₄, Xe F₂ c) XeOF₄, TeF₄ d) SeCl₄, XeF₄ 19. In which of the following molecules / ions BF₃, NO²⁻, H₂O the central atom is sp^2 hybridised? b) NO²⁻ and H₂O a) NH²⁻ and H₂O c) BF₃ and NO²⁻ d) BF₃ and NH²⁻ 20. Some of the following properties of two species, NO^{3-} and H_3O^{+} are described below, which one of them is correct? a) dissimilar in hybridisation for the central atom with different structure. b) isostructural with same hybridisation for the Central atom. c) different hybridiration for the central atom with same structure d) none of these 21. The types of hybridiration on the five carbon atom from right to left in the, 2,3 pentadiene. a) sp^3 , sp^2 , sp, sp^2 , sp^3 b) sp^3 , sp, sp, sp, sp^3 c) sp^2 , sp, sp^2 , sp^2 , sp^3 d) sp^3 , sp^3 , sp^2 , sp^3 , sp^3

22 Vo E. is is estructural with	
22. Xe F_2 is isostructural with	
a) SbCl ₂ c) TeF ₂	b) BaCl ₂ d) ICl₂
,	cter of the hybrid orbitals in methane, ethane, ethene and ethyne are
respectively	eter of the hybrid orbitals in methane, ethane, ethene and ethylic are
a) 25, 25,33.3,50	b) 50,50,33.3,25
c) 50,25,33.3,50	d) 50,25,25,50
	es, which have shape similar to carbondixide?
a) SnCl ₂	b) NO ₂
c) $C_2 H_2$	d) All of these.
25. According to VSEPR theo	bry, the repulsion between different parts of electrons obey the order.
a) l.p – l.p > b.p–b.p> l.p–t	b) b.p–b.p> b.p–l.p> l.p–b.p
c) l.p–l.p> b.p–l.p > b.p– b	d) $b.p-b.p> l.p-l.p> b.p-l.p$
26. Shape of ClF_3 is	
a) Planar triangular	b) Pyramidal
c) 'T' Shaped	d) none of these
27. Non- Zero dipole moment	is shown by
a) CO ₂	b) p-dichlorobenzene
c) carbontetrachloride	d) water.
-	onditions is not correct for resonating structures?
	e must have the same number of unpaired electrons
	es should have similar energies
· · ·	hould have higher energy than any of the contributing structure.
d) none of these	compound that containst ionial covalent and Co. ordinate linkage is
a) NH4Cl	compound that contains, ionic, covalent and Co-ordinate linkage is b) NH ₃
c) NaCl	d) none of these
,	me crystal structure and approximately the same radii. It U is the lattice
energy of NaCl, the approximation of the second sec	
	c) $U/2$ d) $4U$
	<u>11.Fundamentals of Organic Chemistry</u>
I. Choose the correct answer	
1. Select the molecule which l	has only one π bond.
a) $CH_3 - CH = CH - CH_3$	b) $CH_3 - CH = CH - CHO$
c) $CH_3 - CH = CH - COOH$	
2. In the hydrocarbon $\frac{7}{CH_3}$	$H_2 - CH = CH - CH_2 - C = CH$ the state of hybridisation of carbon 1,2,3,4 and 7
are in the following sequence	
a) sp , sp , sp ³ , sp ² , sp ³	b) sp^2 , sp , sp^3 , sp^2 , sp^3
c) sp, sp, sp^2 , sp, sp^3	d) none of these
3. The general formula for alk	
a) C_nH_{2n}	b) $C_n H_{2n-1}$

	 b) 2 - methyl - 3- bromobutanoic acid d) 3 - Bromo - 2, 3 - dimethyl propanoic acid.
13. The structure of isobutyl group in an o	
	c) $CH_3 - CH - CH_2 - $ $ d) CH_3 - CH - CH_2 - CH_3$
b) CH ₃ - C	d) CH ₃ - CH - CH ₂ - CH ₃
14. The number of stereoisomers of $1, 2 - $	
a) 1 b)2 c) 3	d) 4
15. Which of the following is optically act	
a) 3 – Chloropentane	b) 2 Chloro propane
c) Meso – tartaric acid	d) Glucose
16. The isomer of ethanol is	
a) acetaldehyde	b) dimethylether
c) acetone	d) methyl carbinol
	are possible for the molecular formula C_3H_6O ?
a) 4 b) 5 c) 9	d) 10
18. Which one of the following shows fun	
a) ethylene	b) Propane
c) ethanol	d) CH_2Cl_2
Θ CH,-C-CH, and CH, = C – CH,	
$\begin{array}{c} \bigoplus \\ CH_2 - C - CH_3 \text{ and } CH_2 = C - CH_3 \\ \square \\ O \\ O$	
19. are	
a) resonating structure	b) tautomers
a) resonating structurec) Optical isomers	d) Conformers.
a) resonating structurec) Optical isomers20. Nitrogen detection in an organic comp	
a) resonating structurec) Optical isomers20. Nitrogen detection in an organic comp is due to the formation of.	d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic comp is due to the formation of. a) Fe₃[Fe(CN)₆]₂ 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic comp is due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe₄[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic comp is due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nite 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)6]3 d) Fe3[Fe(CN)6]3 trogen fails in
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic comp is due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nit a) H₂N - CO- NH.NH₂.HCl 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ trogen fails in b) NH₂ - NH₂. HCl
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complisis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitaling a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)6]3 d) Fe3[Fe(CN)6]3 trogen fails in b) NH2 - NH2. HCl d) C6H5 CONH2
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic composition of the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nite a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which give 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ crogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complising due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nite a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which give respectively, when their Lassaigne's test 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ crogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate is separately done.
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nite a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which give respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)6]3 d) Fe3[Fe(CN)6]3 trogen fails in b) NH2 – NH2. HCl d) C6H5 CONH2 blue colouration / precipitate and white precipitate is separately done. b) NH2 CS NH2 and CH3 – CH2Cl
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitally a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which give respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO c) NH₂ CH₂ COOH and NH₂CONH₂ 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ rrogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate is separately done. b) NH₂ CS NH₂ and CH₃ - CH₂Cl d) C₆H₅NH₂ and ClCH₂ - CHO.
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitally a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which give respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO c) NH₂ CH₂ COOH and NH₂CONH₂ 23. Sodium nitropruside reacts with sulphing 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)6]3 d) Fe3[Fe(CN)6]3 rogen fails in b) NH2 – NH2. HCl d) C6H5 CONH2 blue colouration / precipitate and white precipitate is separately done. b) NH2 CS NH2 and CH3 – CH2Cl d) C6H5NH2 and ClCH2 – CHO. de ion to give a purple colour due to the formation of
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitally a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which give respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO c) NH₂ CH₂ COOH and NH₂CONH₂ 23. Sodium nitropruside reacts with sulphically [Fe(CN)₅ NO]³⁻ 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ rogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate is separately done. b) NH₂ CS NH₂ and CH₃ - CH₂Cl d) C₆H₅NH₂ and ClCH₂ - CHO. de ion to give a purple colour due to the formation of b) [Fe(NO)₅ CN]⁺
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitally a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which give respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO c) NH₂ CH₂ COOH and NH₂CONH₂ 23. Sodium nitropruside reacts with sulphid a) [Fe(CN)₅ NO]³⁻ c) [Fe(CN)₅NOS]⁴⁻ 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ rogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate is separately done. b) NH₂ CS NH₂ and CH₃ - CH₂Cl d) C₆H₅NH₂ and ClCH₂ - CHO. de ion to give a purple colour due to the formation of b) [Fe(NO)₅ CN]⁺ d) [Fe (CN)₅ NOS]³⁻
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitally a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which gives respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO c) NH₂ CH₂ COOH and NH₂CONH₂ 23. Sodium nitropruside reacts with sulphidally [Fe(CN)₅ NO]³⁻ c) [Fe(CN)₅NOS]⁴⁻ 24. An organic Compound weighing 0.15g 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ rogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate is separately done. b) NH₂ CS NH₂ and CH₃ - CH₂Cl d) C₆H₅NH₂ and ClCH₂ - CHO. de ion to give a purple colour due to the formation of b) [Fe(NO)₅ CN]⁺ d) [Fe (CN)₅ NOS]³⁻ g gave on carius estimation, 0.12g of silver bromide. The
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitally a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which gives respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO c) NH₂ CH₂ COOH and NH₂CONH₂ 23. Sodium nitropruside reacts with sulphid a) [Fe(CN)₅ NO]³⁻ c) [Fe(CN)₅NOS]⁴⁻ 24. An organic Compound weighing 0.15g percentage of bromine in the Compound version of the sector of the secto	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ rogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate is separately done. b) NH₂ CS NH₂ and CH₃ - CH₂Cl d) C₆H₅NH₂ and ClCH₂ - CHO. de ion to give a purple colour due to the formation of b) [Fe(NO)₅ CN]⁺ d) [Fe (CN)₅ NOS]³⁻ g gave on carius estimation, 0.12g of silver bromide. The will be close to
 a) resonating structure c) Optical isomers 20. Nitrogen detection in an organic complis due to the formation of. a) Fe₃[Fe(CN)₆]₂ c) Fe₄[Fe(CN)₆]₂ 21. Lassaigne's test for the detection of nitally a) H₂N - CO- NH.NH₂.HCl c) C₆H₅ - NH - NH₂. HCl 22. Connect pair of compounds which gives respectively, when their Lassaigne's test a) NH₂ NH₂ HCl and ClCH₂-CHO c) NH₂ CH₂ COOH and NH₂CONH₂ 23. Sodium nitropruside reacts with sulphidally [Fe(CN)₅ NO]³⁻ c) [Fe(CN)₅NOS]⁴⁻ 24. An organic Compound weighing 0.15g 	 d) Conformers. ound is carried out by Lassaigne's test. The blue colour formed b) Fe4[Fe(CN)₆]₃ d) Fe₃[Fe(CN)₆]₃ rogen fails in b) NH₂ - NH₂. HCl d) C₆H₅ CONH₂ blue colouration / precipitate and white precipitate is separately done. b) NH₂ CS NH₂ and CH₃ - CH₂Cl d) C₆H₅NH₂ and ClCH₂ - CHO. de ion to give a purple colour due to the formation of b) [Fe(NO)₅ CN]⁺ d) [Fe (CN)₅ NOS]³⁻ g gave on carius estimation, 0.12g of silver bromide. The

25. A sample of 0.5g of an organic compound was treated according to Kjeldahl's method. The ammonia evolved was absorbed in 50mL of 0.5M H2SO4. The remaining acid after neutralisation by ammonia consumed 80mL of 0.5 MNaOH, The percentage of nitrogen in the organic compound is.

a) 14% b) **28%** c) 42% d) 56%

26. In an organic compound, phosphorus is estimated as

a) $Mg_2P_2O_7$ b) $Mg_3(PO_4)_2$ c) H_3PO_4

27. Ortho and para-nitro phenol can be separated by

a) azeotropic distillation b) destructive distillation

c) steam distillation d) cannot be separated

28. The purity of an organic compound is determined by

- a) Chromatography b) Crystallisation
- c) melting or boiling point d) both (a) and (c)

29. A liquid which decomposes at its boiling point can be purified by

a) distillation at atmospheric pressure b) **distillation under reduced pressure**

c) fractional distillation

d) steam distillation.

d) P_2O_5

 $CH_3 - C = CH - COOH$

30. Assertion:

is 3-carbethoxy -2-butenoicacid.

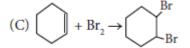
Reason: The principal functional group gets lowest number followed by double bond (or) triple bond.

(a) both the assertion and reason are true and the reason is the correct explanation of assertion.

(b) both assertion and reason are true and the reason is not the correct explanation of assertion.

(c) assertion is true but reason is false

(d) both the assertion and reason are false.


<u>12. Basic concepts of organic reactions</u>

I. Choose the correct answer

1. For the following reactions

(A) $CH_3CH_2CH_2Br + KOH \rightarrow CH_2 = CH_2 + KBr + H_2O$

(B) $(CH_3)_3CBr + KOH \rightarrow (CH_3)_3COH + KBr$

Which of the following statement is correct?

(a) (A) is elimination, (B) and (C) are substitution

(b) (A) is substitution, (B) and (C) are elimination

(c) (A) and (B) are elimination and (C) is addition reaction

(d) (A) is elimination, B is substitution and (C) is addition reaction.

2. What is the hybridisation state of benzyl carbonium ion?

(a) sp^2 (b) spd^2 (c) sp^3 (d) sp^2d

3. Decreasing order of nucleophilicity is

(a) $OH^2 > NH_2^2 > OCH_3 > RNH_2$ (b) $NH_2^2 > OH^2 > OCH_3 > RNH_2$

(c) $NH_2^- > CH_3O^- > OH^- > RNH_2$ (d) $CH_3O^- > NH_2^- > OH^- > RNH_2$

4. Which of the following species is not electrophilic in nature?

(a) Cl^+ (b) BH_3 (c) H_3O^+ (d) $^+NO_2$

(a) electrophile	(b) nucle	ophile	
(c) Carbo cation	(d) free 1	radical	
6. Hyper Conjugation is also kn	own as		
(a) no bond resonance	(b) Bake	r - nathan effect	
(c) both (a)and (b)	(d) none	of these	
7. Which of the group has highe	est +I effect?		
(a) CH ₃ - (b) CH ₃ -	CH ₂ - (0	c) $(CH_3)_2$ -CH- ((d) (CH3)3-C-
8. Which of the following speci	es does not exe	ert a resonance effect?	
(a) C_6H_5OH (b)	b) C_6H_5Cl	(c) $C_6H_5NH_2$	(d) $C_6H_5NH_3$
9I effect is shown by			
(a) -Cl (b) -Br	(0	c) both (a) and (b)	(d) –CH ₃
10. Which of the following cart	ocation will be	e most stable? ANSW	ER: D
(a) Ph_3C^{-+} (b) $CH_3^{-+}CH_3$	- (c) (CH,),-C	$\dot{C}H$ (d) $\dot{C}H_{a} = \dot{C}H - \dot{C}H_{a}$	
11. Assertion: Tertiary Carboca			
Reason: Hyper conjugation as	-	•	
carbonium ions.	wen as maden	ve effect due to additi	onar antyr group staoinize terti
carbonnum ions.			
(a) hoth assertion and reas	on are true ar	nd reason is the corre	ect explanation of assertion
			ect explanation of assertion.
(b) both assertion and reaso	n are true but re		-
(b) both assertion and reaso(c) Assertion is true but reas	n are true but re son is false		-
(b) both assertion and reaso(c) Assertion is true but reas(d) Both assertion and reaso	n are true but ro son is false n are false	eason is not the correc	-
(b) both assertion and reaso(c) Assertion is true but reas(d) Both assertion and reaso12. Heterolytic fission of C-Br	n are true but re son is false on are false bond results in	eason is not the correct the formation of	-
 (b) both assertion and reaso (c) Assertion is true but reaso (d) Both assertion and reaso 12. Heterolytic fission of C-Bril (a) free radical 	n are true but re son is false on are false bond results in (b) Carba	eason is not the correct the formation of anion	t explanation of assertion.
 (b) both assertion and reason (c) Assertion is true but reason (d) Both assertion and reason 12. Heterolytic fission of C-Brillion (a) free radical (c) Carbocation 	n are true but re son is false on are false bond results in (b) Carba (d) Carb	eason is not the correct the formation of anion banion and Carbocat	t explanation of assertion.
 (b) both assertion and reaso (c) Assertion is true but rease (d) Both assertion and reaso 12. Heterolytic fission of C-Brill (a) free radical (c) Carbocation 13. Which of the following repr 	n are true but re son is false on are false bond results in (b) Carba (d) Carb resent a set of n	eason is not the correct the formation of anion panion and Carbocation panion and Carbocation	t explanation of assertion.
 (b) both assertion and reason (c) Assertion is true but reason (d) Both assertion and reason 12. Heterolytic fission of C-Brillion (a) free radical (c) Carbocation 13. Which of the following reprint (a) BF₃, H₂O, NH²⁻ 	n are true but re son is false on are false bond results in (b) Carba (d) Carb resent a set of n (b) AlCla	eason is not the correct the formation of anion panion and Carbocation suclephiles? 5, BF3, NH3	t explanation of assertion.
 (b) both assertion and reaso (c) Assertion is true but rease (d) Both assertion and reaso 12. Heterolytic fission of C-Br I (a) free radical (c) Carbocation 13. Which of the following repr (a) BF₃, H₂O, NH²⁻ (c) CN⁻, RCH₂⁻, ROH 	n are true but re son is false on are false bond results in (b) Carba (d) Carb resent a set of n (b) AlCl ₃ (d) H ⁺ , R	eason is not the correct the formation of anion panion and Carbocat suclephiles? s, BF ₃ , NH ₃ 2NH ₃ ⁺ , CCl ₂	t explanation of assertion.
 (b) both assertion and reasoned (c) Assertion is true but reasoned (d) Both assertion and reasoned (d) Both assertion and reasoned (e) Both assertion of C-Br 1 (a) free radical (c) Carbocation 13. Which of the following reprised (a) BF₃, H₂O, NH²⁻ (c) CN⁻, RCH₂⁻, ROH 14. Which of the following specific terms of terms of the following specific terms of terms of the following specific terms of ter	n are true but re son is false in are false bond results in (b) Carba (d) Carb resent a set of n (b) AlCla (d) H ⁺ , R	eason is not the correct the formation of anion panion and Carbocation suclephiles? B_3 , BF ₃ , NH ₃ RNH_3^+ , CCl ₂ cts as a nucleophile?	t explanation of assertion.
 (b) both assertion and reaso (c) Assertion is true but rease (d) Both assertion and reaso 12. Heterolytic fission of C-Br I (a) free radical (c) Carbocation 13. Which of the following repr (a) BF₃, H₂O, NH²⁻ (c) CN⁻, RCH₂⁻, ROH 	n are true but re son is false on are false bond results in (b) Carba (d) Carb resent a set of n (b) AlCl ₃ (d) H ⁺ , R	eason is not the correct the formation of anion panion and Carbocation suclephiles? B_3 , BF ₃ , NH ₃ RNH_3^+ , CCl ₂ cts as a nucleophile?	t explanation of assertion.
 (b) both assertion and reaso (c) Assertion is true but reaso (d) Both assertion and reaso 12. Heterolytic fission of C-Br I (a) free radical (c) Carbocation 13. Which of the following repr (a) BF₃, H₂O, NH²⁻ (c) CN⁻, RCH₂⁻, ROH 14. Which of the following spect (a) ROH (c) PCl₃ 	n are true but re son is false in are false bond results in (b) Carba (d) Carb resent a set of n (b) AlCla (d) H ⁺ , R cies does not ac (b) ROR (d) BF 3	eason is not the correct the formation of anion panion and Carbocation suclephiles? B_3 , BF ₃ , NH ₃ RNH_3^+ , CCl ₂ cts as a nucleophile?	t explanation of assertion.
 (b) both assertion and reason (c) Assertion is true but reason (d) Both assertion and reason 12. Heterolytic fission of C-Br I (a) free radical (c) Carbocation 13. Which of the following reprint (a) BF₃, H₂O, NH²⁻ (c) CN⁻, RCH₂⁻, ROH 14. Which of the following specified (a) ROH (c) PCl₃ 15. The geometrical shape of carbox 	n are true but re son is false on are false bond results in (b) Carba (d) Carb resent a set of n (b) AlCla (d) H ⁺ , R cies does not ac (b) ROR (d) BF3	the formation of anion panion and Carbocat suclephiles? s, BF ₃ , NH ₃ 2NH ₃ ⁺ , CCl ₂ cts as a nucleophile?	t explanation of assertion.
 (b) both assertion and reaso (c) Assertion is true but reaso (d) Both assertion and reaso 12. Heterolytic fission of C-Br I (a) free radical (c) Carbocation 13. Which of the following repr (a) BF₃, H₂O, NH²⁻ (c) CN⁻, RCH₂⁻, ROH 14. Which of the following spect (a) ROH (c) PCl₃ 	n are true but re son is false in are false bond results in (b) Carba (d) Carb resent a set of n (b) AlCla (d) H ⁺ , R cies does not ac (b) ROR (d) BF 3	the formation of anion Panion and Carbocat suclephiles? B, BF_3, NH_3 $2NH_3^+, CCl_2$ ets as a nucleophile?	t explanation of assertion.

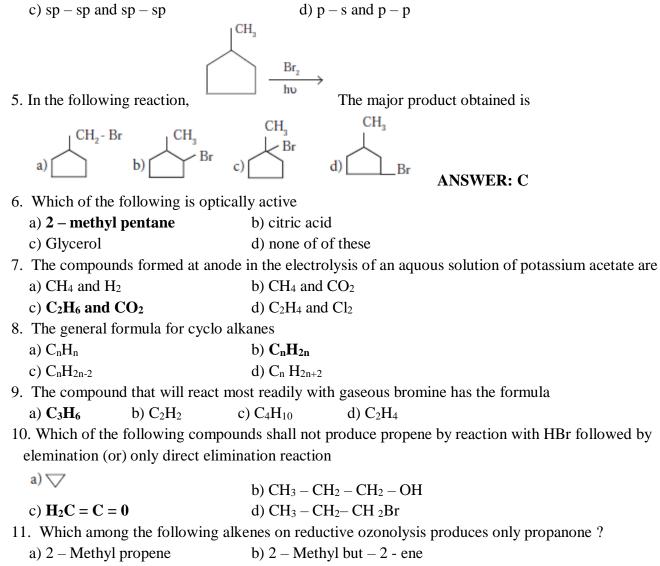
- The correct statement regarding the comparison of staggered and eclipsed conformations of ethane, is

 a) the eclipsed conformation of ethane is more stable than staggered conformation even though the
 eclipsed conformation has torsional strain.
 - b) the staggered conformation of ethane is more stable than eclipsed conformation, because staggered conformation has no torsional strain.

c) the staggered conformation of ethane is less stable than eclipsed conformation, because staggered

conformation has torsional strain.

d) the staggered conformation of ethane is less stable than eclipsed conformation, because staggered conformation has no torsional strain.


2. C_2H_5 Br + 2Na $\xrightarrow{dry ether}$ C_4H_{10} + 2NaBr

The above reaction is an example of which of the following

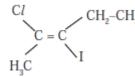
- a) Reimer Tiemann reaction b) **Wurtz reaction**
- c) Aldol condensation d) Hoffmann reaction
- 3. An alkyl bromide (A) reacts with sodium in ether to form 4, 5– diethyloctane, the compound (A) is
 a) CH₃ (CH₂)₃ Br
 b) CH₃(CH₂)₅ Br
 c) CH₃(CH₂)₃ CH(Br)CH₃

d)
$$CH_3 - (CH_2)_2 - CH (Br) - CH_2$$

|
 CH_3

4. The C – H bond and C – C bond in ethane are formed by which of the following types of overlap a) sp³ – s and sp³ – sp³ b) sp² – s and sp² – sp²

c) 2, 3 – Dimethyl but – 1 – ene d) 2, 3 – Dimethyl but – 2 – ene

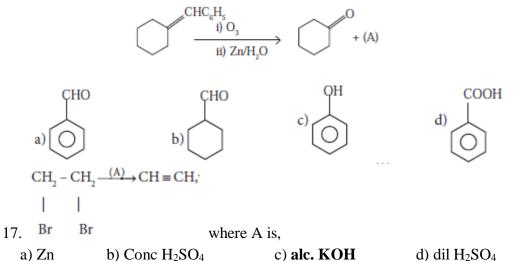

12. The major product formed when 2 - bromo - 2 - methyl butane is refluxed with ethanolic KOH is

- a) 2 methylbut 2 ene b) 2 methyl butan 1 ol
- c) 2 methyl but 1 ene d) 2 methyl butan 2 ol

13. Major product of the below mentioned reaction is, $(CH_3)_2 C = CH_2 \xrightarrow{ICI}$

a) 2-chloro -1- iodo - 2 - methyl propane

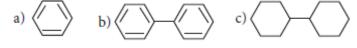
- b) 1-chloro-2-iodo-2-methylpropane
- c) 1,2 dichloro 2 methyl propane
- d) 1, 2 diiodo 2 methyl propane
- 14. The IUPAC name of the following compound is



- a) trans-2-chloro-3-iodo 2 pentane
- c) trans-3-iodo-4-chloro 3 pentene
- 15. Cis -2 butene and trans -2 butene are
 - a) conformational isomers
 - c) configurational isomers

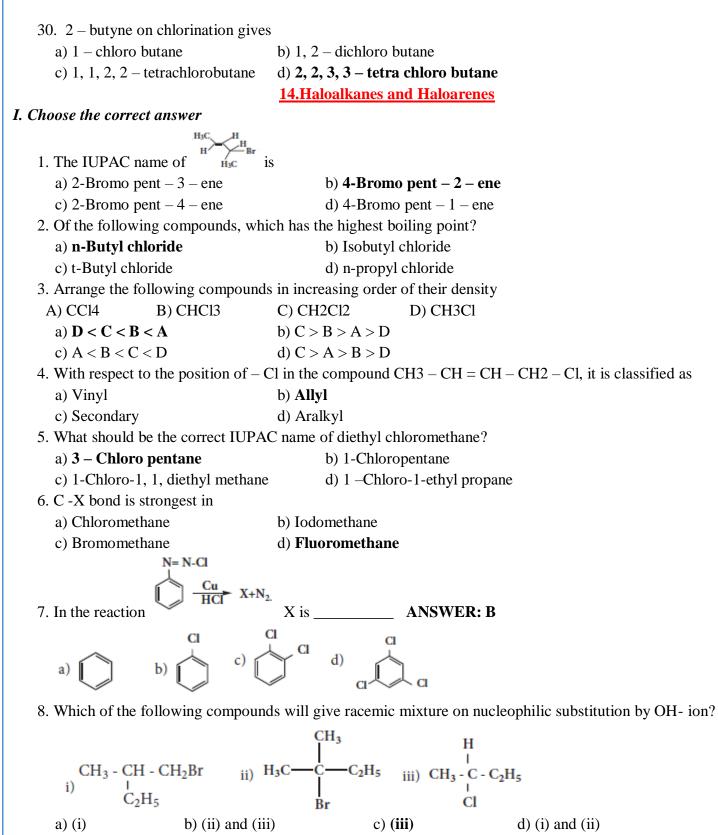
d) $\operatorname{cis}-2 - \operatorname{chloro} - 3 - \operatorname{iodo} - 2 - \operatorname{pentene}$

b) cis-3 - iodo - 4 - chloro - 3 - pentane


- b) structural isomers
- d) optical isomers
- 16. Identify the compound (A) in the following reaction ANSWER: A

18. Consider the nitration of benzene using mixed con H_2SO_4 and HNO_3 if a large quantity of KHSO₄ is added to the mixture, the rate of nitration will be

a) unchanged b) doubled c) faster d) **slower**


19. In which of the following molecules, all atoms are co-planar

d) both (a) and (b)

20. Propyne on passing through red hot iron tube gives ANSWER; A

a) $H_{3}C$ CH_{3} b) $C_{3}H$ CH_{3} $CH_{$	CH ₃ $() \downarrow \downarrow$
	d)
c) both (a) and (b)22. Which one of the following is not	on aromatic ? ANSWED, D
a) b)	c) $\left(\int_{S} d \right) \left(\int_{S} d \right)$
23. Which of the following compou	nds will not undergo Friedal – crafts reaction easily ?
a) Nitro benzene	b) Toluene
c) Cumene	d) Xylene
a) – COOH b) – NO_2	s in aromatic substitution are given. Which one is most deactivating ? c) $-C \equiv N$ d) $-SO_3H$
, , ,	sed as the halide component for friedal - crafts reaction ?
a) Chloro benzene	b) Bromo benzene
c) chloro ethene	d) isopropyl chloride
-	oxylation of sodium propionate. Same alkane can be prepared by
a) Catalytic hydrogenation of pro	-
b) action of sodium metal on iooc) reduction of 1 – chloro propano	
d) reduction of bromomethane	-
27. Which of the following is alipha	atic saturated hydrocarbon
a) C₈ H₁₈ b) C ₉ H ₁₈	c) $C_8 H_{14}$ d) All of these
28. Identify the compound 'Z' in the	C C
$C_2H_6O \xrightarrow{Al_2O_3}{623 \text{ K}} X \xrightarrow{O_3} Y \xrightarrow{Zn/H_2O}$	\rightarrow (Z)
a) Formaldehyde	b) Acetaldehyde
c) Formic acid	d) none of these
29. Peroxide effect (Kharasch effect	
 a) Oct - 4 - ene c) pent - 1 - ene 	b) hex -3 - ene d) but -2 - ene
-, F	

9. The treatment of ethyl formate with excess of RMgX gives

c) **R- CHO** d) R-O-R

10. Benzene reacts with Cl_2 in the presence of $FeCl_3$ and in absence of sunlight to form

- a) Chlorobenzene
- c) Benzal chloride d) Benzene hexachloride
- 11. The name of $C_2F_4Cl_2$ is _____
 - a) Freon 112 b) Freon 113
 - c) **Freon 114** d) Freon 115

12. Which of the following reagent is helpful to differentiate ethylene dichloride and ethylidene chloride?

b) Benzyl chloride

a) Zn / methanol

- b) KOH / ethanol
- c) aqueous KOH d) ZnCl2 / Con HCl

13. Match the compounds given in Column I with suitable items given in Column II

	Column I (Compound)		Column II (Uses)
Α		1	
	Iodoform		Fire extinguisher
В		2	
	Carbon		Insecticide
	tetrachloride		
С	CFC	3	
			Antiseptic
D	DTD	4	
			Refrigerants

Code

a) $A \rightarrow 2 B \rightarrow 4 C \rightarrow 1 D \rightarrow 3$	b) $A \rightarrow 3 B \rightarrow 2 C \rightarrow 4 D \rightarrow 1$
c) A \rightarrow 1 B \rightarrow 2 C \rightarrow 3 D \rightarrow 4	d) $A \rightarrow 3 B \rightarrow 1 C \rightarrow 4 D \rightarrow 2$

14. **Assertion:** In mono haloarenes, electrophilic substitution occurs at ortho and para positions. **Reason:** Halogen atom is a ring deactivator

(i) If both assertion and reason are true and reason is the correct explanation of assertion.

 (ii) If both assertion and reason are true but reason is not the correct explanation of assertion.

(iii) If assertion is true but reason is false.

(iv) If both assertion and reason are false.

15. Consider the reaction, $CH_3CH_2CH_2Br + NaCN \rightarrow CH_3CH_2CH_2CN + NaBr$

This reaction will be the fastest in

a) ethanol

b) methanol

c) **DMF (N, N' – dimethyl formanide)** d) water

16. Freon-12 is manufactured from tetrachloro methane by

- a) Wurtz reaction b) Swarts reaction
- c) Haloform reaction d) Gattermann reaction

17. The most easily hydrolysed molecule under SN1 condition is

a) **allyl chloride** b) ethyl chloride

c) ispropylchloride	d) benzyl chloride
	reaction of al kyl halide in the slow step is
a) sp ³ hybridised	b) sp² hybridised
c) sp hybridised	d) none of these
· · ·	en chlorobenzene is nitrated with HNO ₃ and con H_2SO_4
a) 1-chloro-4-nitrobenzene	b) 1-chloro-2-nitrobenzene
	d) 1-chloro-1-nitrobenzene
,	ost reactive towards nucleophilic substitution reaction ?
20. Which one of the following is in	ost reactive towards indecoprime substitution reaction .
a) \bigcirc Cl b)	Cl cl dl Cl ANSWER: D
21. Ethylidene chloride on treatment	with aqueous KOH gives
a) acetaldehyde	b) ehtyleneglycol
c) formaldehyde	d) glycoxal
22. The raw material for Rasching pa	rocess
a) chloro benzene	b) phenol
c) benzene	d) anisole
23. Chloroform reacts with nitric aci	d to produce
a) nitro toluene	b) nitro glycerine
c) chloropicrin	d) chloropicric acid
$\frac{i) CH_3MgI}{\longrightarrow} X,$	
$\longrightarrow \Lambda$,	
$11) H_{0} / H^{-1}$ V is	
24. acetone ^{ii) H_2O / H^{-1} X is}	b) ? mothyl ? proponal
a) 2-propanol	b) 2-methyl-2-propanol
a) 2-propanol c) 1-propanol	d) acetonol
a) 2-propanolc) 1-propanol25. Silverpropionate when refluxed y	d) acetonol with Bromine in carbontetrachloride gives
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid 	d) acetonolwith Bromine in carbontetrachloride givesb) chloro ethane
a) 2-propanolc) 1-propanol25. Silverpropionate when refluxed y	d) acetonolwith Bromine in carbontetrachloride givesb) chloro ethaned) chloro propane
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane 	d) acetonolwith Bromine in carbontetrachloride givesb) chloro ethane
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i>	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane 15.Environmental Chemistry
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> The gaseous envelope around the 	d) acetonolwith Bromine in carbontetrachloride givesb) chloro ethaned) chloro propane
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> 1. The gaseous envelope around the of 11-50 km is	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane <u>15.Environmental Chemistry</u> earth is known as atmosphere. The region lying between an altitudes
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> 1. The gaseous envelope around the of 11-50 km is a) Troposphere 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane <u>15.Environmental Chemistry</u> earth is known as atmosphere. The region lying between an altitudes b) Mesosphere
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> 1. The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane <u>15.Environmental Chemistry</u> earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> The gaseous envelope around the of 11-50 km is	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane 15.Environmental Chemistry earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology?
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> 1. The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere 2. Which of the following is natural a) Forest fire 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane <u>15.Environmental Chemistry</u> earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology? b) Floods
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere Which of the following is natural a) Forest fire c) Acid rain 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane 15.Environmental Chemistry earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology? b) Floods d) Green house effect
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> 1. The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere c) Thermosphere 2. Which of the following is natural a) Forest fire c) Acid rain 3. Bhopal Gas Tragedy is a case of 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane <u>15.Environmental Chemistry</u> earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology? b) Floods d) Green house effect
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere c) Thermosphere Which of the following is natural a) Forest fire c) Acid rain Bhopal Gas Tragedy is a case of 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane 15.Environmental Chemistry earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology? b) Floods d) Green house effect b) air pollution
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> 1. The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere c) Thermosphere 2. Which of the following is natural a) Forest fire c) Acid rain 3. Bhopal Gas Tragedy is a case of a) thermal pollution c) nuclear pollution 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane 15.Environmental Chemistry earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology? b) Floods d) Green house effect b) air pollution d) land pollution
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere Which of the following is natural a) Forest fire c) Acid rain Bhopal Gas Tragedy is a case of a) thermal pollution c) nuclear pollution 4. Haemoglobin of the blood forms of the provide the provided the provide the providet the providet the provide the provide the providet the provide	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane 15.Environmental Chemistry earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology? b) Floods d) Green house effect b) air pollution d) land pollution carboxy haemoglobin with
 a) 2-propanol c) 1-propanol 25. Silverpropionate when refluxed v a) propionic acid c) bromo ethane <i>I. Choose the correct answer</i> 1. The gaseous envelope around the of 11-50 km is a) Troposphere c) Thermosphere c) Thermosphere 2. Which of the following is natural a) Forest fire c) Acid rain 3. Bhopal Gas Tragedy is a case of a) thermal pollution c) nuclear pollution 	 d) acetonol with Bromine in carbontetrachloride gives b) chloro ethane d) chloro propane 15.Environmental Chemistry earth is known as atmosphere. The region lying between an altitudes b) Mesosphere d) stratosphere and human disturbance in ecology? b) Floods d) Green house effect b) air pollution d) land pollution

5. Which	seauence fo	r green house ga	ses is based on G	WP?			
				$CO_2 > N_2O > CH_4$			
,	$C > N_2 O > O$,	$CFC > CH_4 > N_2O > CO_2$			
,			igested metropolit				
		0	0 1	PAN and N	•		
a) Ozone, SO2 and hydrocarbonsb) Ozone, PANc) PAN, smoke and SO2d) Hydrocarbons							
,		rain water is	u) Hydroet	100115, DO ₂ (
a) 6.5	b) 7.5		d) 4.6				
,	depletion w	,	u) 400				
a) fores	-) eutrophication				
<i>,</i>	magnificati		l) global warming				
,	0	statement in the					
•	-		BOD value of mo	re than 5 m	om		
			as Global warming				
			own as particulate	-			
,	1		et of gases surrou	1	rth		
	-	-	dangerous becaus	-			
		O_2 present inside	0				
		c matter of tissue					
	-		makes it incapab	le to absorb	oxvgen		
	es up the bl		makes it meapue		onjgon		
<i>,</i>	-		hydrocarbons into	the atmosph	ere by motor vehicl	es is prevented by	
		of introgen and	nyenoeuroons into	the atmosph	lere by motor venier	is is prevented by	
-	chamber	1	o) scrubbers				
	kling filters		l) catalytic conver	tors			
,	e		· •		water sample to be		
	ly polluted		b) poor in dissolve		valer sumple to be		
, 0	in dissolve		l) low COD	a onggon			
		•0	,	nswer using t	he code given below	v the lists	
101111000		Lis			List II		
			on of ozone layer	1	CO ₂		
		-	Acid rain	2	NO		
			chemical smog	3	SO ₂		
			n house effect	4	CFC		
						-	
Code:							
	А	В	С	D			
a	3	4	1	2			
b	2	1	4	3			
с	4	3	2	1			
d	2	4	1	3			
14							

14.

		List I		1	List II
	A	Stone leprosy		1	<u> </u>
	B	Biological magnification		2	Green house gases
	C	Global warming Combination with haemoglobin		3	Acid rain
Code:	D (aemogiobin	4	DDT
Loue.	А	В	С	D	
0	A 1	В 2	3	4	
a b	3	4	3 2	4	
	3 2	3	4	1 1	
c d	4	2	4	3	
u	4	Δ	1	5	
iii) Bo iv) (A 16. Asso Reason a) i Choos	oth (A) and R) is correct I ertion (A): Ex (R) : Such p b) ii se the correct	are correct and (R) are not correct but(R) is not correct content and correct esticides are non-b c) iii coption out of the c are correct and (1)	ect prinated pestic iodegradable. d) iv choices given l	ide causes s below each c	oil and water pollution.
ii) Bo	th (A) and R	are correct and (R)) is not the cor	rect explana	tion of (A)
iii) Bo	oth (A) and R	are not correct			
iv) (A) is correct b	ut(R) is not correc	t		
17. Asse	rtion (A): Ox	xygen plays a key r	ole in the trop	osphere	
Reason	(R): Tropos	phere is not respon	sible for all bi	ological acti	vities
a) i	b) ii	c) iii	d) iv		
		option out of the c	-		-
		are correct and (R)		-	
,	. ,	are correct and (R)) is not the cor	rect explana	tion of (A)
iii) Bo	oth (A) and R	are not correct			
,	. ,	but(R) is not corr			