DPP-08

3-D Geometry

1. A variable plane is at a constant distance p from the origin and meets the coordinate axes in points A, B and C respectively. Through these points, planes are drawn parallel to the coordinate's planes.

The locus of their point of intersection is

(1)
$$\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$$

(2)
$$-\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$$

(3)
$$\frac{1}{x^2} + \frac{1}{y^2} - \frac{1}{z^2} = \frac{1}{p^2}$$

(4)
$$\frac{1}{x^2} - \frac{1}{y^2} + \frac{1}{z^2} = \frac{1}{p^2}$$

2. Given the equations of the line

$$3x - y + z + 1 = 0$$
, $5x + y + 3z = 0$.

Then which of the following is correct?

Symmetrical form of the equation of line is

$$\frac{x}{2} = \frac{y - \frac{1}{8}}{-1} = \frac{z + \frac{5}{8}}{1}$$

(2) Symmetrical form of the equations of line is

$$\frac{x+\frac{1}{8}}{1} = \frac{y-\frac{5}{8}}{1} = \frac{z}{-2}$$

(3) Equation of the plane through (2, 1, 4) and perpendicular to the given lines is

$$2x - y + z - 7 = 0$$

Equation of the plane through (2, 1, 4) and (4)

perpendicular to the given lines is

$$x + y - 2z + 5 = 0$$

A plane meets the coordinate axes in A, B, C such **3.** that the centroid of triangle ABC is the point (p, q, r). If the equation of the plane is

$$\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = k$$
, then $k =$

(1)

(2)

(3) 3 None of these

Distance between two non-intersecting planes P_1 and P_2 is 5 units, where P_1 is 2x - 3y + 6z + 26 = 0and P_2 is 4x + by + cz + d = 0. The point A(-3,0,-1)lies between the planes P_1 and P_2 , then the value of 3b + 4c - 5d is equal to

> 580 (1)

120

-18

-120

- 5. If the planes x - cy - bz = 0, cx - y + az = 0 and bx + ay - z = 0 pass through a line, then the value of $a^2 + b^2 + c^2 + 2abc$ is
- The equation of a plane passing through the line of intersection of the planes x + 2y + 3z = 2 and x - y + z = 3 and at a distance $2/\sqrt{3}$ from the point (3, 1, -1), is

(1) 5x - 11y + z = 17 (2) $\sqrt{2}x + y = 3\sqrt{2} - 1$

(3) $x + y + z = \sqrt{3}$ (4) $x - \sqrt{2}y = 1 - \sqrt{2}$

7. If the image of the point P(1, -2, 3) in the plan, 2x + 3y - 4z + 22 = 0 measured parallel to the line $\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$ is Q then PQ is equal to

(1)
$$\sqrt{42}$$

(3)
$$3\sqrt{5}$$

(4) $2\sqrt{42}$

The distance of point (1, -2, 3) from the plane 8. x - y + z = 5 measured parallel to the line $\frac{x}{2} = \frac{y}{3} = \frac{z}{-6}$ is:

- (1) 7

- 9. Let P be the plane, which contains the line of intersection of the planes, x + y + z = 6 and 2x + 3y+z+5=0 and it is perpendicular to the xy-plane. Then the distance of the point (0, 0, 256) from P is equal to:
 - $205\sqrt{5}$ (1)
- (2)
- (3)

- **10.** The distance of the point (1, -5, 9) from the plane x - y + z = 5 measured along the line x = y = z is:
 - (1)
- (2) $\frac{20}{3}$ (4) $10\sqrt{3}$
- (3) $3\sqrt{10}$

Answer Key

1. (1)

2. (2, 4)

3. (3)

4. (2)

5. (1)

6. (1)

7. (4)

8. (2)

9. (3)

10. (4)