DAILY PRACTICE PROBLEMS MATHEMATICS Solutions

DPP/FT01

1. **(b)**
$$f(x) = \frac{x+2}{|x+2|}$$

 $f(x) = \begin{cases} -1, \ x < -2 \\ 1, \ x > -2 \end{cases}$ Range of f (x) is $\{-1, 1\}$

2. (c)
$$f(x) = 2 \sin x + \sin 2x$$

 $f'(x) = 2 \cos x + 2 \cos 2x = 2 (\cos x + \cos 2x)$
 $\therefore f'(x) = 0 \Rightarrow 2\cos^2 x + \cos x - 1 = 0$
 $\cos x = \frac{-1 \pm 3}{4} = -1, \frac{1}{2}; \therefore x = \pi, \frac{\pi}{3}$
Now, $f(0) = 0, f\left(\frac{3\pi}{2}\right) = -2$
 $f(\pi) = 0, f\left(\frac{\pi}{3}\right) = 2\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} = \frac{3\sqrt{3}}{2}$

 $\frac{1}{3\sqrt{3}} = \frac{3\sqrt{3}}{2} + 2$

3. (c) Given that *a*, *b*, *c* are in G.P.

So,
$$b^2 = ac$$
 ... (i)
 $x = \frac{a+b}{2}$... (ii)

$$y = \frac{b+c}{2} \qquad \qquad \dots \text{(iii)}$$

Now $\frac{x}{a} + \frac{c}{y} = \frac{2a}{a+b} + \frac{2c}{b+c} = \frac{2(ab+bc+2ca)}{ab+ac+b^2+bc}$ $= \frac{2(ab+bc+2ca)}{(ab+ac+ac+bc)} = 2 \qquad \left[\because b^2 = ac\right]$

4. **(b)**
$$I = \int_{0}^{\pi} \frac{x}{1 + \cos^{2} x} dx = \int_{0}^{\pi} \frac{\pi - x}{1 + \cos^{2}(\pi - x)} dx$$

 $= \int_{0}^{\pi} \frac{\pi - x}{1 + \cos^{2} x}$
 $= \int_{0}^{\pi} \frac{\pi - x}{1 + \cos^{2} x} dx - \int_{0}^{\pi} \frac{x}{1 + \cos^{2} x} dx = \pi \int_{0}^{\pi} \frac{dx}{1 + \cos^{2} x} - I$
 $2I = \pi \int_{0}^{\pi} \frac{1}{1 + \cos^{2} x} dx = 2\pi \int_{0}^{\frac{\pi}{2}} \frac{1}{1 + \cos^{2} x} dx$
 $= 2\pi \int_{0}^{\frac{\pi}{2}} \frac{\sec^{2} x dx}{2 + \tan^{2} x}$ Put $\tan x = t$ $\sec^{2} x dx = dt$
 $2I = 2\pi \int_{0}^{\infty} \frac{dt}{2 + t^{2}} = 2\pi . \frac{1}{\sqrt{2}} \left(\tan^{-1} \frac{t}{\sqrt{2}} \right)_{0}^{\infty}$
 $= \sqrt{2}\pi \left[\tan^{-1} \infty - \tan^{-1} 0 \right] = \sqrt{2}\pi \left[\frac{\pi}{2} - 0 \right] = \frac{\pi^{2}}{\sqrt{2}}$
5. **(b)** Let $z = 1 - t + i \sqrt{t^{2} + t + 2}$
We know that $z = x + iy$
 $x + iy = 1 - t + i \sqrt{t^{2} + t + 2}$
compare real and imaginary part, we get
 $x = 1 - t$ $t = 1 - x$
and $y = \sqrt{t^{2} + t + 2}$

$$y^2 = t^2 + t + 2$$

$$y^{2} = (1-x)^{2} + (1-x) + 2$$

$$y^{2} = 1 + x^{2} - 2x + 1 - x + 2$$

$$y^{2} = x^{2} - 3x + 4$$

$$y^{2} = \left(x - \frac{3}{2}\right)^{2} + \frac{7}{4}$$

Which is a hyperbola.

(a) This is the linear equation of the form $\frac{dy}{dx} + Py = Q$, where $P = \tan Q$ **6**. x and $Q = x^m \cos x$ Now integrating factor (I.F.) = $e^{\int Pdx} = e^{\int \tan dx}$ $=e^{\log \sec x} = \sec x$ Thus sol. is given by, $y \cdot e^{\int P dx} = \int Q \cdot e^{\int P dx} dx + c$ \Rightarrow y.sec $x = \int x^m .\cos x .\sec x dx + c$ $\Rightarrow y \sec x = \frac{x^{m+1}}{m+1} + c$ $\Rightarrow (m+1) y = x^{m+1} \cos x + c(m+1) \cos x.$ (c) $\lim_{x \to 2} \frac{e^{3x-6}-1}{\sin(2-x)} = \lim_{x \to 2} \frac{e^{-3(2-x)}-1}{\sin(2-x)}$ 7. Put $2 - x = t \Rightarrow x = 2 - t$ $\lim_{t \to 0} \frac{e^{-3t} - 1}{\sin t} \qquad \left(\frac{0}{0} \text{ Form}\right)$ $= \lim_{t \to 0} \frac{(-3) \cdot e^{-3t}}{\cos t} = -3$ [By L-Hospital's rule] (c) The given lines are, 8. $y - 1 = x, x \ge 0; y - 1 = -x, x < 0$

y = 0;
$$x = -\frac{1}{2}, x < 0; x = \frac{1}{2}, x \ge 0$$

so that the area bounded is as shown in the figure. \uparrow^{Y}

Required area

$$= 2\int_0^{1/2} (1+x) dx = 2\left(x + \frac{x^2}{2}\right)_0^{1/2} = 2\left(\frac{1}{2} + \frac{1}{8}\right) = \frac{5}{4}$$

9. (b)
$$\sin x - 3 \sin 2x + \sin 3x = \cos x - 3 \cos 2x + \cos 3x$$

 $\Rightarrow 2 \sin 2x \cos x - 3 \sin 2x = 2 \cos 2x \cos x - 3 \cos 2x$
 $\Rightarrow \sin 2x (2 \cos x - 3) = \cos 2x (2 \cos x - 3)$
 $\Rightarrow \sin 2x = \cos 2x \left[a \cos x \neq \frac{3}{2} \right]$
 $\Rightarrow \tan 2x = 1 \Rightarrow 2x = n\pi + \frac{\pi}{4} \Rightarrow x = \frac{n\pi}{2} + \frac{\pi}{8}.$

10. (c) Let
$$\vec{a} + 2\vec{b} = t\vec{c}$$
 and $\vec{b} + 3\vec{c} = s\vec{a}$, where t and s are scalars
Adding, we get
 $\vec{a} + 3\vec{b} + 3\vec{c} = t\vec{c} + s\vec{a} \implies \vec{a} + 2\vec{b} + 6\vec{c} = t\vec{c} + s\vec{a} - \vec{b} + 3\vec{c}$
 $= t\vec{c} + (\vec{b} + 3\vec{c}) - \vec{b} + 3\vec{c} = (t+6)\vec{c}$
 $\begin{bmatrix} \text{using } s \vec{a} = \vec{b} + 3\vec{c} \end{bmatrix}$
 $= \lambda \vec{c}$, where $\lambda = t + 6$

11. (b) Area of quadrilateral = 2 [area of
$$\triangle OAC$$
]
= $2.\frac{1}{2}OA.AC = \sqrt{S_1}.\sqrt{g^2 + f^2 - c}$

Point is $(0, 0) \Rightarrow S_1 = c$, \therefore Area = $\sqrt{c(g^2 + f^2 - c)}$

12. (d) If (α, β, γ) be the image, then mid point of (α, β, γ) and (-1, 3, 4) must lie on x - 2y = 0 $\frac{\alpha - 1}{2} - 2\left(\frac{\beta + 3}{2}\right) = 0$

$$\alpha - 1 - 2\beta - 6 = 0$$
 $\alpha - 2\beta = 7$ (1)

Also line joining (α, β, γ) and (-1, 3, 4) should be parallel to the normal of the plane x - 2y = 0

$$\therefore \frac{\alpha+1}{1} = \frac{\beta-3}{-2} = \frac{\gamma-4}{0} = \lambda$$
$$\Rightarrow \alpha = \lambda - 1, \beta = -2\lambda + 3, \gamma = 4 \qquad \dots (2)$$

From (1) and (2)

$$\alpha = \frac{9}{5}, \ \beta = -\frac{13}{5}, \ \gamma = 4$$

None of the option matches.

13. (a)
$$f(x) = \min \{x + 1, |x| + 1\}$$

 $\Rightarrow f(x) = x + 1 \forall x \in R$
 $y = -x + 1$
 $x' \leftarrow (-1, 0)$
 y'

Hence, f(x) is differentiable everywhere for all $x \in R$.

14. (c) When
$$x < 0$$
, $|x| = -x$

Equation is $x^2 - x - 6 = 0 \Rightarrow x = -2, 3$ x < 0,

$$\therefore$$
 $x = -2$ is the solution.

When $x \ge 0$, |x| = x \therefore Equation is $x^2 + x - 6 = 0 \implies x = 2, -3$ $x \ge 0$, \therefore x = 2 is the solution, Hence x = 2, -2 are the solutions and their sum is zero.

15. (c)
$$\int \frac{dx}{4\sin^2 x + 5\cos^2 x} = \int \frac{\sec^2 x dx}{4\tan^2 x + 5} = \frac{1}{4} \int \frac{\sec^2 x dx}{\tan^2 x + \frac{5}{4}}$$

Put tan $x = t \Rightarrow \sec^2 x \, dx = dt$, then it reduces to

С

$$\frac{1}{4} \int \frac{dt}{t^2 + \left(\frac{\sqrt{5}}{2}\right)^2} = \frac{2}{4\sqrt{5}} \tan^{-1} \left(\frac{2t}{\sqrt{5}}\right) + \frac{1}{2\sqrt{5}} \tan^{-1} \left(\frac{2\tan x}{\sqrt{5}}\right) + c.$$

16. (c)
$$27^{40} = 3^{120}$$

 $3^{119} = (4-1)^{119} = {}^{119}C_0 4^{119} - {}^{119}C_1 4^{118}$
 $+ {}^{119}C_2 4^{117} - {}^{119}C_3 4^{116} + + (-1)$
 $\therefore 3^{119} = 4k - 1$
 $\therefore 3^{120} = 12k - 3 = 12 (k - 1) + 9$
 \therefore the required remainder is 9.
17. (d) $f(x) = x^{100} + \sin x - 1 \Rightarrow f'(x) = 100x^{99} + \cos x$.
If $0 < x < \pi/2$, then $f'(x) > 0$.
Therefore $f(x)$ is increasing on $(0, \pi/2)$.
If $0 < x < 1$, then $100x^{99} > 0$ and $\cos x > 0$
[$\because x$ lies between 0 and 1 radian]
 $\Rightarrow f'(x) = 100x^{99} + \cos x > 0$
 $\Rightarrow f(x)$ is increasing on $(0, 1)$.
If $\pi/2 < x < \pi$, then $100 x^{99} > 100[\because x > 1, \therefore x^{99} > 1]$

$$\Rightarrow 100x^{99} + \cos x > 0$$

[:: $\cos x \ge -1$, :: $100x^{99} + \cos x > 99$]
 $\Rightarrow f'(x) > 0 \Rightarrow f(x)$ is increasing on ($\pi/2$, π).

18. (b) Let *A* denote the event that the stranger succeeds at the
$$k^{th}$$
 trial. Then

$$P(A') = \frac{999}{1000} \times \frac{998}{999} \times \dots \times \frac{1000 - k + 1}{1000 - k + 2} \times \frac{1000 - k}{1000 - k + 1}$$

$$\Rightarrow P(A') = \frac{1000 - k}{1000} \Rightarrow P(A) = 1 - \frac{1000 - k}{1000} = \frac{k}{1000}$$

19. (b) $\lim_{x \to 0^{-}} f(x) = 0$, $f(0) = 0$, $\lim_{x \to 0^{+}} f(x) = -4$
 $f(x)$ discontinuous at $x = 0$.
and $\lim_{x \to 1^{-}} f(x) = 1$ and $\lim_{x \to 1^{+}} f(x) = 1$, $f(1) = 1$
Hence $f(x)$ is continuous at $x = 1$.
Also $\lim_{x \to 2^{-}} f(x) = 4 (2)^{2} - 3.2 = 10$
 $f(2) = 10$ and $\lim_{x \to 2^{+}} f(x) = 3(2) + 4 = 10$
Hence $f(x)$ is continuous at $x = 2$.
20. (c) Let $f(x) \neq 2$ be true and $f(y) = 2$, $f(z) \neq 1$ are false
 $\Rightarrow f(x) \neq 2$, $f(y) \neq 2$, $f(z) = 1$
 $\Rightarrow f(x) = 3$, $f(y) = 3$, $f(z) = 1$
but then function is many one.
Now, let $f(z) \neq 1$ is true & $f(x) \neq 2$ & $f(y) = 2$ are false
 $\Rightarrow f(x) = 2$, $f(y) \neq 2$ and $f(z) \neq 1$.
 $\Rightarrow f(x) = 2$, $f(z) = 3$ and $f(y) = 1$.
Hence one-one.
21. (52) $\tan 30^{\circ} = \frac{h}{x + 60}$, $\frac{1}{\sqrt{3}} = \frac{h}{x + 60}$

Distance between *L* and *K* is, $\left|\frac{20+3}{\sqrt{16+1}}\right| = \frac{23}{\sqrt{17}}$.

24. (0.42)
$$\left| \frac{z - \alpha}{z - \beta} \right| = k$$
 ... (i)

where. α and β are constant complex numbers represents circle, if $k \neq 1$ and its radius is

$$\begin{vmatrix} \frac{k(\alpha - \beta)}{1 - k^2} \end{vmatrix} \qquad \dots \text{ (ii)}$$

Given $\left| \frac{z - i}{z - (-i)} \right| = 5$
 $\therefore \quad \alpha = i, \ \beta = -i, \ k = 5$ [by comparing with (i)]
 $\therefore \quad \text{Radius} = \left| \frac{5(i + i)}{1 - 25} \right| = \frac{5}{12} = 0.42$
25. (0) $\bigotimes \sum_{r=1}^{n} (r - 1) = 1 + 2 + \dots + (n - 1) = \frac{n(n - 1)}{2}$
 $\sum_{r=1}^{n} (r - 1)^2 = 1^2 + 2^2 + \dots + (n - 1)^2$
 $= \frac{n(n - 1)(2n - 1)}{6}$
 $\sum_{r=1}^{n} (r - 1)^3 = 1^3 + 2^3 + \dots + (n - 1)^3 = \frac{n^2 (n - 1)^2}{4} \therefore \sum_{r=1}^{n} \Delta_r = \left| \frac{\frac{n(n - 1)}{2}}{6} n - \frac{1}{2} n - \frac{6}{4} \right|$
 $\left| \frac{n(n - 1)(2n - 1)}{2} n - \frac{6}{4} \right|$

$$= \frac{n(n-1)}{12} \begin{vmatrix} 6 & n & 6 \\ 2(2n-1) & 2n^2 & 2(2n-1) \\ 3n(n-1) & 3n^3 & 3n(n-1) \end{vmatrix}$$
$$= 0 \quad (\forall C_1 = C_3)$$