DPP - Daily Practice Problems

Date :	Start Time :	End Time :	

CHEMISTRY

SYLLABUS: Hydrocarbons

Max. Marks: 74 Time: 60 min.

GENERAL INSTRUCTIONS

• The Daily Practice Problem Sheet contains 20 Questions divided into 5 sections.

Section I has **6** MCQs with ONLY 1 Correct Option, **3** marks for each correct answer and **−1** for each incorrect answer. **Section II** has **4** MCQs with ONE or MORE THAN ONE Correct options.

For each question, marks will be awarded in one of the following categories:

Full marks: +4 If only the bubble(s) corresponding to all the correct option(s) is (are) darkened.

 $\hbox{Partial marks: $\textbf{+1}$ For darkening a bubble corresponding to each correct option provided NO INCORRECT option is darkened. } \\$

Zero marks: If none of the bubbles is darkened.

Negative marks: -2 In all other cases.

Section III has **4** Single Digit Integer Answer Type Questions, **3** marks for each Correct Answer and 0 marks in all other cases.

Section IV has Comprehension/Matching Cum-Comprehension Type Questions having **4** MCQs with ONLY ONE correct option, **3** marks for each Correct Answer and 0 marks in all other cases.

Section V has 2 Matching Type Questions, 2 mark for the correct matching of each row and 0 marks in all other cases.

• You have to evaluate your Response Grids yourself with the help of Solutions.

Section I - Straight Objective Type

This section contains 6 multiple choice questions. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct.

1. The final product Z in the following reaction is

$$\xrightarrow{\text{NBS}} [] \xrightarrow{\text{(CH}_3)_3\text{COK}} [] \xrightarrow{\text{O}} Z$$

RESPONSE GRID

1. (a) (b) (c) (d)

- 2. Methane can be chlorinated by
 - (i) treating with chlorine in presence of UV light
 - (ii) heating with chlorine in presence of tetraethyl lead
 - (iii) treating with tert-butyl hypochlorite in presence of UV light
 - (a) only method (i)
 - (b) by methods (i) and (ii)
 - (c) by methods (i) and (iii)
 - (d) by methods (i), (ii) and (iii)
- 3. The gas liberated by the electrolysis of Dipotassium succinate solution is
 - (a) Ethane
- (b) Ethyne
- (c) Ethene
- (d) Propene
- 4. Choose the correct alkyne and reagents for the preparation

of
$$\bigcirc$$

- 5. n-Propylbenzene can be obtained in quantitative yield by following method:
 - (i) By treating benzene with *n*-propyl chloride in presence of AlCl₃
 - (ii) By treating excess of benzene with *n*-propyl chloride in presence of AlCl₃
 - (iii) By treating benzene with allyl chloride in presence of AlCl₃ followed by reduction
 - (*iv*) By treating benzene with propinoyl chloride in presence of AlCl₃ followed by Clemmensen reduction.
 - (a) By(ii), (iii) and (iv)
- (b) By (i), (iii) and (iv)
- (c) By (iii) and (iv)
- (d) By (ii) only
- **6.** The final product in the following series of reactions should be

$$H_3CO \longrightarrow CH = CHCH_3 \xrightarrow{HBr} [] \xrightarrow{(i) Na} Product$$

(a)
$$H_3CO - CH_2 - CH - CH - CH_2 - CH_3$$

(b) HO
$$\longrightarrow$$
 CH₂ - CH - CH - CH₂ \longrightarrow OCH

(c) HO
$$\longrightarrow$$
 CH - CH \longrightarrow OH C_2H_5 C_2H_5

Section II - Multiple Correct Answer Type

This section contains 4 multiple correct answer(s) type questions. Each question has 4 choices (a), (b), (c) and (d), out of which **ONE OR MORE** is/are correct.

- 7. Which of the following statements are correct?
 - (a) Monochlorination of ethane gives C_2H_5Cl only
 - (b) Thermal or photochemical chlorination of C₂H₅Cl gives, 1, 1-dichloroethane and 1,2-dichloroethane
 - (c) Chlorination of isobutane gives tertiary butyl chloride and isobutyl chloride in the ratio of 2: 1 even though there are nine 1° H atoms in the compound in comparison to only one 3° H atom
 - (d) Monochlorination of CH₄ is not possible
- 8. Which of the following method can not be used for preparation of CH₃-CH₃?
 - (a) $CH_3Cl \xrightarrow{Zn/dust}$
- (b) $CH_3CH_2Cl \xrightarrow{LiAlH_4}$
- (c) $Al_4C_3 \xrightarrow{H_2O/HCl}$
- (d) $CaC_2 \xrightarrow{H_2O/H^+}$
- Propene (I), 2-methylpropene (II), and ethene (III), each containing one carbon-carbon double bond, is separately treated with HI under the same set of conditions. The order of reactivity for the three alkenes should be
 - (a) I is more reactive than II as well as III
 - (b) I is more reactive than III, but less than II
 - (c) II is more reactive than both I and III
 - (d) III is more reactive than I which is more reactive than II

6. (a) b) c) d)

10. The possible compounds formed in the following reaction is

Section III - Integer Type

This section contains 4 questions. The answer to each of the questions is a single digit integer ranging from 0 to 9.

- 11. Number of monochloro derivatives (excluding stereoisomers), dichloro derivatives and trichloro derivatives of cyclopentane are n_1 , n_2 and n_3 then $(n_1 + n_2)/n_3$ is equal to
- 12. How many stereoisomers are possible for dichlorocyclobutane?
- 13. On conversion into the Grignard reagent followed by treatment with water, how many alkyl bromides would yield isopentane?
- **14.** Total no. of alkynes that on catalytic reduction gives 3-ethyl-4-methylheptane.

Section IV - Comprehension Type

Directions (Qs. 15-18): Based upon the given paragraphs, 4 multiple choice questions have to be answered. Each question has 4 choices (a), (b), (c) and (d), out of which **ONLY ONE** is correct.

PARAGRAPH-1

A hydrocarbon (X) of the formula C_6H_{12} does not react with bromine water but reacts with bromine in presence of light, forming compound (Y). Compound (Y) on treatment with alc. KOH gives compound [Z] which on ozonolysis gives (T) of the formula $C_6H_{10}O_2$. Compound (T) reduces Tollen's reagent and gives compound (W). (W) gives iodoform test and produces compound (U) which when heated with P_2O_5 forms a cyclic anhydride (V).

15. Compound V is –

16. Compound X is –

PARAGRAPH-2

Chlorination of methane involves three steps: chain-initiating, chain-propagating and chain-terminating.

$$\begin{array}{c} \text{Cl}_2 \xrightarrow{\text{Heat or light}} 2 \overset{\bullet}{\text{Cl}} & \text{Chain initiating} \\ \text{CH}_4 + \overset{\bullet}{\text{Cl}} & \longrightarrow \overset{\bullet}{\text{CH}}_3 + \text{HCl} \\ & \overset{\bullet}{\text{CH}}_3 + \text{Cl}_2 & \longrightarrow \text{CH}_3 \text{Cl} + \overset{\bullet}{\text{Cl}} \end{array} \end{array}$$

When oxygen is passed through the reaction mixture, chlorination of methane slows down temporarily.

- 17. Although chlorination of methane is an exothermic, the reaction requires high temperature because
 - (a) Activation energy is low
 - (b) Heat of reaction is negative
 - (c) Chain-initiating step is endothermic
 - (d) Chain-terminating step is endothermic
- **18.** Temporary slow down of chlorination of methane in presence of oxygen in due to the formation of
 - (a) CH₃OO which is highly unstable and decomposes easily
 - (b) CH₃OO• which is less reactive than •CH₃
 - (c) ClO which is highly reactive
 - (d) a diradical CIO.

RESPONSE GRID

- 10.@bcd 11.@023456789 12.@023456789
- 13. 0 1 2 3 4 3 6 7 8 9 14. 0 1 2 3 4 3 6 7 8 9
- 15. a b c d 16. a b c d 17. a b c d 18. a b c d

Section V - Matrix-Match Type

This section contains 2 questions. It contains statements given in two columns, which have to be matched. Statements in column I are labelled as A, B, C and D whereas statements in column II are labelled as p, q, r and s. The answers to these questions have to be appropriately bubbled as illustrated in the following example. If the correct matches are A-p, A-r, B-p, B-s, C-r, C-s and D-q, then the correctly bubbled matrix will look like the following:

19. Column-I

Reaction

- (A) CH₃CH₂CH = CHCH₃ on reaction with HCl gives two products
- (B) $CH_2 = CH CH = CH_2$ reacts with HCl to form 1, 2- and 1, 4-addition products
- (C) C₆H₅CH=CHCH₃+HBr gives only one product
- (D) $C_6H_5CH_2CH = CH_2 + HBr$ forms a compound identical to that obtained in (C).

20. Column-I

RESPONS GRID

- (A) $CH_2 = CHCN + (CH_3)_2 NH \longrightarrow$
- (B) $CH_2 = CHCN$ catalyst

(C)
$$CH_3 - C - Cl + (CH_3)_2 NH \longrightarrow$$

(D) $CICH_2CH = CHCN + (CH_3)_2NH \longrightarrow$

Column-II

Factor responsible for the reaction

- p. Rearrangement
- q. Inductive effect
- r Hyperconjugation
- s. Resonance

Column-II

- p. Transition state involves pentavalent carbon
- q. Nucleophilic substitution
- r Nucleophilic addition
- s. Free radical addition

SE	19. A - pqrst; B - pqrst; C - pqrst; D - pqrst
	20. A - pq(1)\$(1); B - pq(1)\$(1); C - pq(1)\$(1); D - pq(1)\$(1)

DAILY PRACTICE PROBLEM DPP CHAPTERWISE 11 - CHEMISTRY							
Total Questions	20	Total Marks	74				
Attempted		Correct					
Incorrect		Net Score					
Cut-off Score	24	Qualifying Score	35				
Success Gap = Net Score — Qualifying Score							
Net Score = (Correct × 4) – (Incorrect × 1)							

Space for Rough Work

DAILY PRACTICE PROBLEMS

CHEMISTRY SOLUTIONS

DPP/CC11

Numbering is done only for explaining the two six membered rings. The numbering is not in accordance with IUPAC rule

- 2. (d) Chlorination of methane is a free radical reaction and hence it can be initiated by any factor that can produce chlorine free radical.
 - (a) $Cl-Cl \xrightarrow{UV} Cl' + Cl'$ $CH_4 + Cl \cdot --- \rightarrow CH_3' + HCl$ $CH_3' + Cl-Cl --- \rightarrow CH_3Cl + Cl'$
 - (b) $(C_2H_5)_4Pb \xrightarrow{heat} 4CH_3CH_2 + Pb$ $CH_3CH_2 + Cl \longrightarrow CH_3 + HCl$ $CH_4 + Cl \longrightarrow CH_3 + HCl$ $CH_3 + Cl \longrightarrow Cl \longrightarrow CH_3Cl + Cl$
 - (c) $(CH_3)_3COC1 \xrightarrow{UV} (CH_3)_3CO' + CI'$ $CH_4 + (CH_3)_3COC1 \xrightarrow{} CH_3' + (CH_3)_3COH$ $CH_3' + (CH_3)_3COC1 \xrightarrow{} CH_3CI + (CH_3)_3COH$
- 3. (c) Ethene is obtained by electrolysis of dipotassium succinate as follows

$$\begin{array}{c|c} CH_2COOK & CH_2COO^- \\ & & \\ CH_2COOK & CH_2COO^- \end{array}$$

Pot. Succinate

$$2H_2O \rightleftharpoons ionization \rightarrow 2OH^- + 2H^+$$

At anode:

$$\begin{bmatrix} \operatorname{CH_2COO}^- \\ \\ \operatorname{CH_2COO}^- \end{bmatrix} - 2e^- \longrightarrow \begin{bmatrix} \operatorname{CH_2COO} \\ \\ \operatorname{CH_2COO} \end{bmatrix} \longrightarrow \begin{bmatrix} \operatorname{CH_2} \\ \\ \operatorname{CH_2} \end{bmatrix} + 2\operatorname{CO_2}$$

$$\underbrace{ \begin{bmatrix} \operatorname{CH_2COO} \\ \\ \operatorname{CH_2COO} \end{bmatrix} }_{\text{Unstable}}$$

At cathode:

$$2H^+ + 2e^- \longrightarrow [2H] \longrightarrow H_2$$

4. **(b)**

$$\begin{array}{c|c} & \text{HgSO}_4 \text{ H}_2 \text{SO}_4 \\ & \text{H}_2 \text{O} \end{array}$$

$$\begin{array}{c|c} & \text{Tautomerisation} \\ & \text{O} \end{array}$$

5. (c) (i) and (ii) methods will form isopropylbenzene because *n*-propyl carbocation, being less stable, rearranges to the more stable (2°) isopropyl carbocation. Moreover, method (i) will lead to polyalkylation. Methods (iii) and (iv) can be used for preparing *n*-propylbenzene.

$$+ \text{CICH}_2\text{CH}=\text{CH}_2 \xrightarrow{(i) \text{AlCl}_3}$$

$$\text{CH}_2\text{-CH}=\text{CH}_2 \qquad \text{CH}_2\text{CH}_2\text{CH}_3$$

$$\xrightarrow{\text{H}_2/\text{Pt}} \qquad \xrightarrow{\text{n-Propylbenzene}}$$

$$+ CH_{3}CH_{2}COCI \xrightarrow{\text{(AlCl}_{3})}$$

$$COCH_{2}CH_{3} \xrightarrow{\text{CH}_{2}CH_{2}CH_{3}}$$

$$\xrightarrow{Zn/Hg} \xrightarrow{HCl}$$

6. (c)
$$H_3CO - CH = CHCH_3 \xrightarrow{H^+} H_3CO - CHCH_2CH_3 \xrightarrow{Br^-}$$

Benzylic carbocation

7. **(a, b, c).**
$$C_2H_6 + Cl_2 \xrightarrow{hv} C_2H_5Cl + HCl$$

$$C_2H_5Cl + Cl_2 \xrightarrow{hv} CH_3CHCl_2 + CH_2Cl.CH_2Cl$$

The attack of chlorine atom on the hydrocarbon is selective, that is, a tertiary C-H hydrogen atom is abstracted more easily than a secondary or a primary hydrogen. Thus rate of abstraction of hydrogen atom follows the order $3^{\circ}>2^{\circ}>1^{\circ}$.

$$\begin{array}{cccc} CH_3 \\ CH_3CHCH_3+Cl_2 & \xrightarrow{h\nu} & CH_3-C-Cl(67\%)+CH_3CHCH_2Cl(33\%) \\ CH_3 & & CH_3 & CH_3 \end{array}$$

It is likely that the activation energy required to form a 3° free radical is much less than that for the formation of 2° or 1° free radical. The ease of formation of free radicals thus parallels their stability, i.e. $3^{\circ} > 2^{\circ} > 1^{\circ}$. Thus more stable a free radical, the more easily it is formed.

8. (c, d) (a)
$$CH_3 - Cl \xrightarrow{Zn/dust} CH_3 - CH_3$$

(b)
$$CH_3 - CH_2C1 \xrightarrow{LiAlH_4} CH_3 - CH_3$$

(c)
$$Al_4C_3 \xrightarrow{H_2O/HCl} CH_4$$

(d)
$$CaC_2 \xrightarrow{H_2O/H^+} C_2H_2$$

9. (b, c)

$$CH_3$$

 $CH_2 = C - CH_3(II) > CH_2 = CH - CH_3(I) > 0$

$$CH_2 = CH_2(III)$$

$$\begin{array}{c} CH_3 \\ \hline \textbf{Intermediate} \quad CH_3 - C^+ - CH_3 \\ 3^\circ \quad \text{carbocation} \\ (II) \end{array} > \begin{array}{c} CH_3 - C^+ - CH_3 \\ 2^\circ \quad \text{carbocation} \\ (II) \end{array}$$

> CH₃ - CH₂

1° carbocation
(III)

10. (a, b, c)

cis- and trans-

$$n_1 =$$
 $n_2 =$
 n

and

Hence
$$\frac{n_1 + n_2}{n_3} = \frac{4}{4} = 1$$

- 12. (5) 1, 3-Dichlorocyclobutane can exist in *cis* and *trans* forms. *trans*-1, 2-Dichlorocyclobutane can exist in (+)— and (-)-forms. However, *cis*-1, 2 Dichlorocyclobutane has a plane of symmetry and hence it can exist as *meso* isomer.
- 13. (4) All alkyl bromides having carbon skeleton of isopentane (2-methylbutane (CH₃)₂CHCH₂CH₃) will give isopentane via Grignard reagent.

14. (3)

$$\begin{array}{c} \operatorname{CH_3} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH} - \operatorname{CH} - \operatorname{CH_2} - \operatorname{CH_3} \\ | & | \\ \operatorname{CH_3} & \operatorname{CH_2} - \operatorname{CH_3} \end{array}$$

3-Ethyl-4-methylheptane

$$CH \equiv C - CH_2 - CH - CH - CH_2 - CH_3$$

$$CH_3 \quad CH_2CH_3$$

$$CH_3 - C \equiv C - CH - CH - CH_2CH_3$$

$$CH_3 \quad CH_2CH_3$$

15. (b) 16. (a)
$$CH_3 \xrightarrow{Br_2} CH_3$$
(X) (Y)

AgNO₃ / NH₄OH

COOH
$$(W) \qquad O$$

$$COOH \qquad P_2O_5$$

$$COOH \qquad O$$

(U)

COCH₃

- 17. (c) The chain-initiating step $(Cl Cl \longrightarrow 2^{\circ}Cl)$ is highly endothermic ($\Delta H = +58 \text{ kcal/mol}$) and therefore requires high temperatures.
- 18. (b) Oxygen reacts with the methyl radical to form new radical (CH_3OO^{\bullet}) which is markedly less reactive

$${}^{\bullet}CH_3 + O - O \longrightarrow CH_3 - O - O^{\bullet}$$

than ^oCH₃ and therefore drastically slows down the chain reaction.

19. A-q, r; B-s; C-s; D-p, s

(A)
$$CH_3CH_2CH_2CHCH_3 \leftarrow H^+ CH_3CH_2CH = CHCH_3 \rightarrow CH_3CH_2CHCH_2CH_3$$

(Five hyperconjugative structures)

$$CI^- CI CI_{CH_3CH_2CH_2CHCH_3}$$

$$CH_3CH_2CH_2CHCH_3$$

$$CH_3CH_2CHCH_2CH_3$$

$$CH_3CH_2CHCH_2CH_3$$

$$CH_3CH_2CHCH_2CH_3$$

(B)
$$CH_2 = CH - CH = CH_2 \xrightarrow{H^+} \left[CH_3^+ CH CH = CH_2 \longleftrightarrow CH_3 CH = CHC^+ H_2 \right]$$

2°Carbocation, stable due to resonance

$$\begin{array}{c}
Cl & Cl \\
 & | \\
 & CH_3CHCH = CH_2 + CH_3CH = CHCH_2
\end{array}$$

$$\begin{array}{c}
Cl & Cl \\
 & | \\
 & (1,2-\text{addition}) & (1,4-\text{addition})
\end{array}$$

(C)
$$CH = CHCH_3 + H^+ \longrightarrow CHCH_2CH_3 \xrightarrow{Br^-} CHCH_2CH_3$$

(D)
$$CH_2CH = CH_2 + H^+ \longrightarrow CH_2CHCH_3 \xrightarrow{1, 2-} \text{hydride shift}$$

20. A-r; B-s; C-q; D-p, q, r

- (A) The electron-withdrawing group ($-C \equiv N$) is in conjugation with the carbon-carbon double bond, hence the intermediate carbanion, formed by the attack of nucleophile, stabilizes due to resonance. Hence such alkenes undergo nucleophilic addition reactions.
- (B) Vinyl monomers when heated in presence of catalyst undergo free radical polymerisation.
- (C) Acyl halides, typically, undergo nucleophilic substitution. This is due to the fact that Cl is a good leaving group.
- (D) The given compound has 1° alkyl halide, hence undergoes S_{N^2} reaction involving transition state with pentavalent carbon. Further the presence of CH₂CH = CN grouping causes the compound to undergo nucleophilic addition.